Types and Programming Languages (15-814),
Fall 2018
Assignment 5: Polymorphism and Parametricity

Contact: 15-814 Course Staff
Due Tuesday, October 30, 2018, 11:59pm

This assignment is due by 11:59pm on the above date and it must be submitted
electronically as a PDF file on Canvas. Please use the attached template to typeset
your assignment and make sure to include your full name and Andrew ID. As
before, problems marked “WB” are subject to the whiteboard policy; all other
problems must be done individually.

Task 1 (0 points). How long did you spend on this assignment? Please list the
questions that you discussed with classmates using the whiteboard policy.

1 Polymorphic Encoding of Data Types
In this problem we return to functional encodings of data types, but now using
explicit polymorphism.

Task 2 (5 points, WB). As a warm-up exercise, find a polymorphic type for
self-application w = Az. z x. Your type does not need to be most general.

Next we propose the following encoding
alist = Vyv.y=(a—=vy—79) =7y

Task 3 (5 points, WB). Give definitions for the following functions nil and cons
with the types

nil  : Vo.alist

cons : Vo.o — alist — alist

You may define auxiliary functions as you see fit and show them with their
explicit types.


https://piazza.com/class/jl9thnft7ibun
https://piazza.com/class/jl9thnft7ibun?cid=8

Task 4 (5 points, WB). The function hd that returns the first element of a list
requires a default argument to handle the case of the empty list. Define a function

hd : Va.alist = a — o
which satisfies

hd nil y
hd (cons z 1) y

R

where =~ is the usual Kleene equality.

2 Parametricity

Task 5 (10 points, WB). Prove the following “free theorem” in the polymorphic
A-calculus where all functions are parametric.

Theorem 1. For any types 7, 7/, 0, 0’ and values f : 7 — 7/, g: 0 = o',z : 7,
y:oand k : Va. V3. a —  — a we have

flkzy) ~k(fz)(gy): 7'

Task 6 (5 points, WB). Can you think of a straightforward consequence of the
theorem above, using it for more specific f and g?

3 Data Abstraction

Reconsider the example from Assignment 4 with two different representations
of integers: one as a pair (z,y) : nat ® nat of natural numbers = and y where
a = = — y, and another one as a sum (pos : nat) + (neg : nat).

For ease of writing, we use a higher-level syntax also used in Assignment 4
and Lecture 10 and 13. Concretely, we use

data Nat = Z | S Nat

data Diff = D (Nat, Nat)
data PosNeg = Pos Nat | Neg Nat

and a signature

INT = {
type Int
zero : Int
inc : Int -> Int
dec : Int -> int



representing the type Ja.a ® (o = a) ® (& = «). In your answers you may
define functions by pattern matching, including defining auxiliary functions as
needed.

Task 7 (5 points, WB). Define an implementation
DIFF : INT={ ... }

where the type Int = Diff. You may adapt your implementation or our sample
solution from Assignment 4.

Task 8 (5 points, WB). Define an alternative implementation
POSNEG : INT = { ... }
where the type Int = PosNeg.

Task 9 (10 points, WB). Define a relation R : Diff <+ PosNeg to relate values of
the two different implementation types. As usual, we will assume it is closed
under Kleene equality.

Task 10 (10 points, WB). Prove that DIFF ~ POSNEG : INT, using the relation R
from the previous task.

There is a lot of flexibility in how you define the two implementations and
how you define the relation between them. The key is simplicity: for complex
implementations or relations, the proof may be difficult or impossible. If you
notice that matters become too messy, reexamine your implementations and
definitions to consider how you might simplify them. Moreover, it is easy to
make a mistake in the relation, so you need to be careful with the details of your
proof.



	Polymorphic Encoding of Data Types
	Parametricity
	Data Abstraction

