
Lecture Notes on
Progress

15-814: Types and Programming Languages
Frank Pfenning

Lecture 8
Thursday, September 24, 2020

1 Introduction

We start by short exploration of the consequences of making the structure
of functions opaque and then focus on proving progress, one of the key
properties connecting typing and evaluation. This in turn requires the
canonical forms theorem, which is a new form of representation theorem (such
as we have proved for Booleans, represented in the typed λ-calculus).

Let’s reiterate the critical properties we care about for now:

Preservation. If · ` e : τ and e 7→ e′ then · ` e′ : τ .

Progress. For every expression · ` e : τ either e 7→ e′ for some e′ or e value.

Finality of Values. There is no · ` e : τ such that e 7→ e′ for some e′ and
e value.

Sequentiality. If e 7→ e1 and e 7→ e2 then e1 = e2.

Since we already proved preservation for ordinary reduction in some detail
for the simply-typed λ-calculus, in this lecture we focus on the progress
theorem so we can understand the structure of its proof.

2 Observing Functional Values

As we have emphasized, we assume we cannot directly observe the structure
of functions when they are outcome of computation. Instead, we can probe

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

L8.2 Progress

such functions by applying them to argument and observing the results.
As an example, consider our language with parametric polymorphism and
Booleans, and our usual representation of natural numbers as their iterators:

nat : ∀α. (α→ α)→ α→ α

If we have an expression · ` e : nat such that e value we know it will have
the form Λα. e′ for some e′, but we cannot observe e′. Moreover, e′ may not
even be a value, even though e is. Nevertheless, we can test, for example, if
the value e is zero or positive. Consider

· ` e [bool] : (bool→ bool)→ bool→ bool

and

· ` e [bool] (λb. false) true : bool

If this expression evaluates to true then e “represents” zero, and if it evaluates
to false then e “represents” some positive number. We put “represents”
in quotes here because, for example, e may not be equal to Λα. λs. λz. z.
Instead, it behaves like this function when applied to a type τ , and two
arguments of type τ → τ and τ in this order. We just have to keep in mind
that this computation takes place when we observe e, and not when e is
originally evaluated.

A small item of notation: we write e ↪→ v to express that e evaluates to the
value v. This presupposes that · ` e : τ for some τ and ensures that v value.
Formally, it is defined by

v value
v ↪→ v

eval/val
e 7→ e′ e′ ↪→ v

e ↪→ v
eval/step

It is also possible to define evaluation directly as a so-called big-step
evaluation judgment as compared to the small-step evaluation we have defined
so far (see Exercise 1).

From now on we will often write v for an expression we know to be a
value, but at least for the moment we will not automatically imply this from
the notation, that is, we will still write v value where we are not already
assured that v is indeed a value.

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

Progress L8.3

3 Progress

The progress property is intended to rule out intuitively meaningless expres-
sions that neither reduce nor constitute a value. For example, the ill-typed
expression if (λx. x) false true cannot take a step since the subject (λx. x)
is a value but the whole expression is not a value and cannot take a step.
Similarly, the expression if b false true is well-typed in the context with
b : bool, but it cannot take a step nor is it a value. Therefore, it is clear that
the assumptions that e is closed that that e has a valid type are both needed
for this theorem. It may be helpful to refer to the summary of the judgments
inference rules while reading this proof.

Theorem 1 (Progress)
If · ` e : τ then either e 7→ e′ for some e′ or e value.

Proof: There are not many candidates for the structure of this proof. We
have e and we have a typing for e. From that scant information we need
obtain evidence that e can step or is a value. So we try the rule induction on
· ` e : τ .

Case:

x1 : τ1 ` e2 : τ2

· ` λx1. e2 : τ1→ τ2
tp/lam

where e = λx1. e2. Then we have

λx1. e2 value By rule val/lam

It is fortunate we don’t need the induction hypothesis, because it
cannot be applied! That’s because the context of the premise is not
empty, which is easy to miss. So be careful!

Case:

x : τ ∈ (·)

· ` x : τ

This case is impossible because there is not declaration for x in the
empty context.

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

http://www.cs.cmu.edu/~fp/courses/15814-f20/lectures/08-progress-rules.pdf
http://www.cs.cmu.edu/~fp/courses/15814-f20/lectures/08-progress-rules.pdf

L8.4 Progress

Case:

· ` e1 : τ2→ τ · ` e2 : τ2

· ` e1 e2 : τ

where e = e1 e2. At this point we apply the induction hypothesis to
e1. If it reduces, so does e = e1 e2. If it is a value, then we apply the
induction hypothesis to e2. If is reduces, so does e1 e2. If not, we have
a redex. In more detail:

Either e1 7→ e′1 for some e′1 or e1 value By ind.hyp.

e1 7→ e′1 Subcase
e = e1 e2 7→ e′1 e2 by rule step/app1

e1 value Subcase
Either e2 7→ e′2 for some e′2 or e2 value By ind.hyp.

e2 7→ e′2 Sub2case
e1 e2 7→ e1 e

′
2 By rule step/app2 since e1 value

e2 value Sub2case
e1 = λx. e′1 and x : τ2 ` e′1 : τ By “inversion”

We pause here to consider this last step. We know that · ` e1 : τ2→ τ
and e1 value. By considering all cases for how both of these judgments
can be true at the same time, we see that e1 must be a λ-abstraction.
This is often summarized in a canonical forms theorem which we state
after this proof. Finishing this sub2case:

e = (λx. e′1) e2 7→ [e2/x]e′1 By rule step/app/lam since e2 value

Case:

· ` true : bool

where e = true. Then e = true value by rule val/true.

Case: Typing of false. As for true.

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

Progress L8.5

Case:

· ` e1 : bool · ` e2 : τ · ` e3 : τ

· ` if e1 e2 e3 : τ

where e = if e1 e2 e3.

Either e1 7→ e′1 for some e′1 or e1 value By ind.hyp.

e1 7→ e′1 Subcase
e = if e1 e2 e3 7→ if e′1 e2 e3 By rule step/if

e1 value Subcase
e1 = true or e1 = false

By considering all cases for · ` e1 : bool and e1 value

e1 = true Sub2case
e = if true e2 e3 7→ e2 By rule step/if/true

e1 = false Sub2case
e = if false e2 e3 7→ e3 By rule step/if/false

Cases: For rules tp/tplam and tp/tpapp see Exercise 2.

�

This completes the proof. The complex inversion steps can be summa-
rized in the canonical forms theorem that analyzes the shape of well-typed
values. It is a form of the representation theorem for Booleans we proved in
an earlier lecture for the simply-typed λ-calculus.

Theorem 2 (Canonical Forms)

(i) If · ` v : τ1→ τ2 and v value then v = λx1. e2 for some x1 and e2.

(ii) If · ` v : ∀α. τ then v = Λα. e.

(iii) If · ` v : bool and v value then v = true or v = false.

Proof: For each part, analyzing all the possible cases for the value and
typing judgments. �

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

L8.6 Progress

4 Type Preservation∗

This proof was not done in lecture, but is presented here for completeness.
In a future lecture we will reexamine the proof of this theorem.

We already know that the rules should satisfy the substitution property
(Theorem L5.6). We can easily check the new cases in the proof because
substitution remains compositional. For example, [e′/x](if e1 e2 e3) =
if ([e′/x]e1) ([e′/x]e2) ([e′/x]e3). However, some new properties are needed
for parametric polymorphism, so we make them explicit here and generalize
the previous theorem.

Theorem 3 (Substitution Property)

(i) If Γ ` e : τ and Γ, x : τ,Γ′ ` e′ : τ ′ then Γ,Γ′ ` [e/x]e′ : τ ′.

(ii) If Γ ` τ type and (Γ, α type,Γ′) ctx then (Γ, [τ/α]Γ′) ctx.

(iii) If Γ ` τ type and Γ, α type,Γ′ ` σ type then Γ, [τ/α]Γ′ ` [τ/α]σ type.

(iv) If Γ ` τ type and Γ, α type,Γ′ : τ ` e : σ then Γ, [τ/α]Γ′ ` [τ/α]e : [τ/α]σ.

Proof: Each part by rule induction on the second given derivation. We have
to exploit the fact that term variables x do not occur in types, and we need
to remember our presuppositions and (silent) renaming of bound variables
(both for terms and types). �

On to preservation.

Theorem 4 (Type Preservation)
If · ` e : τ and e 7→ e′ then · ` e′ : τ .

Proof: By rule induction on the derivation of e 7→ e′.
In each case we apply inversion on the typing derivation to obtain typing

derivations for the components of e. From these derivations we assemble a
typing derivation for e′. In cases of a step involving substitution, we have to
appeal to the substitution property to obtain the resulting derivation.

Case:

e1 7→ e′1

e1 e2 7→ e′1 e2
step/app1

where e = e1 e2 and e′ = e′1 e2.

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

Progress L8.7

· ` e1 e2 : τ Assumption
· ` e1 : τ2→ τ and · ` e2 : τ2 for some τ2 By inversion
· ` e′1 : τ2→ τ By ind.hyp.
· ` e′1 e2 : τ By rule app

Case:

v1 value e2 7→ e′2

v1 e2 7→ v1 e
′
2

step/app2

where e = v1 e2 and e′ = v1 e
′
2. As in the previous case, we proceed by

inversion on typing.

· ` v1 e2 : τ Assumption
· ` v1 : τ2→ τ and · ` e2 : τ2 for some τ2 By inversion
· ` e′2 : τ2 By ind.hyp.
· ` v1 e′2 : τ By rule app

Case:

v2 value

(λx. e1) v2 7→ [v2/x]e1
step/app/lam

where e = (λx. e1) v2 and e′ = [v2/x]e1. Again, we apply inversion on
the typing of e, this time twice. Then we have enough pieces to apply
the substitution property (Theorem 3).

· ` (λx. e1) v2 : τ Assumption
· ` λx. e1 : τ2→ τ and · ` v2 : τ2 for some τ2 By inversion
x : τ2 ` e1 : τ By inversion
· ` [v2/x]e1 : τ By the substitution property (Theorem 3)

Case:

e1 7→ e′1

if e1 e2 e3 7→ if e′1 e2 e3
step/if

where e = if e1 e2 e3 and e′ = if e′1 e2 e3. As might be expected by
now, we apply inversion to the typing of e, followed by the induction
hypothesis on the type of e1, followed by re-application of the typing
rule for if.

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

L8.8 Progress

· ` if e1 e2 e3 : τ Assumption
· ` e1 : bool and · ` e2 : τ and · ` e3 : τ By inversion
· ` e′1 : bool By ind.hyp.
· ` if e′1 e2 e3 : τ By rule tp/if

Case:

if true e2 e3 7→ e2
step/if/true

where e = if true e2 e3 and e′ = e2. This time, we don’t have an
induction hypothesis since this rule has no premise, but fortunately
one step of inversion suffices.

· ` if true e2 e3 : τ Assumption
· ` true : bool and · ` e2 : τ and · ` e3 : τ By inversion
· ` e′ : τ Since e′ = e2.

Case: Rule step/if/false is analogous to the previous case.

Case:
e1 7→ e′1

e1 [σ] 7→ e′1 [σ]
step/tpapp

where e = e1 [σ] and e′ = e′1 [σ].

· ` e1 [σ] : τ Assumption
· ` e1 : ∀α. τ2 where τ = [σ/α]τ2 By inversion
· ` e′1 : ∀α. τ2 By ind. hyp
· ` e′1 [σ] : [σ/α]τ2 By rule tp/tpapp
· ` e′ : τ Since e′ = e′1 [σ] and τ = [σ/α]τ2

Case:

(Λα. e2) [σ] 7→ [σ/α]e2
step/tpapp/tplam

where e = (Λα. e2) [σ] and e′ = [σ/α]e2.

· ` (Λα. e2) [σ] : τ Assumption
· ` (Λα. e2) : ∀α. τ2 and · ` σ type
with τ = [σ/α]τ2 for some τ2 By inversion
α type ` e2 : τ2 By inversion
· ` [σ/α]e2 : [σ/α]τ2 By the substitution property (Theorem 3)

�

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

Progress L8.9

5 Pairs

Types capture fundamental programming abstractions. If a type system and
its underlying programming language is well-designed, we can then build
complex data representations and computational mechanisms from a few
primitives. The most fundamental is that of a function, captured in the type
τ1→ τ2. As a next step we look for ways to aggregate data. The simplest is
pairs, which are captured by the type τ1 × τ2. By iterating pairs we can then
assemble tuples with elements of arbitrary types.

5.1 Constructing Pairs

Fundamentally, for each new type we introduce we must be able to construct
element of the type. For example, λx. e constructs element of the function
type τ1→τ2. To construct new elements of the type τ1×τ2 we use the almost
universal notation 〈e1, e2〉. The typing rule is straightforward

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
tp/pair

This is the only rule for pairs, so we maintain the property that the rules are
syntax-directed.

Next we should consider the dynamics, that is, which are the new values
of type τ1 × τ2 and how do we evaluate pairs. In this lecture we consider
eager pairs, that is, a pair is only a value if both components are. Lazy pairs
are the subject of Exercise 6.

e1 value e2 value

〈e1, e2〉 value
val/pair

We then assume that we can observe the components of a pair. So, at the
current extent of our language we can observe the Booleans and, inductively,
pairs of observable type.

Types τ ::= α | τ1→ τ2 | ∀α. τ | bool | τ1 × τ2
Observable Types o ::= bool | o1 × o2

To evaluate a pair we decided on evaluating from left to right: it preserves se-
quentiality and is consistent with other constructs like function applications
that are also evaluated from left to right.

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
step/pair1

v1 value e2 7→ e′2

〈v1, e2〉 7→ 〈v1, e′2〉
step/pair2

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

L8.10 Progress

In writing this rule we are starting a convention where expressions known
to be values are denoted by v instead of e.

5.2 Destructing Pairs

Constructing pairs is only one side of the coin. We also need to be able to
access the components of a pair. There seem to be two natural choices: (1) to
have a first and second projection function, and (2) decompose a pair with
a letpair-like construct (from the pure λ-calculus) that gives access to both
components. It turns out, projections as a primitive are more suitable for
lazy pairs, while a letpair construct matches eager pairs. We formulate it
here as a case expression, because it turns out that several other destructors
can also be written in this way, leading to a more uniform language.

case e (〈x1, x2〉 ⇒ e′)

The crucial operational rule just deconstructs a pair of values.

v1 value v2 value

case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) 7→ [v1/x2][v2/x2]e3
step/casep/pair

We also need a second rule to reduce the subject of the case-expression until
it becomes a value.

e0 7→ e′0

case e0 (〈x1, x2〉 ⇒ e3) 7→ case e′0 (〈x1, x2〉 ⇒ e3)
step/casep0

In the typing rule, we know the subject of the case-expression should be a
pair and the body should be the same type as the whole expression.

Γ ` e : τ1 × τ2 Γ, x1 : τ1, x2 : τ2 ` e′ : τ ′

Γ ` case e (〈x1, x2〉 ⇒ e′) : τ ′
tp/casep

Note how x1 and x2 are added to the context in the second premise because
they may appear in e′.

We are of course obligated to check that our language properties are
preserved under this extension, which we will do shortly. Meanwhile, let’s
write two small programs, verifying that the projections can indeed be
defined.

fst : ∀α.∀β. (α× β)→ α
fst = Λα.Λβ. λp. case p (〈x, y〉 ⇒ x)

snd : ∀α.∀β. (α× β)→ β
snd = Λα.Λβ. λp. case p (〈x, y〉 ⇒ y)

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

Progress L8.11

6 Preservation and Progress, Revisited∗

This section was also not covered in lecture, but given here for completeness.
Design of the new types and expressions are always carefully rigged so

that the preservation and progress theorems continue to hold. Among other
things, we make sure that each definition is self-contained. For example, we
might have postulated a primitive function pair : τ1→ (τ2→ (τ1 × τ2)) but
then the canonical forms theorem would have to be altered: not every value
of function type is actually a λ-expression. Instead, we have a new expression
constructor 〈−,−〉 and we can define pair as a regular function from that.

Theorem 5 (Type Preservation, new cases for τ1 × τ2)
If · ` e : τ and e 7→ e′ then · ` e′ : τ

Proof: Recall the structure of the proof of type preservation. We use rule
induction on the derivation of e 7→ e′ and apply inversion on · ` e : τ in
order to gain enough information to assemble a derivation of e′. We exploit
here that the typing rules are syntax-directed. Technically, we rely on the
substitution property and so that needs to be extended as well. But since we
continue to use a standard hypothetical judgment and we do not touch our
notion of variable, the new cases don’t require any particular attention.

The congruence cases of reduction, where we reduce a subexpression,
are straightforward because we can follow this pattern mechanically. For
example:

Case:

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
step/pair1

where e = 〈e1, e2〉, e′ = 〈e′1, e2〉.

· ` 〈e1, e2〉 : τ Assumption
· ` e1 : τ1 and · ` e2 : τ2 where τ = τ1 × τ2. By inversion
· ` e′1 : τ1 By ind. hyp.
· ` 〈e′1, e2〉 : τ1 × τ2 By rule tp/pair

The main case to check then is one where some “real” reduction takes place.
This is when a destructor for values of a type meets a constructor.

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

L8.12 Progress

Case:

v1 value v2 value

case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) 7→ [v1/x1][v2/x2]e3
step/casep/pair

where e = case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) and e′ = [v1/x2][v2/x2]e3. In
this case, we cannot apply the induction hypothesis (the premises are
of a different form), but we can nevertheless apply inversion and then
use the substitution property.

· ` case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) : τ Assumption
· ` 〈v1, v2〉 : τ1 × τ2
and x1 : τ1, x2 : τ2 ` e3 : τ for some τ1 and τ2 By inversion
· ` v1 : τ1 and · ` v2 : τ2 By inversion
x1 : τ1 ` [v2/x2]e3 : τ By substitution (Theorem 3)
· ` [v1/x1][v2/x2]e3 : τ By substitution (Theorem 3)

�

In preparation for the progress theorem, we extend the canonical forms
theorem. The latter is a bit different than the other theorems in that for every
extension of our language by a new form of type, we need to add a case that
characterizes the values of the new type.

Theorem 6 (Canonical Forms)
Assume v value. Then

(i) If · ` v : τ1→ τ2 then v = λx. e′ for some x and e′.

(ii) If · ` v : ∀α. τ then v = Λα. e.

(iii) If · ` v : bool then v = true or v = false.

(iv) If · ` v : τ1 × τ2 then v = 〈v1, v2〉 for some v1 value and v2 value.

Proof: We consider each case for v value and then invert on the typing
derivation in each case. �

Theorem 7 (Progress, new cases for τ1 × τ2)
If · ` e : τ then either e 7→ e′ for some e′ or e value.

Proof: By rule induction on · ` e : τ . The rules where we reduce pairs are
straightforward, as before, so we only write out the case construct.

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

Progress L8.13

Case:
· ` e0 : τ1 × τ2 x1 : τ1, x2 : τ2 ` e2 : τ

· ` case e0 (〈x1, x2〉 ⇒ e3) : τ
tp/casep

where e = case e0 (〈x1, x2〉 ⇒ e3).

Either e0 7→ e′0 for some e0 for e0 value By ind. hyp.

e0 7→ e′0 First subcase
case e0 (〈x1, x2〉 ⇒ e3) 7→ case e′0 (〈x1, x2〉 ⇒ e3) By rule step/casep0

e0 value Second subcase
e0 = 〈v1, v2〉 for some v1 value and v2 value

By the canonical forms (Theorem 6)
case e0 (〈x1, x2〉 ⇒ e3) 7→ [v1/x1][v2/x2]e3 By rule step/casep/pair

�

Exercises

Exercise 1 Design rules for the big-step evaluation judgment e ↪→ v which
do not use any auxiliary judgment. In particular, you cannot refer to e value
or e 7→ e′, nor may design your own auxiliary judgments. You may restrict
yourself to functions and Booleans, and you should presuppose that · ` e : τ .

(i) Show the rules.

(ii) Prove that if e ↪→ v with · ` e : τ then v value.

(iii) Prove that if e ↪→ v (with · ` e : τ) then e 7→∗ v.

Your rules should also be complete in the sense that if e 7→∗ v with v value
then e ↪→ v, but you do not need to prove this.

Exercise 2 Show cases for type abstraction and type application in the proof
of progress (Theorem 1).

Exercise 3 Consider adding a new expression ⊥ to our call-by-value lan-
guage (with functions and Booleans) with the following evaluation and
typing rules:

⊥ 7→ ⊥
step/bot

Γ ` ⊥ : τ
bot

We do not change our notion of value, that is, ⊥ is not a value.

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

L8.14 Progress

1. Does preservation (Theorem L6.2) still hold? If not, provide a coun-
terexample. If yes, show how the proof has to be modified to account
for the new form of expression.

2. Does the canonical forms theorem (L6.4) still hold? If not, provide
a counterexample. If yes, show how the proof has to be modified to
account for the new form of expression.

3. Does progress (Theorem L6.3) still hold? If not, provide a counterex-
ample. If yes, show how the proof has to be modified to account for
the new form of expression.

Once we have nonterminating computation, we sometimes compare ex-
pressions using Kleene equality: e1 and e2 are Kleene equal (e1 ' e2) if they
evaluate to the same value, or they both diverge (do not compute to a value).
Since we assume we cannot observe functions, we can further restrict this
definition: For · ` e1 : bool and · ` e2 : bool we write e1 ' e2 iff for all values
v, e1 7→∗ v iff e2 7→∗ v.

4. Give an example of two closed terms e1 and e2 of type bool such that
e1 ' e2 but not e1 =β e2, or indicate that no such example exists (no
proof needed in either case).

Exercise 4 In our call-by-value language with functions, Booleans, and ⊥
(see Exercise 3) consider the following specification of or, sometimes called
“short-circuit or”:

or true e ' true
or false e ' e

where e1 ' e2 is Kleene equality from Exercise 3.

• We cannot define a function or : bool→ (bool→bool) with this behavior.
Prove that it is indeed impossible.

• Show how to translate an expression or e1 e2 into our language so
that it satisfies the specification, and verify the given equalities by
calculation.

Exercise 5 In our call-by-value language with functions, Booleans, and ⊥
(see Exercise 3) consider the following specification of por, sometimes called
“parallel or”:

por true e ' true
por e true ' true
por false false ' false

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

Progress L8.15

where e1 ' e2 is Kleene equality as in Exercises 3 and 4.

1. We cannot define a function por : bool→ (bool→ bool) in our language
with this behavior. Prove that it is indeed impossible.

2. We also cannot translate expressions por e1 e2 into our language so
that the result satisfies the given properties (which you do not need to
prove). Instead consider adding a new primitive form of expression
por e1 e2 to our language.

(a) Give one or more typing rules for por e1 e2.

(b) Provide one or more evaluation rules for por e1 e2 so that it satis-
fies the given specification and, furthermore, such that preserva-
tion, canonical forms, and progress continue to hold.

(c) Show the new case(s) in the preservation theorem.

(d) Show the new case(s) in the progress theorem.

(e) Do your rules satisfy sequentiality? If not, provide a counterex-
ample. If yes, just indicate that it is the case (you do not need to
prove it).

Exercise 6 Lazy pairs, constructed as 〈|e1, e2|〉, are an alternative to the eager
pairs 〈e1, e2〉. Lazy pairs are typically available in “lazy” languages such as
Haskell. The key differences are that a lazy pair 〈|e1, e2|〉 is always a value,
whether its components are or not. In that way, it is like a λ-expression,
since λx. e is always a value. The second difference is that its destructors are
fst e and snd e rather than a new form of case expression.

We write the type of lazy pairs as τ1 N τ2. In this exercise you are asked
to design the rules for lazy pairs and check their correctness.

1. Write out the new rule(s) for e val.

2. State the typing rules for new expressions 〈|e1, e2|〉, fst e, and snd e.

3. Give evaluation rules for the new forms of expressions.

Instead of giving the complete set of new proof cases for the additional
constructs, we only ask you to explicate a few items. Nevertheless, you need
to make sure that the progress and preservation continue to hold.

4. State the new clause in the canonical forms theorem.

5. Show one case in the proof of the preservation theorem where a de-
structor is applied to a constructor.

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

L8.16 Progress

6. Show the case in the proof of the progress theorem analyzing the
typing rule for fst e.

Exercise 7 Design the lazy unit 〈| |〉 as the nullary version of the lazy pairs
of Exercise 6. We write this type as >. Give the rules for values, typing,
and evaluation, being careful to preserve their origins as “lazy pairs with zero
components”. Prove or refute that 1 ∼= >.

Exercise 8 It is often stated that lazy pairs are not necessary in an eager
language, because we can already define τ1 N τ2 and the corresponding
constructors and destructors. Fill in this table.

τ1 N τ2 , (1→ τ1)× (1→ τ2)

〈|e1, e2|〉 ,
fst e ,

snd e ,

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020

	Introduction
	Observing Functional Values
	Progress
	Type Preservation*
	Pairs
	Constructing Pairs
	Destructing Pairs

	Preservation and Progress, Revisited*

