
Types and Programming Languages (15-814), Fall
2018

Assignment 3: Hacking with recursion

Contact: 15-814 Course Staff

Due Tuesday, October 9, 2018

This assignment is due by 23:59 on the above date and it must be submitted
electronically as a PDF file on Canvas. Please use the attached template to typeset
your assignment and make sure to include your full name and Andrew ID. As
before, problems marked “WB” are subject to the whiteboard policy; all other
problems must be done individually.

We have again provided you the syntax, statics, and dynamics for our simple
language from class. Please ensure that your terms are syntactically correct and
that they have the right type! For your convenience (and to make your programs
easier to read), we have included finite products. Finite products generalize
binary products in a manner analogous to the way finite sums generalize binary
sums. If you wish, you are free to continue using the specialized forms of syntax
(〈e1, e2〉, 〈|e1, e2|〉, e·l , e·r , case e1 {〈x1, x2〉 ⇒ e2}, etc.) we saw for binary products.
The rules for these are given in the appendices of Assignment 2.

General hint. Consider whether the results from a given task can be used to
solve subsequent tasks!

Task 1 (0 points). How long did you spend on this assignment? Please list the
questions that you discussed with classmates using the whiteboard policy.

Streams

In lecture 8, we defined the type τ list of lists of terms of type τ . In this section,
we will explore the type τ stream of streams, i.e., lists of (countably) infinite
length. One could define τ stream = nat→ τ . This is a mathematically sensible
definition, but it unsatisfactory for several reasons. First, it does not capture
the operational aspect that a stream should be a sequence of values observed in

1

https://piazza.com/class/jl9thnft7ibun
https://piazza.com/class/jl9thnft7ibun?cid=8

succession, with no means of rewinding it or going back in time. However, with
the above definition, we can access any element of the stream at any time. First,
this definition of τ stream makes it difficult to write efficient stream transducers
(functions of type (τ stream) → (τ ′ stream)). Indeed, consider a transducer
that takes a stream of nat as input and produces a running sum. One could
implement it as follows:

λS.fix(f.λn.case unfold(n) {z · ⇒ S(0) | s · n′ ⇒ plus (Sn) (fn′)}}).

This transducer produces the n-th entry by recursively computing the sum of
the first n entries in S. But because we observe a stream S by observing the
ordered sequence of values S(0), S(1), . . . , S(n), . . . , this means that at each step,
we must recompute the running sum up to that point.

Inherent in our operational intuition that streams are infinite sequences of
values is that a stream should be a recursive type. At any point, we can observe
the value at the start in the sequence (the “head” of the stream), or let it go past
us and observe the remainder of the sequence (the “tail” of the stream). This
means that an inhabitant of type τ stream is composed of a head of type τ and a
tail of type τ stream. This is analogous to lists, whose type was defined to be:

τ list = ρ(α. (nil : 1) + (cons : τ ⊗ α)).

Given a list l = fold(cons · 〈h, t〉) : τ list, we could observe its head h : τ and its
tail t : τ list. Observe that the sequential nature of lists is captured operationally
here as well: given only the tail t, there is no way to “rewind” t to recover l.
Consequently, it seems sensible to try to define τ stream as a recursive type.

Task 2 (5 points, WB). Define the type τ stream as a recursive type.

Hint. Study the type τ list and consider the dynamics of the types used to
define it. For your definition of τ stream to make sense, there must exist values
of type τ stream.

Let the type of bits be bit = (b0 : 1)+(b1 : 1). Abbreviate the bits as 0 = b0 · 〈 〉
and 1 = b1 · 〈 〉.

Task 3 (10 points, WB). Implement (in any order) the following streams and
functions.

1. zeros : bit stream. The stream whose every entry is the value 0.

2. hd : τ stream→ τ . Extracts the head (the first entry) of a stream.

3. tl : τ stream→ τ stream. Drops the first entry from a stream.

2

4. map : (τ → σ) → τ stream → σ stream. Applies a function τ → σ to
every entry of a stream of type τ stream to generate a stream of type
σ stream.

5. zip : (τ stream ⊗ σ stream) → (τ ⊗ σ) stream. “Zips” or merges two
streams together entry-wise. Explicitly, the i-th entry of the output stream
is the pair of the i-th entries of the input streams.

Rather than manually encoding streams each time as you did above, it would
be nice to have functions to help us create them. The simplest is the basic stream
generating function

iterates : τ → (τ → τ)→ τ stream.

Given an e : τ and an f : τ → τ , iterates e f generates the stream whose entries
are the iterates of f applied to e. Explicitly, its first entry is e, and its (n+ 1)-th
entry is f(en) where en is its n-th entry. Equivalently, the n-th entry (counting
from 0) is the n-fold application f(· · · (f(e)) · · ·) of f to e.

This function alone is insufficient for generating interesting streams. Consider
for example the stream thirds whose every third bit is 1 and all other bits are
0. Because the function iterated by iterates is only applied to the value of the
previous entry, it cannot keep track of its position in the stream.

We can solve this problem by keeping and mutating state, and generating a
stream of observations of that state. To do so, we generalize iterates to the stateful
stream-generating function

strgen : σ → (σ → σ)→ (σ → τ)→ τ stream.

Given an s : σ (the “state”), a t : σ → σ (the “state transformer”), and an f : σ → τ
(the “state observer’), strgen s tf generates the stream satisfying:

• hd(strgen s tf) = f(s),

• tl(strgen s tf) = strgen (ts) tf .

As an example, we can use strgen to implement thirds as follows:

strgen 0 succ (λn.if n ≡ 0 (mod 3) then 1 else 0).

Task 4 (5 points, WB). Define the stream generating functions

iterates : τ → (τ → τ)→ τ stream

strgen : σ → (σ → σ)→ (σ → τ)→ τ stream.

3

Digital logic

A τ gate is a term of type

τ gate = τ stream⊗ τ stream→ τ stream.

The input and output streams represent a sequence of values, one per time step.
Typically, we are interested in logic gates: certain expressions of type bit gate.
Gates have a nice pictorial representation (below we see an “AND gate”) where
the input bit streams are the two wires entering the flat part of the gate on the left,
and the output bit stream is the wire exiting on the tip of the gate on the right:

By introducing multiple gates and connecting wires between their outputs and
inputs, one can construct various interesting circuits. For example, we can
capture a simple form of recursion using “feedback”, i.e., by feeding the output
wire of a gate back into one of its input wires to form the circuit:

There is a subtlety here: what should be the top “recursive” input when the gate
begins processing the bottom input stream? To send a bit out on the output wire
that feeds back into the top input, the gate must first have received two inputs,
but one of those inputs is from the output wire. Consequently, we must bootstrap
the recursion by specifying an initial value for the output wire.

Task 5 (10 points, WB). Write a function

f : τ gate→ τ → τ stream→ τ stream

that connects a gate’s output wire to one of its input wires, using the argument
of type τ to bootstrap the recursion. Use f to implement a transducer step :
nat stream→ nat stream that at each step returns the largest natural number
seen so far. For example, step should output 3, 10, 10, 10, 15, 15, . . . for the stream
3, 10, 2, 5, 15, 3, You may assume a max : nat gate that at each step outputs
the maximum of its input wires.

An interesting class of circuits is flip-flop latches. Flip-flop latches are circuits
that can be used to store a single alterable bit of information. A simple example
of a flip-flop latch is an SR latch. It has two input wires, a “set” wire S and a

4

“reset” wire R. Its output wires Q and Q respectively carry the current state and
the complement of the current state. When the latch receives 1 on S and 0 on
R, it sets Q to 1 (so Q becomes 0). When the latch receives 1 on R and 0 on S, it
resets Q to 0 (so Q becomes 1). When both wires receive 0, it maintains the state.
Simultaneously sending 1 to both S and R is prohibited.

Key to the ability of a flip-flop latch to maintain state is feedback or recursion.
For example, an SR latch can be implemented using feedback and two NOR gates.
A NOR gate is a logic gate that produces the NOR of its inputs, that is, it outputs 1
if and only if both its inputs are 0. We can implement the logical operation NOR

as a function bit⊗ bit→ bit as follows:

NOR = λp.case p {〈b0, b1〉 ⇒ case l {b0 · ⇒ case r {b0 · ⇒ 1 | b1 · ⇒ 0}
| b1 · ⇒ 0}}.

We can then implement a NOR gate nor : bit gate by nor = λS.map NOR (zipS). By
feeding the output of each NOR to an input of the other gate, we can implement
an SR latch as follows:

R

S

Q

Q

Task 6 (10 points, WB). Give an implementation of SR latches as a function of
type

(R : bit stream)⊗ (S : bit stream)→ bit stream.

We only ask that you produce the output stream Q: the stream Q can easily be
recovered from it. Assume that Q is initialized to 0.

Mutual recursion

Some languages support defining mutually-recursive functions. For example,
one could imagine writing the following ML program defining the mutually-
recursive functions even and odd:

fun odd n = case n of Z => false

| S p => even p

and even n = case n of Z => true

| S p => odd p

5

In this example function bodies have the type

odd : nat→ bool, even : nat→ bool, n : nat ` case n {· · · } : bool

and the functions are both closed expressions of type nat→ bool.
More generally, we may wish to define the mutually-recursive functions:

fun f1 x = e1

and f2 x = e2

where the bodies ei have types

f1 : σ1 → τ1, f2 : σ2 → τ2, x : σ1 ` e1 : τ1

f1 : σ1 → τ1, f2 : σ2 → τ2, x : σ2 ` e2 : τ2

We saw in Lecture 8 how to define recursive functions using the construct
fix(x.e). In this the task below, your task will be to implement mutual recursion
for functions.

Task 7 (20 points, WB). Let e1 and e2 be expressions satisfying

f1 : σ1 → τ1, f2 : σ2 → τ2, x : σ1 ` e1 : τ1

f1 : σ1 → τ1, f2 : σ2 → τ2, x : σ2 ` e2 : τ2

Define the mutually-recursive functions f1 : σ1 → τ1 and f2 : σ2 → τ2 by giving
closed terms d1 and d2 satisfying · ` di : σi → τi and dix = [d1, d2/f1, f2]ei for
i = 1, 2.

Hint. Remember, fix(x.e) is not limited to constructing terms of function type!
It can also construct terms of type product type, of sum type, etc.

Hint. Many solutions are possible! To get closed terms, you will need to some-
how bind the variables f1, f2, and x in e1 and in e2. One known solution si-
multaneously binds multiple variables; an other binds each of the variables
separately.

Hint. Be careful if you try to combine eagerness and recursion. To manage
eagerness, you may find useful the fact that λx.e is always a value.

6

A Syntax

Types τ and terms e are given by the following grammars, where I ranges over
finite sets:

τ ::= α | τ1 → τ2 |
∑

i∈I(i : τi) |
⊗

i∈I(i : τi) |&i∈I(i : τi) | ρ(α. τ)

e ::= x

| λx.e | e1e2
| i · e | case e {i · x⇒ ei}i∈I
| 〈i ↪→ ei〉i∈I | case e1 {〈i ↪→ xi〉i∈I ⇒ e2}
| 〈|i ↪→ ei|〉i∈I | e · i
| fold(e) | unfold(e)

| fix(x.e)

The above presentation of the syntax uses some abbreviations to help simplify
presentation and for conciseness. For example, where I = {i1, . . . , in}, we
abbreviate 〈i1 ↪→ ei1 , . . . , in ↪→ ein〉 by 〈i ↪→ ei〉i∈I . Similarly, {i · x ⇒ ei}i∈I
abbreviates {i1 · xi1 ⇒ ei1 | · · · | in · xin ⇒ ein}.

As discussed in class, the types 0 and 1 are special cases of sums and products
with I = ∅.

B Statics

Whenever applicable ((I-+), (E-&), etc.), we have the obvious side-condition that
i ∈ I . We assume for the sake of presentation that I = {i1, . . . , in}.

x : τ ∈ Γ

Γ ` x : τ
(VAR)

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
(LAM)

Γ ` e1 : τ → τ ′ Γ ` e2 : τ

Γ ` e1e2 : τ ′
(APP)

Γ ` e : τi

Γ ` i · e :
∑

i∈I(i : τi)
(I-+)

Γ ` e :
∑

i∈I(i : τi) Γ, x : τi1 ` ei1 : τ · · · Γ, x : τin ` ein : τ

Γ ` case e {i · xi ⇒ ei}i∈I : τ
(E-+)

Γ ` ei1 : τi1 · · · Γ ` ein : τin

Γ ` 〈i ↪→ ei〉i∈I :
⊗

i∈I(i : τi)
(I-⊗)

7

Γ ` e0 :
⊗

i∈I(i : τi) Γ, xi1 : τi1 , . . . , xin : τin ` e1 : τ

Γ ` case e0 {〈i ↪→ xi〉i∈I ⇒ e1} : τ
(E-⊗)

Γ ` ei1 : τi1 · · · Γ ` ein : τin

Γ ` 〈|i ↪→ ei|〉i∈I : &i∈I(i : τi)
(I-&)

Γ ` e : &i∈I(i : τi)

Γ ` e · i : τi
(E-&)

Γ ` e : [ρ(α. τ)/α]τ

Γ ` fold(e) : ρ(α. τ)
(FOLD)

Γ ` e : ρ(α. τ)

Γ ` unfold(e) : [ρ(α. τ)/α]τ
(UNFOLD)

Γ, x : τ ` e : τ

Γ ` fix(x.e) : τ
(FIX)

C Dynamics

We assume for the sake of presentation that I = {i1, . . . , in}.

λx.e val
(→-VAL)

(λx.e1)e2 7→ [e2/x]e1
(APP-RED)

e1 7→ e′1

e1e2 7→ e′1e2
(APP-STEP-L)

e1 val e2 7→ e′2

e1e2 7→ e1e
′
2

(APP-STEP-R)

e val
i · e val

(VAL/INJ)
e 7→ e′

i · e 7→ i · e′
(7→/INJ)

e 7→ e′

case e {i · xi ⇒ ei}i∈I 7→ case e′ {i · xi ⇒ ei}i∈I
(7→ /case/SUBJ-

∑
)

vj val

case (j · vj) {i · xi ⇒ ei}i∈I 7→ [vj/xj]ej
(7→ /case/INJ)

vi1 val · · · vin val

〈i ↪→ vi〉i∈I val
(ETUPLE-VAL)

ei1 val · · · eij−1 val eij 7→ e′ij e′i = ei (for i 6= ij)

〈i ↪→ ei〉i∈I 7→ 〈i ↪→ e′i〉i∈I
(ETUPLE-STEP)

e0 7→ e′0

case e0 {〈i ↪→ xi〉i∈I ⇒ e1} 7→ case e′0 {〈i ↪→ xi〉i∈I ⇒ e1}
(7→ /case/SUBJ-⊗)

〈i ↪→ vi〉i∈I val

case 〈i ↪→ vi〉i∈I {〈i ↪→ xi〉i∈I ⇒ e} 7→ [vi1 , . . . , vin/xi1 , . . . , xin]e
(7→ /case/⊗)

8

〈|i ↪→ ei|〉i∈I val
e 7→ e′

e · i 7→ e′ · i 〈|i ↪→ ei|〉i∈I · i 7→ ei

e val
fold(e) val

e 7→ e′

fold(e) 7→ fold(e′)

e 7→ e′

unfold(e) 7→ unfold(e′)

fold(e) val

unfold(fold(e)) 7→ e

fix(x.e) 7→ [fix(x.e)/x]e
(FIX-STEP)

9

	Syntax
	Statics
	Dynamics

