
Types and Programming Languages (15-814)
Fall 2018

Assignment 1: Having Fun With Induction

Contact: 15-814 Course Staff

Due Tuesday, September 25, 2018

This assignment is due at the beginning of class on the above date and it
must be submitted electronically as a PDF file on Canvas. As before, problems
marked “WB” are subject to the whiteboard policy; all other problems must be
done individually.

Normal forms

Terms in normal form should denote values or results of a computation. A
essential condition for something to be deemed a value is that it no longer be
reducible. Recall our judgments N nf and R neutral from class for normal forms
and neutral expressions, respectively. They were inductively defined by the
rules:

N nf

λx.N nf
(NF-LAM)

R neutral

R nf
(NF-NE)

x neutral
(NE-VAR)

R neutral N nf

RN neutral
(NE-APP)

For your reference, recall that the β-reduction relation→β is inductively defined
by the rules:

e→β e
′

λx.e→β λx.e
′

(B-LAM)
(λx.e1)e2 →β [e2/x]e1

(B-RED)

e1 →β e
′
1

e1e2 →β e
′
1e2

(B-L)
e2 →β e

′
2

e1e2 →β e1e
′
2

(B-R)

We may write e →β to mean there exists some e′ such that e →β e
′. When no

such e′ exists, we write e 6→ β .

Task 1 (15 pt, WB). Show that for all e, either e nf or e→β (but not both).

1

https://piazza.com/class/jl9thnft7ibun

Hint. Proceed by induction on the syntax of e. Split the case that e is an
application e1e2 into the two following subcases: e1 is λx.e′1, and e1 is x or an
application.

Bidirectional type checking

Our goal is to show that type checking is decidable for normal forms1 in the
simply-typed λ-calculus. To do so, we will use a bidirectional type checking algo-
rithm. We describe this algorithm using inference rules whose judgments are
interpreted as having “inputs” and “outputs”.

The algorithm uses the following two new judgments:

• Γ ` N ⇐ τ says that normal form N checks against type τ under Γ,

• Γ ` R⇒ τ says that neutral expression R synthesizes type τ under Γ.

When using the synthesis judgments below, we read Γ and R as inputs and τ as
an output. In the checking judgments, Γ, N , and τ should all be seen as inputs.
For legibility, we have colour-coded inputs and outputs below.

Throughout, we assume our contexts are well-formed, that is, that Γ is finite
list x1 : τ1, . . . , xn : τn with n ≥ 0 and xi 6= xj for 1 ≤ i 6= j ≤ n. In this case, let
dom(Γ) = {x1, . . . , xn}. We assume throughout the judgments are well-formed,
that is, that fv(e) ⊆ dom(Γ).

The algorithm is inductively defined by the following rules:

x : τ ∈ Γ

Γ ` x⇒ τ
(VAR)

Γ, x : τ1 ` N ⇐ τ2

Γ ` λx.N ⇐ τ1 → τ2
(LAM)

Γ ` R⇒ τ1 → τ2 Γ ` N ⇐ τ1

Γ ` RN ⇒ τ2
(APP)

Γ ` R⇒ τ ′ τ = τ ′

Γ ` R⇐ τ
(CS)

To better understand these judgments, we recommend working through a
few examples on your own. To help you get started, we have worked one out for
you. Abbreviate f : α→ α→ α, y : α by Γ. To type check · ` λf.λy.fy ⇐ (α→
α)→ α→ α, the algorithm performs the following derivation, bottom-up. When
it reaches the (APP) rule, it applies the (VAR) rule to f to synthesize the type
α→ α (an output). From this, we know the type of y must be α if we are to apply
f to y, so we check y against α in Γ. We succeed in completing the derivation

1Showing decidability for reducible terms requires adding type annotations in key places and
may be covered in class at a later date.

2

and conclude that the type is correct.

f : α→ α ∈ Γ

Γ ` f ⇒ α→ α
(VAR)

y : α ∈ Γ

Γ ` y ⇒ α
(VAR)

α = α

Γ ` y ⇐ α
(CS)

Γ ` fy ⇐ α
(APP)

f : α→ α ` λy.fy ⇐ α→ α
(LAM)

` λf.λy.fy ⇐ (α→ α)→ α→ α
(LAM)

As a programmer, it is often useful to get an “error message” when we have
a type mismatch. For this reason, we introduce the following two judgments:

• Γ ` N 6⇐ τ says that N does not check with type τ under Γ,

• Γ ` R 6⇒ says that R does not synthesize a type under Γ.

They are inductively defined by the following rules:

x /∈ dom(Γ)

Γ ` x 6⇒
(#VAR)

Γ, x : τ1 ` N 6⇐ τ2

Γ ` λx.N 6⇐ τ1 → τ2
(#LAM)

Γ ` λx.N 6⇐ c
(#LAMC)

Γ ` R 6⇒
Γ ` RN 6⇒

(#APP)
Γ ` R⇒ c

Γ ` RN 6⇒
(#APP’)

Γ ` R⇒ τ1 → τ2 Γ ` N 6⇐ τ1

Γ ` RN 6⇒
(#APP”)

Γ ` R⇒ τ ′ τ 6= τ ′

Γ ` R 6⇐ τ
(#CS)

Γ ` R 6⇒
Γ ` R 6⇐ τ

(#CS’)

Task 2 (5 points). If the following proposition is true, prove it, otherwise, find a
counter-example:

If Γ ` N ⇐ τ and Γ ` N ⇐ τ ′, then τ = τ ′.

Theorem 1 (Decidability of bidirectional type checking).

1. Given Γ, N , and τ , either Γ ` N ⇐ τ or Γ ` N 6⇐ τ (but not both).

2. Given Γ and R, either there exists a unique τ such that Γ ` R ⇒ τ or
Γ ` R 6⇒ (but not both).

3

The proof of this theorem uses a mutual induction on the structures of N and
R. We need a mutual induction because normal forms can contain neutral terms,
e.g., N = x, and neutral terms can contain normal forms, e.g., R = R′N . This
induction requires care when we reach the case of N is R and consider the rule
(CS), because we apply the induction hypothesis for synthesis to the same term
whose type we are checking. This does not affect the inductive character of the
proof or introduce any circularity in the argument, because whenever we apply
the induction hypothesis for checkable terms in synthesis cases, we only do so to
strictly smaller subterms.

Proof. By mutual induction on the structure of N and R.
Case N is λx.N and τ is some c. There are no rules with a conclusion of the

form Γ ` λx.N ⇐ c. We conclude Γ ` λx.N 6⇐ c by (#LAMC).
Case N is λx.N and τ is of the form τ1 → τ2. By task 3.
Case N is R. The only rules forming a judgment of the form Γ ` R ⇐ τ or

Γ ` R 6⇐ τ are (CS), (#CS), and (#CS’). Applying the induction hypothesis to R,
either there exists a unique τ ′ such that Γ ` R ⇒ τ ′ or Γ ` R 6⇒ (but not both).
Assume first there exists a τ ′, then (#CS’) is not applicable. If τ = τ ′, then (#CS)
is not applicable and we are done by (CS). If τ 6= τ ′, then (CS) is not applicable
and we are done by (#CS). Now assume Γ ` R 6⇒. Then (CS) and (#CS) are not
applicable and we are done by (#CS’).

Case R is x. By task 3.
Case R is RN . The only rules with a conclusion of the form Γ ` RN ⇒ τ or

Γ ` RN 6⇒ are (APP), (#APP), (#APP’), and (#APP”). Applying the induction
hypothesis to R, either there exists a unique τ ′ such that Γ ` R⇒ τ ′ or Γ ` R 6⇒
(but not both). If Γ ` R 6⇒, then the only applicable rule is (#APP), by which
Γ ` RN 6⇒. Now assume there exists a τ ′. If τ ′ = c, then the only applicable rule
is (#APP’), by which Γ ` RN 6⇒. Now assume τ ′ = τ1 → τ2. By the induction
hypothesis on N , either Γ ` N ⇐ τ1 or Γ ` N 6⇐ τ1 (but not both). The only
applicable rules in these two cases are (APP) and (#APP”), respectively, by which
Γ ` RN ⇒ τ2 or Γ ` RN 6⇒ (but not both).

Task 3 (10 points, WB). Complete the following cases in the proof of decidability
of bidirectional type checking.

1. N is λx.N and τ is of the form τ1 → τ2, and

2. R is x.

4

The Church-Rosser Theorem

The Church-Rosser theorem says that β-reduction for the untyped λ-calculus is
confluent. A relation→ is confluent if whenever e→∗ e1 and e→∗ e2, there exists
an e3 such that e1 →∗ e3 and e2 →∗ e3:

e

∗}}
∗!!

e1

∗

e2

∗~~e3

This is an instance of the diamond property. We say that a relation→ satisfies the
diamond property if whenever e→ e1 and e→ e2, then there exists an e3 such
that e1 → e3 and e2 → e3:

e

}} !!
e1

e2

~~
e3

We have used the Church-Rosser theorem several times in class, and we have
received questions on how to prove the theorem. In this section, we have broken
up a proof by Tait and Martin-Lf into manageable pieces. The high-level overview
of the proof is as follows.

1. We define a new reduction relation→l that simultaneously reduces a func-
tion and its argument.

2. We show that→l is confluent.

3. We show that if a reduction is confluent, then so is its reflexive, transitive
closure.

4. We show that→∗l =→∗β .

We conclude that→∗β is confluent, i.e., the Church-Rosser theorem holds.
Let→l be the relation on λ-terms inductively defined by the following rules:

e→l e
(L-REFL)

e→l e
′

λx.e→l λx.e
′

(L-LAM)

5

e1 →l e
′
1 e2 →l e

′
2

e1e2 →l e
′
1e
′
2

(L-APP)
e1 →l e

′
1 e2 →l e

′
2

(λx.e1)e2 →l [e′2/x]e′1
(L-RED)

Task 4 (5 points, WB). Prove that:

1. λx.ex →l e
′ implies e′ ≡ λx.e′x with ex →l e

′
x,

2. e1e2 →l e
′ implies either

• e′ ≡ e′1e′2 with ei →l e
′
i for i = 1, 2, or

• e1 ≡ λx.ex, e′ ≡ [e′2/x]e′x, ex →l e
′
x, and e2 →l e

′
2.

Theorem 2. The relation→l is confluent.

Proof (sketch). By task 6, it is sufficient to show that →l satisfies the diamond
property. We must show that for all e0, e1, and e2 such that e0 →l e1 and e0 →l e2,
there exists an e3 such that e1 →l e3 and e2 →l e3. The proof is by induction on
e→l e1 to show that for all e→l e2 there is an e3.

Transitive closure of confluent relations

The reflexive, transitive closure→∗ of a relation→ is inductively defined by the
rules:

e→∗ e
(T-REFL)

e1 → e2 e2 →∗ e3
e1 →∗ e3

(T-STEP)

Task 5 (5 points, WB). Show that→∗ is actually transitive, i.e., that if e1 →∗ e2
and e2 →∗ e3, then e1 →∗ e3. Conclude that (→∗)∗ =→∗.

Task 6 (10 points, WB). Show that if→ satisfies the diamond property, then so
does its reflexive, transitive closure→∗.

Hint. Prove and use the “strip lemma”: if e→ e1 and e→∗ e2, then there exists
an e3 such that e1 →∗ e3 and e2 → e3. Pictorially, this amounts to showing:

e

lemma

//

∗��

e1

∗��
e2 // e3.

Then, “paste” these “strips” together to get the big confluence rectangle.

6

Concluding Church-Rosser

Task 7 (10 points, WB). Show→∗β is the reflexive, transitive closure of→l. To do
so, (informally) prove that:

1. if e→β e
′, then e→l e

′,

2. if e→l e
′, then e→∗β e′.

Then explain why it follows that→∗l =→∗β , i.e., e→∗l e′ if and only if e→∗β e′.

Hint. You will need to use task 5.

7

