
Lecture Notes on
The Lambda Calculus

15-814: Types and Programming Languages
Frank Pfenning

Lecture 1
Tuesday, August 31, 2021

1 Introduction

This course is about the principles of programming language design, many
of which derive from the notion of type. Nevertheless, we will start by
studying an exceedingly pure notion of computation based only on the
notion of function, that is, Church’s λ-calculus [CR36]. There are several
reasons to do so.

• We will see a number of important concepts in their simplest possible
form, which means we can discuss them in full detail. We will then
reuse these notions frequently throughout the course without the same
level of detail.

• The λ-calculus is of great historical and foundational significance. The
independent and nearly simultaneous development of Turing Ma-
chines [Tur36] and the λ-Calculus [CR36] as universal computational
mechanisms led to the Church-Turing Thesis, which states that the ef-
fectively computable (partial) functions are exactly those that can be
implemented by Turing Machines or, equivalently, in the λ-calculus.

• The notion of function is the most basic abstraction present in nearly all
programming languages. If we are to study programming languages,
we therefore must strive to understand the notion of function.

• It’s cool!

LECTURE NOTES TUESDAY, AUGUST 31, 2021

L1.2 The Lambda Calculus

2 The λ-Calculus

In ordinary mathematical practice, functions are ubiquitous. For example,
we might define

f(x) = x+ 5
g(y) = 2y + 7

Oddly, we never state what f or g actually are, we only state what happens
when we apply them to arbitrary arguments such as x or y. The λ-calculus
starts with the simple idea that we should have notation for the function
itself, the so-called λ-abstraction.

f = λx. x+ 5
g = λy. 2y + 7

In general, λx. e for some arbitrary expression e stands for the function
which, when applied to some e′ becomes [e′/x]e, that is, the result of substi-
tuting or plugging in e′ for occurrences of the variable x in e. For now, we
will use this notion of substitution informally—in the next lecture we will
define it formally.

We can already see that in a pure calculus of functions we will need
at least three different kinds of expressions: λ-abstractions λx. e to form
function, application e1 e2 to apply a function e1 to an argument e2, and
variables x, y, z, etc. We summarize this in the following form

Variables x
Expressions e ::= λx. e | e1 e2 | x

This is not the definition of the concrete syntax of a programming language,
but a slightly more abstract form called abstract syntax. When we write down
concrete expressions there are additional conventions and notations such as
parentheses to avoid ambiguity.

1. Juxtaposition (which expresses application) is left-associative so that
x y z is read as (x y) z

2. λx. is a prefix whose scope extends as far as possible while remain-
ing consistent with the parentheses that are present. For example,
λx. (λy. x y z)x is read as λx. ((λy. (x y) z)x).

We say λx. e binds the variable x with scope e. Variables that occur in
e but are not bound are called free variables, and we say that a variable x
may occur free in an expression e. For example, y is free in λx. x y but not

LECTURE NOTES TUESDAY, AUGUST 31, 2021

The Lambda Calculus L1.3

x. Bound variables can be renamed consistently in a term So λx. x + 5 =
λy. y+ 5 = λwhatever .whatever + 5. Generally, we rename variables silently
because we identify terms that differ only in the names of λ-bound variables.
But, if we want to make the step explicit, we call it α-conversion.

λx. e =α λy.[y/x]e provided y not free in e

The proviso is necessary, for example, because λx.x y 6= λy.y y.
We capture the rule for function application with

(λx. e2) e1 =β [e1/x]e2

and call it β-conversion. Some care has to be taken for the substitution to be
carried our correctly—we will return to this point later.

If we think beyond mere equality at computation, we see that β-conversion
has a definitive direction: we apply is from left to right. We call this β-
reduction and it is the engine of computation in the λ-calculus.

(λx. e2) e1 −→β [e1/x]e2

3 Simple Functions and Combinators

The simplest functions are the identity function and the constant function.
The identity function, called I, just returns its argument x.

I = λx. x

The constant function returning x could be written as

λy. x

We calculate
(λy. x) e −→β x

for any expression e since y does not occur in the expression x. This is
somewhat incomplete in the sense the expression λy. x has a free variable
which is therefore fixed. What we would like is a closed expression K (one
without free variables) such K x is the constant function, always returning
x. But that’s easy: we just abstract over x!

K = λx. λy. x

Then Kx −→β λy. x is the constant function returning x.
A combinator for us is just a closed λ-expression like I or K. We will see

more interesting combinators in the next lecture.

LECTURE NOTES TUESDAY, AUGUST 31, 2021

L1.4 The Lambda Calculus

4 Function Composition

One the most fundamental operation on functions in mathematics is to
compose them. We might write

(f ◦ g)(x) = f(g(x))

Having λ-notation we can first explicitly denote the result of composition
(with some redundant parentheses)

f ◦ g = λx. f(g(x))

As a second step, we realize that ◦ itself is a function, taking two functions
as arguments and returning another function. Ignoring the fact that it is
usually written in infix notation, we define

◦ = B = λf. λg. λx. f (g x)

We call it B because that’s its traditional name as a combinator.
One of the fundamental properties of function composition is that it is

associative, that is, (f ◦ g) ◦ h = f ◦ (g ◦ h). If our representation of function
composition is correct, we should be able to verify

B f (B g h) =β B (B f g)h

We hope we can do this by pure calculation, so let’s start with the left side
and the right side and apply β-reduction. The definition of B takes place
here in our language of mathematical discourse, to replacing its definition is
not actually a step of β-equality but just equality. We highlight in red the
variable or binder that is being replaced, renamed, or substituted for in the
following step.

B f (B g h)
= (λf. λg. λx. f (g x)) f (B g h)
=β (λg. λx. f (g x)) (B g h)
=β λx. f ((B g h)x)
= λx. f (((λf. λg. λx. f (g x)) g h)x)
=α λx. f (((λf. λg′. λx. f (g′ x)) g h)x)
=β λx. f ((λg′. λx. g (g′ x))hx)
=β λx. f ((λx. g (hx))x)
=β λx. f (g (hx))

LECTURE NOTES TUESDAY, AUGUST 31, 2021

The Lambda Calculus L1.5

Note that the renaming from g to some other variable name g′ (α-conversion)
is necessary, because otherwise the variable g would be captured by the
binder on g, giving us the wrong answer:

λx. f (((λf. λg. λx. f (g x)) g h)x)
6=β λx. f ((λg. λx. g (g x))hx)
=β λx. f (h (hx))

This is one of the last times we’ll be explicit about α-conversion and we’ll
just silently apply it as needed.

With a similar chain of reasoning we can verify that for the right-hand
side we have

B (B f g)h =β λx. f (g (hx))

Therefore, but transitivity and symmetry of equality we know that function
composition is associative as it should be.

5 Summary of λ-Calculus

λ-Expressions.

Variables x, y, z, . . .
Expressions e ::= λx. e | e1 e2 | x

λx. e binds x with scope e, which is as large as possible while remaining
consistent with the given parentheses. Juxtaposition e1 e2 is left-associative.

Equality.

Substitution [e1/x]e2 (capture-avoiding, see Lecture 2)
α-conversion λx. e =α λy.[y/x]e provided y not free in e
β-conversion (λx. e2) e1 =β [e1/x]e2

We generally apply α-conversion silently, identifying terms that differ only
in the names of the bound variables. Because β-conversion is a form of equal-
ity it is reflexive, symmetric, and transitive and can be applied anywhere in
an expression.

Reduction.

β-reduction (λx. e2) e1 −→β [e1/x]e2

Reduction is oriented, so we don’t think of it as an equality and it is neither
reflexive, nor symmetric, nor transitive. On the other hand it is a congruence,
that is, we can apply β-reduction anywhere in an expression.

LECTURE NOTES TUESDAY, AUGUST 31, 2021

L1.6 The Lambda Calculus

6 Representing Booleans

Before we can claim the λ-calculus as a universal language for computation,
we need to be able to represent data. The simplest nontrivial data type
are the Booleans, a type with two elements: true and false. The general
technique is to represent the values of a given type by normal forms, that is,
expressions that cannot be reduced. Furthermore, they should be closed, that
is, not contain any free variables. We need to be able to distinguish between
two values, and in a closed expression that suggest introducing two bound
variables. We then define rather arbitrarily one to be true and the other to be
false

true = λx. λy. x
false = λx. λy. y

The next step will be to define functions on values of the type. Let’s start
with negation: we are trying to define a λ-expression not such that

not true =β false
not false =β true

We start with the obvious:
not = λb. . . .

Now there are two possibilities: we could either try to apply b to some
arguments, or we could build some λ-abstractions. In lecture, we followed
both paths. Let’s first try the one where b is applied to some arguments.

not = λb. b (. . .) (. . .)

We suggest two arguments to b, because b stands for a Boolean, and Booleans
true and false both take two arguments. true = λx. λy. x will pick out the
first of these two arguments and discard the second, so since we specified
not true = false, the first argument to b should be false!

not = λb. b false (. . .)

Since false = λx. λy. y picks out the second argument and not false = true,
the second argument to b should be true.

not = λb. b false true

Now it is a simple matter to calculate that the computation of not applied to
true or false completes in three steps and obtain the correct result.

not true −→3
β false

not false −→3
β true

LECTURE NOTES TUESDAY, AUGUST 31, 2021

The Lambda Calculus L1.7

We write−→n
β for reduction in n steps, and−→∗β for reduction in an arbitrary

number of steps, including zero steps. In other words, −→∗β is the reflexive
and transitive closure of −→β .

An alternative solution hinted at above is to start with

not′ = λb. λx. λy. . . .

We pose this because the result of not b should be a Boolean, and the two
Booleans both start with two λ-abstractions. Now we reuse the previous
idea, but apply b not to false and true, but to y and x.

not′ = λb. λx. λy. b y x

Again, we calculate
not′ true −→3

β false
not′ false −→3

β true

An important observation here is that

not = λb. b (λx. λy. y) (λx. λy. x) 6= λb. λx. λy. b y x = not′

Both of these are normal forms (they cannot be reduced) and therefore repre-
sent values (the results of computation). Both correctly implement negation
on Booleans, but they are different. This is evidence that when computing
with particular data representations in the λ-calculus it is not extensional:
even though the functions behave the same on all the arguments we care
about (here just true and false), the are not convertible. To actually see that
they are not convertible we need the Church-Rosser theorem which says
if e1 and e2 are αβ-convertible then there is a common reduct e such that
e1 −→∗β e and e2 −→∗β e.

As a next exercise we try conjunction. We want to define a λ-expression
and such that

and true true =β true
and true false =β false
and false true =β false
and false false =β false

Learning from the negation, we start by guessing

and = λb. λc. b (. . .) (. . .)

where we arbitrarily put b first. Looking at the equations, we see that if b is
true then the result is always c.

and = λb. λc. b c (. . .)

LECTURE NOTES TUESDAY, AUGUST 31, 2021

L1.8 The Lambda Calculus

If b is false the result is always just false, no matter what c is.

and = λb. λc. b c false

Again, it is now a simple matter to verify the desired equations and that, in
fact, the right-hand side of these equations is obtained by reduction.

7 Nontermination

At this point we pause briefly to ask three natural questions:

1. Does every expression have a normal form?

2. Can we always compute a normal form if one exists?

3. Are normal forms unique?

The answers to these questions are crucial to understanding to what extent
we might consider the λ-calculus a universal model of computation.

Does every expression have a normal form?

If the λ-calculus is to be equivalent in computational power to Turing ma-
chines in some way, then we would expect the answer to be “no” because
computations of Turing machines may not halt. However, it is not imme-
diate to think of some expression that doesn’t have a normal form. If you
haven’t seen something like this already, you may want to play around with
some expressions to see if you can come up with one.

LECTURE NOTES TUESDAY, AUGUST 31, 2021

The Lambda Calculus L1.9

The simplest one is

Ω = (λx. x x) (λx. x x)

Indeed, there is only one possible β-reduction and it immediately leads to
exactly the same term:

Ω = (λx. x x) (λx. x x)
−→β (λx. x x) (λx. x x)
−→β (λx. x x) (λx. x x)
−→β . . .

So Ω reduces in one step to itself and only to itself.

Can we always compute a normal form if one exists?

The answer here is “yes”, although it is not easy to prove that this is the case.
Let’s consider an example (recall that K = λx. λy. x):

K I Ω −→β (λy. I) Ω −→β I

So the expression K I Ω does have a normal form, even though Ω does not.
This is because the constant function K I ignores its argument. On the other
hand we also have

K I Ω −→β K I Ω −→β K I Ω −→β · · ·

because we have the Ω −→β Ω and reduction can be applied anywhere in
an expression.

Fortunately, there is a strategy which turns out to be complete in the
sense that if an expression has a normal form, this strategy will find it. It
is called leftmost-outermost or normal-order reduction. This strategy scans
through the expression from left to right and when it find a redex (that is,
an expression of the form (λx. e) e′) it applies β-reduction and then returns
to the beginning of the result expression. In particular, it does not consider
any redex in e or e′, only the “outermost” one. Also, in an expression
((λx. e1) e2) e3 it does not consider any potential redex in e3, only the leftmost
one.

This strategy works in our example: the redex in Ω would not be consid-
ered, only the redex K I and then the redex (λy. I) Ω.

The implementation of LAMBDA uses a straightforward function for
leftmost-outermost reduction, complicated very slightly by the fact that

LECTURE NOTES TUESDAY, AUGUST 31, 2021

L1.10 The Lambda Calculus

names such as K or I which in the notes are only abbreviations at the
mathematical level of discourse, are actual language-level definitions in
the implementation. So we have to expand the definition of K, for exam-
ple, before applying β-reduction, but we do not officially count this as a
substitution.

The notion of leftmost-outermost reduction is closely related to the
notion of call-by-name evaluation in programming languages (and, with
a little more distance, to call-by-need which is employed in Haskell). In
contrast, call-by-value would reduce the argument of a function before
applying the β-reduction, which is not complete, as our example shows.
The analogy is not exact, however, since in programming languages such
as ML or Haskell we also do not reduce under λ-abstractions, a fact that
represents a sharp dividing line between foundational calculi such as the λ-
calculus and actual programming languages. We will justify and understand
these decisions in a few lectures.

Are normal forms unique?

The outcome of a computation starting from e is its normal form. At any
point during a computation there may be many redices. Ideally, the out-
come would be independent of the reduction strategy we choose as long
as we reach a normal form. Otherwise, the meaning of an expression (as
represented by its normal form) may be ambiguous. Therefore, Church
and Rosser [CR36] spend considerable effort in proving the uniqueness of
normal forms. The key technical device is a property called confluence (also
referred to as the Church-Rosser property). It is often depicted in the following
diagram:

e

e1 e2

e′

∗ ∗

∗ ∗

In words: if we can reduce e to e1 and also e to e2 then there exists an e′

such that e1 and e2 both reduce to e′. The solid lines are given reduction
sequences while the reduction sequences represented by dashed lines have
to be shown to exist. Reduction here is in multiple steps (indicated by the
star “∗”). For the λ-calculus (and the original Church-Rosser Theorem), this
reduction would usually be β-reduction. Very roughly, the proof shows how

LECTURE NOTES TUESDAY, AUGUST 31, 2021

The Lambda Calculus L1.11

to simulate the steps from e to e2 when starting from e1 and (symmetrically)
simulate the steps from e to e1 when starting from e2.

Confluence implies the uniqueness of normal forms. Suppose e1 and e2
in the diagram are normal forms. Because they cannot be reduced further,
the sequence of reductions to e′ must consist of zero steps, so e1 = e′ = e2.

Confluence implies that even though we might embark on an unfortu-
nate path (for example, keep reducing Ω in K I Ω) we can still recover if
indeed there is a normal form. In this example, we might eventually decide
to reduce K I and then the redex (λy. I) Ω.

8 The LAMBDA Language

In lecture, we used a toy implementation of a the λ-calculus in a language
called LAMBDA. This implementation uses a concrete syntax where λ is
written as a backslash ‘\’. A program consists of a sequence of declarations,
of which there are three forms:

defn x = e variable x stands for e
norm x = e variable x stands for the normal form of e
conv e1 = e2 verify that e1 and e2 have the same normal form

Allowing definitions is a convenience, but it does not change the expressive
power of the λ-calculus, because we can replace defn x = e by (λx. . . .) e
where ‘. . .’ represents the scope of the definition. The norm and conv
declarations initiate computation and allow the programmer to examine the
normal form of an expression (if it exists).

In addition, declarations can be negated with fail, for example, to check
that two expressions are not convertible.

1 % represent booleans as closed expressions in normal form
2

3 defn true = \x. \y. x
4 defn false = \x. \y. y
5

6 defn not = \b. b false true
7 defn not’ = \b. \x. \y. b y x
8

9 (* confirm that not and not’ are not convertible *)
10 fail conv not = not’
11

12 % normalize "not true"
13 norm _ = not true

LECTURE NOTES TUESDAY, AUGUST 31, 2021

L1.12 The Lambda Calculus

14

15 % test not and not’ against their specification
16 conv not true = false
17 conv not false = true
18

19 conv not’ true = false
20 conv not’ false = true

Listing 1: Booleans in LAMBDA

For more information on LAMBDA, consult the Software page for the
course. The live code from lecture and a trimmed down version can be
found at 01-lambda/.

Exercises

Exercise 1 Define the following functions on Booleans in at least two distinct
ways.

1. “nor”, the negation of disjunction

2. The conditional “if” such that

if true e1 e2 =β e1
if false e1 e2 =β e2

References

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion.
Transactions of the American Mathematical Society, 39(3):472–482, May
1936.

[Tur36] Alan Turing. On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London Mathematical
Society, 42:230–265, 1936. Published 1937.

LECTURE NOTES TUESDAY, AUGUST 31, 2021

http://www.cs.cmu.edu/~fp/courses/15814-f21/software.html
http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/01-lambda/

	Introduction
	The -Calculus
	Simple Functions and Combinators
	Function Composition
	Summary of -Calculus
	Representing Booleans
	The Lambda Language

