
Types and Programming Languages (15-814),
Fall 2018

Assignment 7: Machinations

Contact: 15-814 Course Staff

Due Tuesday, November 13, 2018, 11:59pm

This assignment is due by 11:59pm on the above date and it must be submitted
electronically as a PDF file on Canvas. Please use the attached template to typeset
your assignment and make sure to include your full name and Andrew ID. As
before, problems marked “WB” are subject to the whiteboard policy; all other
problems must be done individually.

Task 0 (0 points). How long did you spend on this assignment? Please list the
questions that you discussed with classmates using the whiteboard policy.

1 Ephemeral Storage in the S Machine

Relating the S machine back to the K machine briefly works as follows: an eval
object followed by threaded sequence of continuations

eval e dn, cont dn kn dn−1, cont dn−1 kn−1 dn−2, . . . , cont d1 k1 d0

is combined into a single stack and expression to be evaluated

ε ◦ k1 ◦ . . . ◦ kn−1 ◦ kn . e

and then we (recursively) substitute store contents for destinations until no
destinations are left in the state of the K machine.

Conspicously absent from this mapping is an S machine state corresponding
to

ε ◦ k1 ◦ . . . ◦ kn−1 ◦ kn / v

We address this by creating a new (ephemeral!) semantic object

retn c d

1

https://piazza.com/class/jl9thnft7ibun
https://piazza.com/class/jl9thnft7ibun?cid=8

where d is a destination and c is a valid cell contents. It expresses that c is returned
to destination d, and its intention is that there is a continuation waiting for a value
at d. These new ephmeral semantic objects can replace some of the persistent
objects !cell d c. Besides helping us in establishing a bisimulation between the K
and S machines, it also generates less “junk” in the store that remains until the
end of the computation.

We show three example rules for this improved version of the semantics.

!cell d c, eval d d′ 7→ retn c d′

eval (λx. e) d 7→ retn (λx. e) d

retn 〈 〉 d, cont d (case _ {〈 〉 ⇒ e′}) d′ 7→ eval e′ d′

Note that in the first rule, !cell d c persists in the state, even though it is not
explicitly mentioned on the right-hand side. On the other hand, in the last rule
the object retn 〈 〉 d is removed from the state, which is correct since the shown
continuation should be the only reference to destination d.

Task 1 (10 points, WB). Show all rules for handling binary sums τ1 + τ2. Be
sure to use retn objects only where appropriate for a bisimulation (which you do
not need to prove). For full credit, you should create appropriate persistent !cell
objects only when necessary.

Task 2 (10 points, WB). Show all rules for handling binary lazy products τ1 & τ2,
under the same instructions as the previous task.

2 Compiling Abstract Types

In class, we implicitly handled type abstraction at the term level, i.e., our terms
had no syntax to indicate that we were abstracting over types. Indeed, our rules
were of the form:

∆, α type; Γ ` e : τ

∆; Γ ` e : ∀α.τ

∆; Γ ` e : ∀α.τ ∆ ` σ type

∆; Γ ` e : [σ/α]τ

More traditional presentations use term-level syntax Λα.e for abstracting over
types and e[σ] for applying terms to types. In this section, we explore how to
evaluate expressions for abstract types ∃α.τ and ∀α.τ on K and Sη machines.
In particular, we are concerned with how to evaluate expressions typed by the
followin g rules:

∆, α type; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ
(I-∀)

∆; Γ ` e : ∀α.τ ∆ ` σ type

∆; Γ ` e[σ] : [σ/α]τ
(E-∀)

2

∆ ` σ type ∆; Γ ` e : [σ/α]τ

∆; Γ ` 〈σ, e〉 : ∃α.τ
(I-∃)

∆; Γ ` e : ∃α.τ ∆, α type; Γ, x : τ ` e′ : τ ′ ∆ ` τ ′ type

∆; Γ ` case e {〈α, x〉 ⇒ e′} : τ ′
(E-∃)

The operational semantics for terms given by (I-∃) and (E-∃) are as on p. L14.5.
The operational semantics for terms given by (I-∀) and (E-∀) are given by:

Λα.e val
(V-∀)

e 7→ e′

e[σ] 7→ e′[σ]
(C-∀)

(Λα.e)[σ] 7→ [σ/α]e
(R-∀)

Task 3 (5 points, WB). The rule (E-∃) on p. L14.5 is subject to several presupposi-
tions. Why is it important that α not appear in τ ′, i.e., that ∆ ` τ ′ type? Explain
your answer in no more than 5 lines.

Task 4 (5 points, WB). Why would we be wrong to replace the rule (R-∀) with
the following rule?

(Λα.e)[σ] 7→ e
(X-∀)

2.1 K machine

Let us warm up by considering evaluation on a stack machine.

Task 5 (5 points, WB). For each of the typing rules (I-∃), (E-∃), (I-∀), and (E-∀),

• if any new stack frames are required to evaluate the expression in the
conclusion, give them along with their typing judgments (see pp. L15.8f.);

• if no new stack frames are required, explain why.

Task 6 (5 points, WB). If any new K machine reduction rules are required, given
them here. If none are needed, state this.

Remark. Your reduction rules must be sound and complete relative to the
dynamics of our language. You are not required to prove that this is the case.

Recall what it means for a machine state s to be well-typed with answer type
σ, written s : σ:

k ÷ τ1 ⇒ σ ·; · ` e : τ1

(k B e) : σ
(S-E)

k ÷ τ1 ⇒ σ ·; · ` v : τ1 v val

(k C v) : σ
(S-R)

The associated preservation theorem states that if s : σ and s 7→ s′, then s′ : σ.

3

Task 7 (10 points, WB). Check the preservation theorem for the reduction rules
you gave in task 6. You are only required to submit the solution for

• one rule of the form k B 〈σ, e〉 7→ k′ B e′ (if you gave any such rules),

• one rule of the form k B 〈σ, e〉 7→ k′ C e′ (if you gave any such rules),

• one rule of the form k B Λα.e 7→ k′ B e′ (if you gave any such rules), and

• one rule of the form k C Λα.e 7→ k′ B e′ (if you gave any such rules).

Hint. If you cannot prove the theorem in some of the cases, check your solution
to tasks 5 and 6!

2.2 Sη machine

Let us now consider evaluation on a store machine with environments (see
pp. L17.5f.). We observed that substituting values for variables was unrealistic
in a lower-level implementation. To solve this, we introduced the concept of an
environment which maps term variables to locations containing values.

Our development in this section will still use environments to map term
variables to locations. Because we are now dealing with terms containing types,
e.g. (Λα.e)[σ], we might consider having our environment also map type vari-
ables to locations containing types. This introduces needless complexity because
we never actually use the types at runtime. Indeed, we can prove a theorem
showing that we get “the same result” from evaluating terms with types as from
evaluating terms whose types have been “erased”1. In a more realistic setting,
we would erase types before evaluating on the Sη machine. For simplicity in this
assignment, we will instead directly substitute types for type variables.

Hint. This subsection builds on the previous one!

Task 8 (5 points, WB). Give judgments eval η e d and associated dynamics to
evaluate terms e typed by (I-∀) and (E-∀). To do so,

1. extend the syntax of cells c if needed, and

2. introduce new judgments of the form !cell d c and cont d k d′ if needed.

1Type erasure is a translation | · | where, e.g., |Λx.e| = λ .|e|, |e[σ]| = |e|〈 〉, |〈σ, e〉| = |〈〈 〉, e〉|,
|case e {〈α, x〉 ⇒ e′}| = case e {〈 , x〉 ⇒ e′}, |λx.e| = λx.|e|, |e1e2| = |e1| |e2|, |l · e| = l · |e|, etc.

4

Do not store the types in closures. Rather, directly substitute them for type
variables. Explicitly, one should be able to reach a state with eval η [σ/α]e d
from the state eval η (Λα.e)[σ] d. You are not expected to use ephemeral retn c d
judgments.

Task 9 (5 points, WB). Give judgments eval η e d and associated dynamics to
evaluate terms e typed by (I-∃) and (E-∃). To do so,

1. extend the syntax of cells c if needed, and

2. introduce new judgments of the form !cell d c and cont d k d′ if needed.

Again, do not store the types in closures. Rather, directly substitute them for type
variables. You are not expected to use ephemeral retn c d judgments.

Hint. Your rules should validate

eval (·) (case 〈1, λy.〈 〉〉 {〈α, x〉 ⇒ x〈 〉}) d 7→∗ !cell d 〈 〉, . . .

5

	Ephemeral Storage in the S Machine
	Compiling Abstract Types
	K machine
	S machine

