Lecture Notes on
The Lambda Calculus

15-814: Types and Programming Languages
Frank Pfenning

Lecture 1
Tuesday, September 4, 2018

1 Introduction

This course is about the principles of programming language design, many
of which derive from the notion of type. Nevertheless, we will start by
studying an exceedingly pure notion of computation based only on the
notion of function, that is, Church’s A-calculus [CR36]. There are several
reasons to do so.

e We will see a number of important concepts in their simplest possi-
ble form, which means we can discuss them in full detail. We will
then reuse these notions frequently throughout the course without
the same level of detail.

e The A-calculus is of great historical and foundational significance.
The independent and nearly simultaneous development of Turing
Machines [Tur36] and the A-Calculus [CR36] as universal computa-
tional mechanisms led to the Church-Turing Thesis, which states that
the effectively computable (partial) functions are exactly those that
can be implemented by Turing Machines or, equivalently, in the A-
calculus.

e The notion of function is the most basic abstraction present in nearly
all programming languages. If we are to study programming lan-
guages, we therefore must strive to understand the notion of func-
tion.

e It’s cool!
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L1.2 The Lambda Calculus

2 The \-Calculus

In ordinary mathematical practice, functions are ubiquitous. For example,
we might define

flz)=x+5

gly) =2x%y+7

Oddly, we never state what f or g actually are, we only state what happens
when we apply them to arbitrary arguments such as x or y. The A-calculus
starts with the simple idea that we should have notation for the function
itself, the so-called A-abstraction.

f=Xx.z+5
g=Ay.2xy+7

In general, A\z. e for some arbitrary expression e stands for the function
which, when applied to some ¢’ becomes [¢//x]e, that is, the result of sub-
stituting or plugging in e’ for occurrences of the variable z in e. For now, we
will use this notion of substitution informally—in the next lecture we will
define it formally.

We can already see that in a pure calculus of functions we will need
at least three different kinds of expressions: A-abstractions Az.e to form
function, application e; e to apply a function e; to an argument ey, and
variables x, y, z, etc. We summarize this in the following form

Variables x
Expressions e 1= Azr.e|ejex|x

This is not the definition of the concrete syntax of a programming language,
but a slightly more abstract form called abstract syntax. When we write
down concrete expressions there are additional conventions and notations
such as parentheses to avoid ambiguity.

1. Juxtaposition (which expresses application) is left-associative so that
ryzisread as (zy) z

2. Az. is a prefix whose scope extends as far as possible while remain-
ing consistent with the parentheses that are present. For example,
Az. (Ay.zyz)zisread as Az. ((A\y. (zy) 2) x).

We say Ax.e binds the variable x with scope e. Variables that occur in
e but are not bound are called free variables, and we say that a variable x
may occur free in an expression e. For example, y is free in Az.zy but

LECTURE NOTES TUESDAY, SEPTEMBER 4, 2018



The Lambda Calculus L1.3

not . Bound variables can be renamed consistently in a term So A\zx.z +
5 = A\y.y + 5 = Awhatever. whatever + 5. Generally, we rename variables
silently because we identify terms that differ only in the names of A\-bound
variables. But, if we want to make the step explicit, we call it a-conversion.

Ax.e =q A\y.ly/z]e provided y not free in e

The proviso is necessary, for example, because \z.x y # \y.y y.
We capture the rule for function application with

(Az.ez) e =g [e1/x]ez

and call it S-conversion. Some care has to be taken for the substitution to be
carried our correctly—we will return to this point later.

If we think beyond mere equality at computation, we see that 3-conversion
has a definitive direction: we apply is from left to right. We call this -
reduction and it is the engine of computation in the A-calculus.

(Az.ez) er — 3 [e1/x]er

3 Function Composition

One the most fundamental operation on functions in mathematics is to
compose them. We might write

(fog)(z) = fg(z))

Having A\-notation we can first explicitly denote the result of composition
(with some redundant parentheses)

fog= Az f(g(x))

As a second step, we realize that o itself is a function, taking two functions
as arguments and returning another function. Ignoring the fact that it is
usually written in infix notation, we define

o =M. Ag. Az. f(g(z))

Now we can calculate, for example, the composition of the two functions
we had at the beginning of the lecture. We note the steps where we apply
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[B-conversion.

(oc(A\x.x+5))(\y.2xy+7)
= ((Af-2g Az f(g(x)Ax.x +5)) (A\y.2xy +7)
=3 (Ag.Az.(Az.x+5)(g(2))) (A\y.2xy+7)
Ax.(Az.z+5) (M\y.2xy + 7)(z))
=3 Av.(Az.x+5)(2*xx+7)
M. (2xx4+7)+5
= Ax.2xzx+12

While this appears to go beyond the pure A-calculus, we will see in Sec-
tion 7 that we can actually encode natural numbers, addition, and mul-
tiplication. We can see that o as an operator is not commutative because,
in general, o f g # og f. You may test your understanding by calculating
(0 (A\y.2%y+ 7)) (Az.z + 5) and observing that it is different.

4 Identity
The simplest function is the identity function
I=Xr.x

We would expect that in general, oI f = f = o fI. Let’s calculate one of
these:
ol f
— (M Ag A flg(2) O 2)) f
=5 (Ag. Az. (Az.2)(g9(2))) f
—5 . (O.2)(f()))
=3 . f(x)

We see oI f = Az. f x but it does not appear to be equal to f. However,
Az. fz and f would seem to be equal in the following sense: if we apply
both sides to an arbitray expression e we get (Az. f ) e = f e on the left and
f e on the right. In other words, the two functions appear to be extensionally
equal. We capture this by adding another rule to the calculus call 7.

e =, Ax.ex provided x not freein e

The proviso is necessary—can you find a counterexample to the equality if
it is violated?
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5 Summary of \-Calculus

A-Expressions.

Variables x
Expressions e == Ar.e|ejex|x

Az. e binds = with scope e, which is as large as possible while remaining
consistent with the given parentheses. Juxtaposition e; e is left-associative.

Equality.
Substitution [e1/z]es (capture-avoiding, see Lecture 2)
a-conversion Az.e =o Ay.ly/z]e provided y not free in e
p-conversion (Az.ez)er =g |e1/x]ex
n-conversion Az.ex =, e provided z not free in e

We generally apply a-conversion silently, identifying terms that differ only
in the names of the bound variables. When we write e = ¢’ we allow a37-
equality and the usual mathematical operations such as expanding a defi-
nition.

Reduction.

p-reduction (Az.ez)er —g [e1/z]ez

6 Representing Booleans

Before we can claim the A-calculus as a universal language for computation,
we need to be able to represent data. The simplest nontrivial data type
are the Booleans, a type with two elements: true and false. The general
technique is to represent the values of a given type by normal forms, that
is, expressions that cannot be reduced. Furthermore, they should be closed,
that is, not contain any free variables. We need to be able to distinguish
between two values, and in a closed expression that suggest introducing
two bound variables. We then define rather arbitrarily one to be true and
the other to be false

true = Ar.)\y.x
false = Az.\y.y
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The next step will be to define functions on values of the type. Let’s start
with negation: we are trying to define a A-expression not such that

not true = false
not false = true
We start with the obvious:
not = Xb. ...

Now there are two possibilities: we could either try to apply b to some
arguments, or we could build some M-abstractions. In lecture, we followed
the first path—you may want try the second as an exercise.

not =Ab.b(...)(...)

We suggest two arguments to b, because b stands for a Boolean, and Booleans
true and false both take two arguments. true = Az. Ay.x will pick out the
tirst of these two arguments and discard the second, so since we specified
not true = false, the first argument to b should be false!

not = \b. b false (.. .)

Since false = Ax. \y.y picks out the second argument and not false = true,
the second argument to b should be true.

not = Ab. b false true

Now it is a simple matter to calculate that the computation of not applied
to true or false completes in three steps and obtain the correct result.

nottrue  —%  false

3
notfalse —  true

We write —>g for reduction in n steps, and —>;§ for reduction in an ar-
bitrary number of steps, including zero steps. In other words, — is the
reflexive and transitive closure of — 4.

As a next exercise we try conjuction. We want to define a A-expression
and such that

and true true = true
and true false = false
and false true = false

and false false = false
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Learning from the negation, we start by guessing
and = Xb. Xe.b(...)(...)

where we arbitrarily put b first. If b is true, this will return the first argu-
ment. Looking at the equations we see that this should always be equal to
the second argument.

and = A\b. Ac.be(...)

If b is false the result is always false, no matter what c is, so the second
argument to b is just false.

and = Ab. Ac. bc false

Again, it is now a simple matter to verify the desired equations and that, in
fact, the right-hand side of these equations is obtained by reduction.

We know we can represent all functions on Booleans returning Booleans
once we have negation and conjunction. But we can also represent the more
general conditional if with the requirements

iftruevw = u
iffalsevw = w

Note here that the variable v and w stand for arbitrary A-expressions and
not just Booleans. From what we have seen before, the conditional is now
easy to define:

if = Ab. Au. Adw. buw

Looking at the innermost abstraction, we have Aw. (bu) w which is actually
n-convertible to b u! Taking another step we arrive at

if = Ab.Au. A w.buw
=, Ab.Au.bu
=, Ab.b
= I

In other words, the conditional is just the identity function!

7 Representing Natural Numbers

Finite types such as Booleans are not particularly interesting. When we
think about the computational power of a calculus we generally consider
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the natural numbers 0, 1,2, .... We would like a representation n such that
they are all distinct. We obtain this by thinking of the natural numbers
are generated from zero by repeated application of the successor function.
Since we want our representations to be closed we start with two abstrac-
tions: one (z) that stands for zero, and one (s) that stands for the successor
function.

0 = Xz ds.z

1 = Xz )s.s2

2 = Az.)s.5(sz2)

3 = Az.)s.s(s(s2))

n o= Az As.s(...(s 2))

n times

In other words, the representation 7 iterates its second argument n times
over its first argument

nz f=f"(z)
where f"(z) = f(...(f(x)))

~
n times
The first order of business now is to define a successor function that

satisfies succ m = n + 1. As usual, there is more than one way to define it,
here is one (throwing in the definition of zero for uniformity):

zero = 0 = Az.)s.2
succ = An.n+1 = An.dz.As.s(nzs)

We cannot carry out the correctness proof in closed form as we did for the
Booleans since there would be infinitely many cases to consider. Instead
we calculate generically (using mathmetical notation and properties)

succn
= Az.)As.s(mzs)
= Az.Xs.s(s"(2))
= Az.)s.5"T1(2)
n+1

A more formal argument might use mathematical induction over n.

Using the iteration property we can now define other mathematical
functions over the natural numbers. For example, addition of n and k iter-
ates the successor function n times on k.

plus = An. A\k.n k succ
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You are invited to verify the correctness of this definition by calculation.
Similarly:

times = An.\k.n (plus k) zero

exp = Ab.Xe.e (times b) (succ zero)

Everything appears to be going swimmingly until we hit the predecessor
function defined by

pred O =0

predn+1 = n
You may try for a while to see if you can define the predecessor function,

but it is very difficult. The problem seems to be that it is easy to define
functions f using the schema of iteration

f0 = ¢
fn+1) = g(fn)
(namely: f = An.nc g), but not the so-called schema of primitive recursion
fo = ¢
f(n+1l) = gn(fn)

because it is difficult to get access to n.
More about this and other properties and examples of the A-calculus in
Lecture 2.
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Lecture Notes on
Recursion, Binding, Substitution, and
Computation

15-814: Types and Programming Languages
Ryan Kavanagh

Lecture 2
September 6, 2018

1 Introduction

Last time we saw that the set A of lambda terms was generated by the
grammar:
ex=ux | \r.e| eres.

We worked out some programming examples involving Booleans and nat-
ural numbers. We reasoned informally a8n-equivalence and saw that we
could go wrong if we were not careful about binding and substitution.

Today we will make the notions of equivalence and substitution precise.
We will also see how to capture recursion.

1.1 Warm up

To make sure we remember how to use the untyped A-calculus, let us do a
few warm-up exercises. You can find the solutions on the next page.

Exercise 1 Define the constant function K (also known as the K combinator) that
satisfies Kxy = x for all x and y.

Exercise 2 Define a test to see if a Church numeral is zero:

isZero 0 = true = \z. \y.x
isZeron + 1 = false = Az A\y.y
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It is interesting to consider what happens when we apply a A-term to
itself. Self-application is captured by the term w = Az.xzx. This may look odd
at first sight, but it is a perfectly acceptable term. For example, wK = A\y.K
and wI = I. More interesting is 2 = ww:

Q= (A\v.xz)A\r.zz) = [(A\v.xz)/z](zx) = (Az.xx)(Az.xx).

The term 2 behaves exactly like an infinite loop!

Solutions Take K = Az.\y.x and isZero = An.n true (K false). The intu-
ition for isZero is that if 7@ is zero, then we should return true, and otherwise,

— “”

n's “successor” parameter should be a function that constantly returns false.

2 Recursion
We would like to implement the factorial function
fact m = if (isZerom)(1)(mult 7@ (fact (pred m)))

assuming we already have a predecessor function pred, which you will
implement on Homework 0. We might start off with

fact = An.if(isZero n)(1)(mult n (fact(pred n))),

but we get stuck because we have an instance of fact on both sides. Let us
consider what would happen if we factored out a fact on the right:

fact = (\f.\n.if (isZero n)(1)(mult n (f(pred n))))fact.

Letting
& = \f.\n.if (isZeron)(1)(mult n (f(pred n))),

we see that fact can be expressed as a fixed point of ®, that is, ®(fact) = fact.
Can we find such a fixed point?

Theorem 1 (Fixed point theorem) For all F' € A there exists an X € A such
that FX = X.

Proof: Earlier we encountered the divergent term = (Az.zz)(A\z.zx),
where applying the 3 rule gave (2 again:

Az.zz)(Ax.zx) = [(\r.zz) /z]|(zz) = (A\z.ax)(Az.ax).
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This infinite unfolding behaviour is similar to what we want in a fixed point:
if X is a fixed point of F, then X = FX = F(FX) = ---. Suppose we
inserted an I’ at the beginning of each of the function bodies:

Take X = (\x.F(zz))(Az.F(zx)) and we are done. O

We can abstract over the F in the above proof to get the Y combinator!
that constructs the fixed point of any term to which it is applied:

Corollary 2 Let Y = Af.(Az.f(zx))(Az.f(xx)). Then YF = F(YF) for all
FeA

We can now define our factorial function: fact = Y ®. Unfolding the defini-
tion and using Corollary 2, we see that this is actually what we wanted:

factm =Yon
— (YP)n
= if (isZerom)(1
= if (isZerom)(1)(mult 7 (fact(pred m))).

3 Binding and substitution

We need to be careful when we substitute to ensure that we do not acci-
dentally bind (or capture) free variables. We say that an occurrence of the
variable x is bound if it is in the scope of an abstractor Az, otherwise it is
free. The set of free variables fv(e) in a term e is recursively defined on the
structure of the term:

fv(z) = {z}
fv(Az.e) =fv(e) \ {z}
fv(erez) = fv(er) U fv(es).
We say that a term is closed or a combinator if it has no free variables.

For the rest of this lecture, we will use the symbol = to mean that two
terms are syntactically equal.

!The startup incubator was named after this combinator.
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Given a term Az.e, a change of bound variable is the result of \y.[y/z]e
when y does not appear in e. Because y does not appear in e, we do not
need to worry about capture. In this case, we say that Az.e and \y.[y/z]e
are a-congruent: Az.e =, \y.[y/x]e. More generally, we say that two terms
e1 and ey are a-congruent, e; =, ey, if e; can be obtained from ey through a
sequence changes of bound variable. For example,

Az.2(Ay.yx)z =0 Awaw(Ay.yw)z #o Az.2(Ay.yz)z.

Changing bound variables is sometimes called a-varying. We identify a-
congruent terms, that is, we treat them as though they were syntactically
equal. Thanks to this identification, we can adopt the variable convention: we
always assume the bound variables are chosen to be different from all of the
free variables. With the variable convention, we can safely substitute in the
naive manner. (We implicitly assumed the variable convention in the proof
of theorem 1. Where??)
We can now make the definition of substitution explicit:

le/x]z =e
le/zly =y (if z # y)
le1/2](\y.e2) = My.ler/ales  (ifz £ yandy ¢ fu(er))’
[e1/z](e2e3) = ([e1/z]ez)([e1/z]es)

It is a good exercise to think carefully about this definition and how it
interacts with the variable convention.

4 Reduction and computation

So far we have treated the A-calculus as an equational theory. This is not a
satisfactory notion of computation, because we have no notion of making
progress or of termination (of knowing when we have reached a “value”).

To capture the idea of making some form of directed “progress”, we
use reductions. (-reduction is the least relation —3 on A satisfying for all
e1,e9 € A:

o (Az.er)es =5 [ea/xleq,

o ife; —p €], then ejes —3 €)eg, eaer —p exe), and A\x.e; —5 Ax.¢).

*We implicitly assumed z ¢ fv(F).
*These conditions are redundant by the variable convention.
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Let %E be the reflexive, transitive closure of — 3, i.e., the least relation on A
inductively defined by:

o c —>2} e for all e,
o ife; —pg €} and €] — e, then e; —7 €.

We say that M is in f-normal from if M cannot be S-reduced.

B-reduction satisties the confluence property that we foreshadowed last
time, from which we can deduce that every A-term has a unique $-normal
form. A relation — is confluent if whenever eg —* e; and eg —* e9, there
exists an e3 such that e; —* e3 and ea —* e3. Pictorially,

€0
£
el e
N . 7

N
eg *

Theorem 3 (Church-Rosser) j-reduction is confluent.

However, g-reduction is not what we want as a notion of computation.
The reason is that 3-reduction behaves a bit like equality: it can be applied
anywhere in a term. As a result, operationally it is highly non-deterministic.
Depending on how you apply B-reduction, you could either reach a 3-
normal form or fail to ever terminate. Consider for example the A-term
(Az.y)S2. Applying S-reduction on the outermost 3-redex gives (Az.y)Q2 —4
y. In contrast, if we repeatedly apply S-reduction to €2, we never reach a
B-normal form: (Az.y)Q2 =g (Az.y)Q =5 (Az.y)Q =5 ---.

To make reduction deterministic, we use reduction strategies. The simplest
of these is call-by-name (CBN) reduction, — ¢pn, defined to be the least
relation on A satisfying for all ey, ex € A:

° ()\x.el)eg — CBN [62/33]61, and
: / /
o ife; —cpn €], thenejea —cpy €] ea.

The intuition is that we eagerly reduce as far to the left as possible. Observe
that this reduction strategy is deterministic: if e; —¢py €2 and e; —cpn €h,
then ey = €.

Theorem 4 If ey —cpn €2, then e; — 5 ea. The converse is false.

Proof: The first part is obvious. The term (Az.y)2 is a counter-example to
the converse: (Az.y)Q2 =g (Az.y)Q2, but (Az.y)Q A cpy (Az.y)Q. O
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Lecture Notes on
Simple Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 3
Tuesday, September 11, 2018

1 Introduction

We have experienced the expressive power of the A-calculus in multiple
ways. We followed the slogan of data as functions and represented types
such as Booleans and natural numbers. On the natural numbers, we were
able to express the same set of partial functions as with Turing machines,
which gave rise to the Church-Turing thesis that these are all the effectively
computable functions.

On the other hand, Church’s original purpose of the pure calculus of
functions was a new foundations of mathematics distinct from set the-
ory [Chu32, Chu33]. Unfortunately, this foundation suffered from similar
paradoxes as early attempts at set theory and was shown to be inconsistent,
that is, every proposition has a proof. Church’s reaction was to return to the
ideas by Russell and Whitehead [WR13] and introduce types. The resulting
calculus, called Church’s Simple Theory of Types [Chu40] is much simpler that
Russell and Whitehead’s Ramified Theory of Types and, indeed, serves well
as a foundation for (classical) mathematics.

We will follow Church and introduce simple types as a means to classify
A-expressions. An important consequence is that we can recognize the rep-
resentation of Booleans, natural numbers, and other data types and distin-
guish them from other forms of A-expressions. We also explore how typing
interacts with computation.
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2 Simple Types, Intuitively

Since our language of expression consists only of A-abstraction to form
functions, juxtaposition to apply functions, and variables, we would ex-
pect our language of types 7 to just contain 7 ::= 71 — 3. This type might
be considered “empty” since there is no base case, so we add type variables
a, B, 7, etc.

Type variables «

Types T = Ton|a
We follow the convention that the function type constructor “—" is right-
associative, thatis, 71 — 19 — 13 = 71 — (T2 — 73).

We write e : 7 if expression e has type 7. For example, the identity

function takes an argument of arbitrary type « and returns a result of the

same type «. But the type is not unique. For example, the following two
hold:

AL. T T a— o
.z (a—f) = (a—=p)

What about the Booleans? true = Ax. Ay.x is a function that takes an ar-
gument of some arbitrary type «, a second argument y of a potentially
different type 8 and returns a result of type . We can similarly analyze
false:

true = Mx.\y.z : a— (68— a)

false = Xz dy.y : a—(8—0)
This looks like bad news: how can we capture the Booleans by their type
if true and false have a different type? We have to realize that types are not
unique and we can indeed find a type that is shared by true and false:

true = Az.\y.xz @ a— (a—a)
false = Mr.dy.y @ a—(a—a)

The type o — (oo — ) then becomes our candidate as a type of Booleans
in the A-calculus. Before we get there, we formalize the type system so we
can rigorously prove the right properties.

3 The Typing Judgment

We like to formalize various judgments about expressions and types in the
form of inference rules. For example, we might say

€1 :T9—>T1 €9:T9

€1 €Ty
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We usually read such rules from the conclusion to the premises, pronounc-
ing the horizontal line as “if ”:

The application ey ey has type T if ey maps arquments of type 5 to
results of type T and ey has type .

When we arrive at functions, we might attempt

Tr1 .71 €2 :.T2

)\%1.62:7'1—>7’2 '

This is (more or less) Church’s approach. It requires that each variable x
intrinsically has a type that we can check, so probably we should write z7.
In modern programming languages this can be bit awkward because we
might substitute for type variables or apply other operations on types, so
instead we record the types of variable in a typing context.

Typing context I' == x1:71,...,2,: 7
Critically, we always assume:
All variables declared in a context are distinct.

This avoids any ambiguity when we try to determine the type of a variable.
The typing judgment now becomes

I'ke:r

where the context I' contains declarations for the free variables in e. It is
defined by the following three rules
Mzi:mbe:m z:7el

lam ———————— var
T'FAxi.eq:11 =1 I'tFax:7

I'Feg:m—m T'hey:m

app

' €162 :T1
As a simple example, let’s type-check true. Note that we always construct
such derivations bottom-up, starting with the final conclusion, deciding on
rules, writing premises, and continuing.

var
Ty akT:a

lam
r:aF\y.T:a—a

lam
FXx Ay zia— (a— a)
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How about the expression Az. Ax.z? This is a-equivalent to Az. \y.y and
therefore should check (among other types) as having type o — (5 — f). It
appears we get stuck:

?7?
r:akFAXr.x:8—=0
‘FXx dz.xia— (B—B)

lam??

lam

The worry is that applying the rule lam would violate our presupposition
that no variable is declared more than once and x : o,z : S+ x :  would
be ambiguous. But we said we can “silently” apply a-conversion, so we do
it here, renaming « to 2’. We can then apply the rule:

var

z:o,x BB
|
ziakFAr.x:B8—p0 am

lam
‘FXx dz.xia— (B—B)

4 Characterizing the Booleans

We would now like to show that the representation of the Booleans is in
fact correct. We go through a sequence of conjectures to (hopefully) arrive
at the correct conclusion.

Conjecture 1 (Representation of Booleans, v1)
If -Fe:a— (a— a)then e = true or e = false.

If by “=" we mean mathematical equality that this is false. For example,
F(Azoz) (A Ay )t a— (a— a)

but the expression (Az. z) (Az. \y. x) represents neither true nor false. But
it is in fact S-convertible to true, so we might loosen our conjecture:

Conjecture 2 (Representation of Booleans, v2)
If -Fe:a— (o— a)then e =g true or e =g false.

This speaks to equality, but since we are interested in programming
languages and computation, we may want to prove something ostensibly
stronger. Recall that e —7 ¢’ means that we can S-reduce e to €’ in an
arbitrary number of steps (including zero). In other words, — is the
reflexive and transitive closure of — 3.
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Conjecture 3 (Representation of Booleans, v3)
If-te:a—(a— a)thene —7 true or e — false.

This is actually quite difficult to prove, so we break it down into several
propositions, some of which we can actually prove. The first one concerns
normal forms, that is, expressions that cannot be 5-reduced. They play the
role that values play in many programming language.

Conjecture 4 (Representation of Booleans as normal forms)
If -Fe:a— (a— «a)and eis a normal form, then e = true or e = false.

We will later combine this with the following theorems which yiels cor-
rectness of the representation of Booleans. These theorems are quite gen-
eral (not just on Booleans), and we will see multiple versions of them in the
remainder of the course.

Theorem 5 (Termination) IfI' - e : 7 then e —7 ¢’ for a normal form e'.
Theorem 6 (Subject reduction) IfT'Fe:7ande —pg e thenT e : 7.

We will prove subject reduction on Lecture 4, and we may or may not
prove termination in a later lecture. Today, we will focus on the the correct-
ness of the representation of normal forms.

5 Normal Forms

Recall the rules for reduction. We refer to the first three rules as congruence
rules because they allow the reduction of a subterms.

/ /
Ax.e —> Ax. e erex — €] e er ez — €1 €,

B

(Ax.e1) ea —> [ea/x]er

A normal form is an expression e such that there does not exists an e’ such
that e — ¢’. Basically, we have to rule out S-redices (\z.e;) ez, but we
would like to describe normal forms via inference rules to we can easily
prove inductive theorems. This definition should capture the form

AZ1. .. Az ((zer)...ex)
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where ey, ... e;, are again in normal form.

We can capture this intuition in two parts: the definition of normal
forms allows us to descend through arbitrarily many A-abstractions. We
write e nf for the judgment that e is in normal form.

enf
Az. e nf

At some point we have to switch to an application. The key part of this
is that if we keep looking at the function part it may again be an applica-
tion, or it may be a variable, but it cannot be a A-abstraction. We call such
expressions neutral because when they are applied to an argument they do
not reduce but remain a normal form.

e neutral e1 neutral ey nf

enf e1 es neutral x neutral

6 Representation as Normal Forms

In the next lecture we will prove that every expression either reduces or is
a normal form. In this lecture we will be concerned with the property that
closed normal forms of type a — (o — «) are exactly true and false.

Many of our proofs will go by induction, either on the structure of ex-
pressions or the structure of deductions using inference rules. The latter is
called rule induction. It states that if every rule preserves the property of a
judgment we want to show, then the property must always be true since
the rules are the only way to establish a judgment. We get to assume the
property for the premise of the rule (the induction hypothesis) and have to
show it for the conclusion.

A special case of rule induction is proof by cases on the rules. We try
here a rule by cases.

Conjecture 7 (Representation of Booleans as normal forms, v1)
For any expression e, if - e : o — (v — «) and e nf then e = true or e = false.

Proof attempt: By cases on the deduction of e nf. We analyze each rule in
turn.

Case:

€2 T’If

)\azl. €9 nf
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Case:

where e = \z1. ez. Let’s gather our knowledge.
FArreyia— (a— ) Assumption

What can we do with this knowledge? Looking at the typing rules we
see that there is only one possible rule that may have this conclusion.
Since the judgment holds by assumption, it must have been inferred
with this rule and the premise of that rule must also hold. We call this
step inversion.

T1:abFey:a— o By inversion

We also know that es is a normal form (the premise of the rule in this
case), so now we’d like to show that e5 = Axo. 21 Or e5 = Axo. 29. We
choose the generalize the theorem to make this property explicit as
well (see version 2).

First, though, let’s consider the second case.

e neutral
enf

Again, restating our assumption, we have
‘Fe:a—=(a—a) By assumption

But there is no closed neutral expression because at the head of the
left-nested expressions would have to be a variable, of which we have
none. This property will be an instance of a more general property we
will need shortly.

O

Conjecture 8 (Representation of Booleans as normal forms, v2)

(i)
(ii)
(iii)

If -Fe:a— (a— «)and e nfthen e = true or e = false.
Ifx:ate:a—aandenfthene = Ay.xore = Ay.y.

Ifrx:o,y:ate:aand nfthene =zore=y.
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Proof attempt: By cases on the given deduction of e nf. Now parts (i) and
(ii) proceed as in the previous attempt, (i) relying on (ii) and (ii) relying
on (iii), analyzing the cases of normal forms. The last one is interesting:
we know that e cannot be M-abstraction because that would have function
type, so it must be a neutral expression. But if it is a neutral expression it
should have to be one of the variables = or y: it cannot be an application
because we would have to find a variable of function type at the head of
the left-nested applications. So we need a lemma before we can complete
the proof. O

The insight in this proof attempt gives rise to the following lemma.

Lemma 9 (Neutral expressions)
Ifxy:on,...,2n t o b e: 7 and e neutral then e = x; and T = «; for some i.

Proof: By rule induction over the definition of e neutral

Case:

x neutral
where e = z.
T1:00,...,Tp 0 xT:T Assumption
x:TE(T1:Q1,..., Ty Qy) By inversion

z = x; and 7 = «; for some ¢

Case:

e1 neutral ey nf

e1 eg neutral

and e = e ey. This case is impossible:

T1:Q1,...,Tp:Qplbele:T Assumption
T1:Q1,...,In 0yt el:m0—T

and z1 : aq,...,T, : ap Feg o for some 1 By inversion
el =x;and =T = qy By induction hypothesis

Contradiction, since 70 — 7 # o

O
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Now we are ready to prove the representation theorem.

Theorem 10 (Representation of Booleans as normal forms, v3)

(i) If -+Fe:a— (a— a)and e nf then e = true or e = false.
(ii) Ifx:ate:a—aandenfthene = Ay.x or e = \y. y.
(iii) If v : o,y :a b e:aand nfthene =xore =y.

Proof: By cases on the given deduction of e nf.
Case for (i):

€2 1’lf
Az. eg nf
where e = \z. es.
FAz.eg:a— (a—a) Assumption
r:abe:a— o By inversion
€a = A\Y.T Or eg = Y.y By part (ii)
e=Ar. Ay.xore=Az.\y.y since e = Ax. ey
Case for (i):
e neutral
enf
‘Fe:ra—(a—a) Assumption

Impossible, by the neutral expression lemma (9)
Cases for (ii): analogous to the cases for (i), appealing to part (iii).
Case for (iii):
€2 l’lf

Az.eg nf

Tio,yiakAzoe o Assumption
Impossible by inversion (no typing rule matches this conclusion)

Case for (iii):
e neutral

enf

T yrake:ra Assumption
e = x and or e = y by the neutral expression lemma (9)

O
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Lecture Notes on
Subject Reduction and Normal Forms

15-814: Types and Programming Languages
Frank Pfenning

Lecture 4
September 13, 2018

1 Introduction

In the last lecture we proved some key aspect of a representation theorem
for Booleans, namely that the closed normal forms type a — (o — «) are
either true = Ax. \y.x or false = Az. \y.y. But is our characterization of
normal forms correct? We would like to prove that any expression e is
either a normal form (that is, satisfies e nf or can be reduced. We prove
this theorem first. Then we show that typing is preserved under reduction,
which means that if we start with an expression e of type 7 and we reduce
it all the way to a normal form ¢/, the ¢’ will still have type 7. For the special
case where 7 = a — (a — a) which means that any expression e of type 7
that has a normal form represents a Boolean.

2 Reduction and Normal Form

Recall our characterization of reduction from Lecture 2, written here as a
collection of inference rules.

/ /
e 6/ e — 61 e — 62
AX.e —> Ax. e erex — €] e er ez — €1 €,

B

(Ax.e1)ea —> [ea/x]er
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And our characterization of normal forms:

e nf neutral
nf/lam e e nf/ne
Az. e nf enf
e1 neutral ey nf
ne/app —— ne/var
e1 ey neutral x neutral

The correctness of this characterization consists of two parts, of which we
will prove one: (i) every term either reduces or is a normal form, and (ii)
normal forms don’t reduce.

Theorem 1 (Reduction and normal forms)
For every expression e, either e — ¢’ for some €', or e nf.

Proof: We are only given an expression e, so the proof is likely by induction
on the structure of e. Let’s try! We write e — if there is some ¢’ such that

e —¢€.

Case: ¢ = z. Then

x neutral

x nf
Case: ¢ = A\z.e;. Then

Either e; — or e; nf

e —
e=A\r.eg —

€1 Tlf

e = A\z.ey nf
Case: ¢ = ¢ e5. Then
Either e; — or e; nf

e1 —
€] e —

€1 Hf

LECTURE NOTES

By rule ne/var
By rule nf /ne

By ind.hyp. on ¢’

First subcase
By rule Im

Second subcase
By rule nf/lam

By ind.hyp. on e;

First subcase
By rule ap,

Second subcase
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Either e; = A\x. €} or ey neutral By inversion on e; nf
e1 = \z. €} First sub®case
e=-ejes = (Ax.€))es — By rule 3
e neutral Second sub?case
Either e; — or ey nf By ind.hyp. on e

€9 —> First sub3case
e=e16ey — By rule ap,
eg nf Second sub®case
e = ey ey neutral By rule ne/app

O

The next in our quest for a representation theorem will be to show that
types are preserved under reduction. We start with e : 7 and want to know
that if e —* ¢’ where €’ is a normal form, then ¢’ : 7. This is almost uni-
versally proven by showing that a single step of reduction preserves types,
from which the above follows by a simple induction over the reduction
sequence.

We begin by conjecturing a version of the theorem for closed expres-
sion of arbitrary type, because these are the expressions we are ultimately
interested in.

Conjecture 2 (Subject reduction, v1)
If-Fe:Tande — ¢ then -+ ¢’ : 7.

Proof attempt: In this conjecture, we are given both an expression e and
a reduction e — ¢, so a priori there are three possible inductions: rule
induction on - + e : 7, rule induction on e — ¢/, and induction on the
structure of e. Having done this kind of proof about a gazillion times, I
know it should go by rule induction on e — ¢'.

Case:

e — €]

Im
Ax.ep — Az €}

where e = Az.¢]. We gather knowledge, and then apply inversion
because we cannot yet apply the induction hypothesis.
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“FAXx.er:T Assumption
x:T e 1 and 7 = 1 — 71 for some 71 and 7 By inversion

It looks like we are ready for an appeal to the induction hypothesis,
but we are stuck because the context in the typing of e; the context is
not empty! We realize have to generalize the theorem to allow arbi-
trary contexts I'.

(]
Theorem 3 (Subject reduction, v2)
IfTte:Tande — ' thenT" €' : 7.
Proof: By rule induction on the deduction of e — ¢’
Case:
er — €]
Im
Ax.ep — Az €}
where e = \z. ¢].
'EMXx.ep:7 Assumption
I''z:mbe:mand 7= m — 7 for some 7 and By inversion
x:mbel:m By induction hypothesis
I'EXz.e)l:mm—m By rule lam
Case:
er — €]
apy

e1eg — €} ez

where e = e ex. We start again by restating what we know in this
case and then apply inversion.

I'keleg: Assumption
I'tey:m™»— 7and
I' ey : 5 for some By inversion

At this point we have a type for e; and a reduction for e;, so we can
apply the induction hypothesis.
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F'kFej:m—r By ind.hyp.

Now we can just apply the typing rule for application. Intuitively, in
the typing for e; e; we have replaced e; by €/, which is okay since
they €/ has the type of e;.

F'kFejex:T By rule lam

Case:

ey — €
— 2
€162 —> €] €2
where e = e es. This proceeds completely analogous to the previous case.
Case:

B

(Ax.e1) e —> [e2/x]er

where e = (A\z. e1) ez. In this case we apply inversion twice, since the struc-
ture of e is two levels deep.

L'k (Az.ep)es: T Assumption
I'FXz.et:m—T1

and I' F ey : 7 for some By inversion
Dz:mbe:r By inversion

At this point we are truly stuck, because there is no obvious way to com-
plete the proof.

To Show: I' - [ea/x]ey = T

Fortunately, the gap that presents itself is exactly the content of the substitu-
tion property, stated below. The forward reference here is acceptable, since
the proof of the substitution property does not depend on subject reduc-
tion.

I'Flex/zler = 1 By the substitution property (4)
(]

Theorem 4 (Substitution property)
IfTEe :r7andT,x: 7' Fe:TthenT I [¢/x]e: T
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Proof sketch: By rule induction on the deduction of I',z : 7/ F e : 7. In-
tuitively, in this deduction we can use z : 7/ only at the leaves, and there
to conclude = : 7. Now we replace this leaf with the given derivation of
I'+ ¢ : 7/ which concludes ¢’ : 7/. Luckily, [¢//z]x = €/, so this is the correct
judgment.

There is only a small hiccup: when we introduce a different variable
y : 7" into the context in the lam rule, the contexts of the two assumptions
no longer match. But we can apply weakening, that is, adjoin the unused
hypothesis y : 7" to every judgment in the deduction of I' - ¢’ : 7/. After
that, we can apply the induction hypothesis. O

We recommend you write out the cases of the substitution property in
the style of our other proofs, just to make sure you understand the details.

The substitution property is so critical that we may elevate it to an in-
trinsic property of the turnstile (). Whenever we write I' - J for any judg-
ment J we imply that a substitution property for the judgments in I" must
hold. This is an example of a hypothetical and generic judgment [ML83]. We
may return to this point in a future lecture, especially if the property ap-
pears to be in jeopardy at some point. It is worth remembering that, while
we may not want to prove an explicit substitution property, we still need
to make sure that the judgments we define are hypothetical /generic judg-
ments.

3 Taking Stock

Where do we stand at this point in our quest for a representation theorems
for Booleans? We have the following;:

Reduction and normal forms
For any e, either e — or e nf (Theorem L4.1)

Representation of Booleans in normal form
For any e with - e : @ = (o — a) and e nf, either e = true = \z. \y. =
or e = false = Ax. \y. y. (Theorem L3.10(i))

Subject reduction
Forany e withT' e : 7and e — ¢ wehave I' - ¢ : 7. (Theorem
14.3)

Subject reduction to normal form
Forany e withT' F e : 7and e —* ¢/ with ¢/ nfwehave ' F ¢’ : 7.
(Corollary of subject reduction)
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Missing at this point are the following theorems

Normalization
IfT'F e : 7 then e —* ¢’ for some ¢’ with ¢’ nf.

Confluence
If e —* e; and e —* e, then there exists an ¢’ such that e; —* €’
and ey — €.

In this context, normalization (sometimes called termination) shows that any
closed expression of type o — (o« — «) denotes a Boolean. Confluence (also
known as the Church-Rosser property) show that this Boolean is unique.

We could replay the whole development for the representation of nat-
ural numbers, with some additional complications, but we will forego this
in favor of tackling more realistic programming languages.
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Lecture Notes on
From A-Calculus to Programming Languages

15-814: Types and Programming Languages
Frank Pfenning

Lecture 5
September 18, 2018

1 Introduction

The A-calculus is exceedingly elegant and minimal, but there are a number
of problems if you want to think it of as the basis for an actual programming
language. Here are some thoughts discussed in class.

Too abstract. Generally speaking, abstraction is good in the sense that it
is an important role of functions (abstracting away from a particu-
lar special computation) or modules (abstracting away from a par-
ticular implementation). “Too abstract” would mean that we cannot
express algorithms or ideas in code because the high level of abstrac-
tion prevents us from doing so. This is a legitimate concern for the
A-calculus. For example, what we observe as the result of a computa-
tion is only the normal form of an expression, but we might want to
express some programs that interact with the world or modify a store.
And, yes, the representation of data like natural numbers as functions
has problems. While all recursive functions on natural numbers can
be represented, not all algorithms can. For example, under some rea-
sonable assumptions the minimum function on numbers n and & has
complexity O(max(n, k)) [CF98], which is surprisingly slow.

Observability of functions. Since reduction results in normal form, to in-
terpret the result of a computation we need to be able to inspect the
structure of functions. But generally we like to compile functions and
think of them only as something opaque: we can probe it by applying
it to arguments, but its structure should be hidden from us. This is a
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serious and major concern about the pure A-calculus where all data
are expressed as functions.

Generality of typing. The untyped A-calculus can express fixed points (and
therefore all partial recursive functions on its representation of natu-
ral numbers) but the same is not true for Church’s simply-typed -
calculus. In fact, the type system so far is very restrictive. Consider
the conditional if = Ab. b, where we typed Booleans as a— (a—a). We
would like to be able to type if b e; es for a Boolean e and expressions
e1 and ey of some type 7. Inspection of the typing rules will tell you
that e; : aand es : «, but what if we want to type if b zero (succ zero)
which returns 0 when b is true and 1 if b is false? Recall here that
n: [ — (8 — B)— [ which is different from «. Can we then “instanti-
ate” o with § — (8 — ) — ? It is possible to recover from this mess,
but it is not easy.

In this lecture we focus on the first two points: rather than representing
all data as functions, we add data to the language directly, with new types
and new primitives. At the same time we make the structure of functions
unobservable so that implementation can compile them to machine code,
optimize them, and manipulate them in other ways. Functions become
more extensional in nature, characterized via their input/output behavior
rather than distinguishing functions that have different internal structure.

2 Revising the Dynamics of Functions

The statics, that is, the typing rules for functions, do not change, but the way
we compute does. We have to change our notion of reduction as well as that
of normal forms. Because the difference to the A-calculus is significant, we
call the result of computation values and define them with the judgment
e val. Also, we write e — ¢’ for a single step of computation. For now, we
want this step relation to be deterministic, that is, we want to arrange the
rules so that every expression either steps in a unique way or is a value.
When we are done, we should then check the following properties.

Preservation. If - Fe:7ander— e then-F €' : 7.
Progress. For every expression - - e : 7 either e — ¢ or e val.
Values. If e val then there is no e’ such that e — €.

Determinacy. If e — e; and e — ey then e; = es.
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Devising a set of rules is usually the key activity in programming lan-
guage design. Proving the required theorems is just a way of checking
one’s work rather than a primary activity. First, one-step computation. We
suggest you carefully compare these rules to those in Lecture 4 where re-
duction could take place in arbitrary position of an expression.

val/lam
Az. e val

Note that e here is unconstrained and need not be a value.

e €}

— ap; B
e1 ez — € e (Az.e1) eg — [ea/x]eq

These two rules together constitute a strategy called call-by-name. There are
good practical as well as foundational reasons to use call-by-value instead,
which we obtain with the following three alternative rules.

e1 +— €] vy val  eg > €l
— ap; ; ap2
€1 e — €1 €2 V1 €2 — V1 €y
vy val
Bval

(Ax.e1) vy — [ve/x]er

We achieve determinacy by requiring certain subexpressions to be values.
Consequently, computation first reduces the function part of an applica-
tion, then the argument, and then performs a (restricted form) of 5-reduction.

In lecture, we proceeded with the call-by-name rules because there are
fewer of them. But there are good logical reasons why functions should be
call-by-value, so in these notes we’ll use the call-by-value rules instead.

We could now check our desired theorems, but we wait until we have
introduced the Booleans as a new primitive type.

3 Booleans as a Primitive Type

Most, if not all, programming languages support Booleans. There are two
values, true and false, and usually a conditional expression if e; then ey else e3.
From these we can define other operations such as conjunction or disjunc-
tion. Using, as before, « for type variables and x for expression variables,
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our language then becomes:

Types T u= a1 — 7| bool
Expressions e == x| Az.e|eer
| true | false | if e1 eg e3

The additional rules seem straightforward: true and false are values, and
a conditional computes by first reducing the condition to true or false and
then selecting the correct branch.

true val false val

e1 +— €]

ify
if e1 eg e3 — if €] es €3

. if /true . if /false
if true eg e3 — €9 if false ex e3 — e3

Note that we do not evaluate the branches of a conditional until we know
whether the condition is true or false.
How do we type the new expressions? true and false are obvious.

T' F true : bool I' F false : bool

The conditional is more interesting. We know its subject e; should be of
type bool, but what about the branches and the result? We want type
preservation to hold and we cannot tell before the program is executed
whether the subject of conditional will be true or false. Therefore we pos-
tulate that both branches have the same general type 7 and that the condi-
tional has the same type.

I'bej:bool T'Fey:7 I'kFeg:T

I'Hifejeges:r

In lecture, a student made the excellent suggestion that we could instead
type it as
F}—elcbool FF€2:T2 F|—63:7’3

I'Fifereses:m Vs
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saying that the result must be either of type m or 73. Something like this is
indeed possible using so-called union types, but it turns out they are quite
complex. For example, what can we do safely with the result of the condi-
tional if all we know is that the result is either bool or bool — bool? We will
make a few more remarks on this in the next lecture.

4 Type Preservation

Now we should revisit the most important theorems about the program-
ming language we define, namely preservation and progress. These two
together constitute what we call type safety. Since these theorems are of
such pervasive importance, we will prove them in great detail. Generally
speaking, the proof decomposes along the types present in the language
because we carefully designed the rules so that this is the case. For exam-
ple, we added ife; ez e3 as a language primitive instead of as if a function
of three arguments. Doing the latter would significantly complicate the
reasoning.

We already know that the rules should satisfy the substitution property
(Theorem L4.4). We can easily check the new cases in the proof because
substitution remains compositional. For example, [¢//z](if e; ez e3) =

if ([¢/2]er) ([¢/2]ea) ([¢/2]es).

Property 1 (Substitution)

IfTke:7and T x: 7' Fe:TthenT | [¢//x]e: T.
On to preservation.

Theorem 2 (Type Preservation)

If-Fe:Tandev ¢ then -+ ¢ : 7.

Proof: By rule induction on the deduction of e > ¢’.

Case:
e1 — €}

— ap;

€162 > e €2
where e = e1 eg and €’ = €] es.
Fejeg: T Assumption
-Fe:m—71and -+ ey : 7 for some By inversion
‘el im—T By ind.hyp.
‘Fejey:T By rule app
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Case:

Case:

Case:

vival eg > €l

— P2
V1 €2 F V1 €y

where e = v; e3 and € = vy €. As in the previous case, we proceed

by inversion on typing.

Foviey: T Assumption
-Fvy:m—7and - F ey : 7 for some By inversion
Feh i By ind.hyp.
‘Fuoréey T By rule app
v val
Bval

(Az.e1) vy — [va/x]eq

where e = (A\z.e1) v2 and €’ = [vy/z]e;. Again, we apply inversion on
the typing of e, this time twice. Then we have enough pieces to apply
the substitution property (Theorem 1).

F(Ar.ep)ve i T Assumption
FAz.e1 i — 7and - F vy : 7 for some By inversion
T:Tobe T By inversion
-k [ve/zler T By the substitution property (Theorem 1)
e — e
! if)

if e1 €2 e3> if €] eg e3

where e = if e; ez e3 and € = if €] ez e3. As might be expected by
now, we apply inversion to the typing of e, followed by the induction
hypothesis on the type of e;, followed by re-application of the typing

rule for if.

-Fifeieges: T Assumption
-Fejp:booland - Feg:7and - Feg: T By inversion
-k €} : bool By ind.hyp.
‘Fifeleres:T By rule
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Case:

. if /true
if true eg e3 — €9

where e = if true ey e3 and € = es. This time, we don’t have an
induction hypothesis since this rule has no premise, but fortunately
one step of inversion suffices.

-Fiftrueeses: 7 Assumption
-Ftrue:booland -Fey:7and -Feg: T By inversion
e T Since ¢’ = es.

Case: Rule if /false is analogous to the previous case.

5 Progress

To complete the lecture, we would like to prove progress: ever closed, well-
typed expression is either already a value or can take a step. First, it is easy
to see that the assumptions here are necessary. For example, the ill-typed
expression if (Az.x) false true cannot take a step since the subject (Az. z) is
a value but the whole expression is not and cannot take a step. Similarly,
the expression if b false true is well-typed in the context with b : bool, but it
cannot take a step nor is it a value.

Theorem 3 (Progress)
If - + e : 7 then either e — € for some €' or e val.

Proof: There are not many candidates for this proof. We have e and we
have a typing for e. From that scant information we need obtain evidence
that e can step or is a value. So we try the rule inductionon - e : 7.

Case:

xl:Tﬂ—engg

-|—)\$1.62:T1—>7’2
where e = \z1. ea. Then we have

Axq. ez val By rule val/lam
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Case:

Case:

It is fortunate we don’t need the induction hypothesis, because it can-
not be applied! That’s because the context of the premise is not empty,
which is easy to miss. So be careful!

et —T7 Fey:imy

‘Feey: T

where e = e; e2. At this point we apply the induction hypothesis to
e1. If it reduces, so does e = e; ey. If it is a value, then we apply the
induction hypothesis to es. If is reduces, so does e e>. If not, we have
a By, redex. In more detail:

Either e; — €] for some €] or e; val By ind.hyp.

] Subcase
e = ej ez — € ex by rule ap;

ey val Subcase
Either es — €, for some €, or ey val By ind.hyp.
eg > € SubZ?case
e1e9 > €1 €l By rule ap, since e; val
e val SubZ2case
er=Ar.e¢jandz:mobe):T By “inversion”

We pause here to consider this last step. We know that - ey : 70 = 7
and e; val. By considering all cases for how both of these judgments
can be true at the same time, we see that e; must be a A-abstraction.
This is often summarized in a canonical forms lemma which we didn’t
discuss in lecture, but state after this proof. Finishing this sub?case:

e = (A\xe))es — [ea/x]€] By rule 3, since e3 val

- true : bool

where e = true. Then e = true val by rule.
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Case: Typing of false. As for true.
Case:

-Fej:bool ‘Fey:7T Feg:T

'|—if616263:7'

where e = if e; €3 e3.

Either e; — ¢/ for some ¢} or e; val By ind.hyp.
e1 — €} Subcase
e=if el egeg—ife] exes By rule ify
ey val Subcase

e1 = true or e; = false
By considering all cases for - - e; : bool and e; val

e = true SubZ?case
e = if true eg e3 — €9 By rule
e = false SubZ2case
e = if false ey e3 > e3 By rule

O

This completes the proof. The complex inversion steps can be sum-
marized in the canonical forms lemma that analyzes the shape of well-typed
values. It is a form of the representation theorem for Booleans we proved
in an earlier lecture for the simply-typed A-calculus.

Lemma 4 (Canonical Forms)

(i) If - +v: 71 — 1 and v val then v = A\x;. e3 for some x1 and es.

(ii) If - = v : bool and v val then v = true or v = false.

Proof: For each part, analyzing all the possible cases for the value and typ-
ing judgments. O
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Lecture Notes on
Sum Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 6
September 21, 2018

1 Introduction

So far in this course we have introduced only basic constructs that exist in
pretty much any programming language: functions and Booleans. There
may be details of syntax and maybe some small semantics differences such
as call-by-value vs. call-by-name, but any such differences can be easily
explained and debated within the framework set out so far.

At this point we have a choice between several different directions in
which we can extend our inquiry into the nature of programming language.

Precision of Types. We can make types more or less precise in what they
say about the program. For example, we might have type containing
just true and another containing just false. At the end of this spectrum
would be dependent types so precise that they can completely specify
a function.

Expressiveness of Types. We can analyze which programs can not be typed
and make the type system accept more programs, as long as it re-
mains sound.

Computational Mechanisms. So far computation in our language is value-
oriented in that evaluating an expression returns a value, but it cannot
have any effect such as mutating a store, performing input or output,
raising an exception, or execute concurrently.

Level of Dynamics. The rules for computation are at a very high level of
abstraction and do not talk about, for example, where data might be
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allocated in memory, or how functions are compiled. A language ad-
mits a range of different operational specifications at different levels
of abstraction.

Equality and Reasoning. We have introduced typing rules, but no infor-
mal or formal system for reasoning about programs. This might in-
clude various definitions when we might consider programs to be
equal, and rules for establishing equality. Or it might include a lan-
guage for specifying programs and rules for establishing that they
satisfy their specifications. Under this general heading we might also
consider translations between different languages and showing their
correctness.

All of these are interesting and the subject of ongoing research in program-
ming languages. At the moment, we do not yet have enough infrastructure
to make most of these questions rich and interesting. So in the next few
lectures we will introduce additional types and corresponding expressions
to make the language expressive enough to recover partial recursive func-
tions over interesting forms of data such as natural numbers, lists, trees,
etc.

2 Disjoint Sums

Type theory is an open-ended enterprise: we are always looking to capture
types of data, modes of computation, properties of programs, etc. One
important building block are type constructors that build more complicated
types out of simpler ones. The function type constructor 71 — 7 is one
example. Today we see another one: disjoint sums 71 + 7. A value of this
type either a value of type 7| or a value of type 7 tagged with the information
about which side of the sum it is. This last part is critical and distinguishes it
from the union type which is not tagged and much more difficult to integrate
soundly into a programming language. We use [ and r as tags or labels and
write [ - e for the expression of type 71 + 72 if e; : 71 and, analogously, r - e3
if €2 I T9.
F|_61:7’1 FI‘CQZTQ

I'kFl-eg:m11+m T'kFr-eg:m+m

These two forms of expressions allow us to form element of the disjoint
sum. To destruct such a sum we need a case construct that discriminates

LECTURE NOTES SEPTEMBER 21, 2018



Sum Types L6.3

based on whether element of the sum is injected on the left or on the right.

I'te:m+mn Tyzy:mber:m Daxs:mbey: T

Fhcasee{l-z1=e1|r-x9=e2}:7

Let’s talk through this rule. The subject of the case should have type 7 + 7
since this is what we are discriminating. If the value of this type is [ - v;
then by the typing rule for the left injection, v1 must have type ;. Since the
variable x1 stands for v; is should have type 7; in the first branch. Similarly,
x2 should have type 7 in the seond branch. Since we cannot tell until the
program executes which branch will be taken, just like the conditional in
the last lecture, we require that both branches have the same type 7, which
is also the type of the whole case.

From this, we can also deduce the value and stepping judgments for the
new constructs.

¢ val val/l c val val/r
l-eval r-eval
/ /
erse Ny erse >/
l-e—1l-¢ r-e—r-ée
e e
> /caseq
casee {...} —casee {...}
V1 val
> /case/l
case (l . 7}1) {l T = €] | .. } — [1)1/331]61
v val
> /case/r
case (r-wv2) {... |7 22 = ea} > [v2/x2]e2

We have carefully constructed our rules so that the new cases in the
preservation and progress theorems should be straightforward.

Theorem 1 (Preservation)
If-Fe:tandews e then-+¢€ : 7

Proof: Before we dive into the new case, a remark on the rule. You can
see that the type of an expression [ - e; is inherently ambiguous, even if we
know that e; : 71. In fact, it will have the type 7 + 72 for every type 7o. This
is acceptable because we either use bidirectional type checking, in which
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case both 71 + ™ and [ - e; are given to use, or we use some form of type
inference that will determine the most general type for an expression.

In any case, these considerations do not affect type preservation. There,
we just need to show that any type 7 that e possesses will also be a type of
¢ if e — €’. Now, it is completely possible that ¢’ will have more types than
e, but that doesn’t contradict the theorem.!

The proof of preservation proceeds as usual, by rule on induction on the
step e — ¢/, applying inversion of the typing of e. We show only the new
cases, because the cases for all other constructs remain exactly as before.
We assume that the substitution property carries over.

Case:
e1 €}

— =/l

l-er—1-€)
wheree=1-ejand e =1-¢]
Fl-ep:mm+ 1 Assumption
Fe:m By inversion
ke :m By ind.hyp.
Hloel:im+ 7 By rule

Case: Rule —/r: analogous to — /1.

Case: Rule —/case;: similar to the previous two cases.

Case:
v1 val
— /case/l
case (l . Ul) {l T = €1 | .. } — [vl/xl]el
wheree =case (l-v1) {l-x1 = e |...} and € = [v1/x1]ey.
‘Fcase (l-v){l-z1=e|r-22=e€2}:7T Assumption

Hlov i+

and zy : 71 ey :7and x2 : T e : T for some 71 and 72 By inversion
v By inversion
[v1/z1]er = T By the substitution property

'It is an instructive exercise to construct a well-typed closed term e with e — ¢’ such that
¢’ has more types than e.
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Case: Rule > /case/r: analogous to /.

O

The progress theorem proceeds by induction on the typing derivation,
as usual, analyzing the possible cases. Before we do that, it is always help-
ful to call out the canonical forms theorem that characterizew well-typed
values. New here is part (iii).

Lemma 2 (Canonical Forms)

(i) If - +v: 71 — 1 and v val then v = \xy1. eg for some x1 and es.
(ii) If - v : bool and v val then v = true or v = false.

(iii) If - F v : 7 + 1o and v val then v = [ - vy for some vy val or v = r - vy for
some vy val.

Proof sketch: For each part, analyzing all the possible cases for the value
and typing judgments. O

Theorem 3 (Progress)
If -+ e : 7 then either e — € for some ¢’ or e val.

Proof: By rule induction on the given typing derivation.

Cases: For constructs pertaining to types 71 — 7 or bool, just as before since
we did not change their rules.

Case:

‘Fei:m

Hloep i+ 1

wheree =1[ - e;.

Either e; — ¢} for some ¢} or e; val By ind.hyp.
e1 €} Subcase
l-er—=1-€} By rule — /I
ey val Subcase
l-ey val By rule val/I
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Case: Typing of r - eo: analogous to previous case.
Case:

‘Fey:m+1m xi:mber:T xo:mbes:T

‘Fcaseeg{l-x1 = e |r-za=ex}: 7

where e = caseeg {{- 21 = €1 | 7+ 22 = ea}.

Either ey — e, for some e, or ey val By ind.hyp.
ep — € Subcase
e=caseeg {l-x1 = e |r zo=e3}

> case e {l-x1 = ey |r -z = e} By rule — /case;
eg val Subcase

eo = 1 - e for some e, val
oreg = r - e for some e, val By the canonical forms property (4)

ep =1 - ef and e, val Sub?case
e=case (l-e)) {l-z1=e€1]|...} — [ey/r1]e1 By rule—/case/l
eo =1 - ey and e}, val Sub?case
e=case (r-e)) {...|r-xzy = ea} — [e)/x2]ea By rule — /case/r

]

3 The Unit Type 1

In order to use sums, it is helpful to have a unit type, written 1, that has
exactly one element (). If we had such a type, we could define bool =1 + 1
and bool would no longer be primitive. 1 + 1 contains exactly two values,
namely /- () and 7 - ().

We have one form “constructing” the unit value and a corresponding
case-like elimination, except that there is only on branch.

I'key:1 T'hep:r
FE():1 IFkFcaseey {()=e1}: 7
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There is not much going on as far as the operational semantics is concerned.

() val

e €}

casee; {() = e1} —casee] {() = e} case () {{) = e1} —er

Preservation and progress continue to hold, and are proved following the
pattern of the previous cases. We just restate the canonical forms lemma.

Lemma 4 (Canonical Forms)

(i) If -+ v : 71 — 1 and v val then v = A\x1. e3 for some x1 and es.
(ii) If - = v : bool and v val then v = true or v = false.

(iii)) If - F v : 71 + 72 and v val then v = [ - vy for some vy val or v = r - va for
some vy val.

(iv) If -+ v : 1and v val then v = ().

4 Using the Unit Type

As indicated in the previous section, we can now define the Boolean type
using sums and unit. We have:

bool = 1+1
true = 1-()
false = r-()
ifeperea = caseeg (l-x1 = e | 722 = €2)

(provided z1 ¢ fv(e1) and x2 & fv(ez))

The provisos on the last definition are important because we don’t want

to accidentally capture a free variable in e; or e during the translation.

Recommended question to think about: could we define a function if_ :

(14+1) =7 — 7 — 7 for arbitrary 7 that implements the case construct?
Using 1 we can define other types. For example

Toption = T+1
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represents an optional value of type 7. Its values are [ - v for v : 7 (we have
a value) or r - (), where r - () (we have no value).
A more interesting examples would be the natural numbers:

nat = 1+(14+(1+--))
0 = 1)

1 = ()

2 = (- 0)
succ = An.r-n

Unfortunately, “---” is not really permitted in the definition of types. We
could define it recursively as

nat = 1+ nat

but supporting this style of recursive type definition is not straightforward.
We will probably use explicit recursive types to define

nat = poa.l+a«

So natural numbers, if we want to build them up from simpler components
rather than as a primitive, require a unit type, sums, and recursive types.

5 The Empty Type 0

We have the singleton type 1, a type with two elements, 1 + 1, so can we
also have a type with no elements? Yes! We’ll call it 0 because it will satisfy
(in a way we do not make precise) that 047 ~ 7. There are no constructors
and no values of this type, so the e val judgment is not extended.

If we think ot 0 as a nullary sum, we expect there still to be a destructor.
But instead of two branches it has zero branches!

I'kep:0
IPkcaseeg{}:7

Computation also makes some sense with a congruence rule reducing the
subject, but the case can never be reduced.

e > €

caseeg { } — casee { }

Progress and preservation extend somewhat easily, and the canonical forms
property is extended with
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(v) If - = v : 0 and v val then we have a contradiction.

The empty type has somewhat limited uses precisely because there is no
value of this type. However, there may still be expression e such that - - e :
0 if we have explicitly nonterminating expressions. Such terms can appear
the subject of a case where they reduce forever by the only rule. We can also
ask, for example, what would be functions from 0 — 0. We find:

Ax.x 0—=0
Azx.case z { } 0—=0
Az. loop 0—0

assume we can define a looping term and give it type 0.

6 Summary

We present a brief summary of the language of types and expressions we

have defined so far.

Types T
Expressions e

Functions.

aln—=n|n+m|0]1

x| Ar.elejes
l-e|r-e|caseey{l-x1 =€ |71 2= e}
case ey { }

() | case e {() = e1}

Dzi:mber:m x:T7el

LECTURE NOTES

I'Ari.ea:m— 1 'tz:7

I'Fei:m—m T'hey:my

I'keles:m

Ax. e val

e1 > €] vy val  eg > €l

e1ea — €] es vy ey > vy €

v val

(Ax.e1) vy — [va/x]eq
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Disjoint Sums.
I'kei:m I'kes:m
'tl-e1:m+1 I'br-es:m+m

I'te:m4+m Dzy:mbe:7m Tirzo:mber:T

lFcasee{l -z = e |r-20=e2}:7T

e val e val
l-eval r-eval
e e ers e
l-e—l-¢€ r-e—r-e
ers e

casee {...} —casee {...}

v1 val
case (l-v1) {l-x1=e1|...} = [vi/x1]e1
v val
case (r-v2) {... |7 22 = ea} > [v2/x2]e2
Unit Type.
I'ey:1 Thep:r
'+():1 Mkcaseeg {() = e1}:7
() val
e €}
casee; {() = e1} —casee] {() = e} case () {{) = e1} — el
Empty Type.
I'key:0

'Fcaseeg {}:7

eo — €

caseeg { } — caseef, { }
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Lecture Notes on
Eager Products

15-814: Types and Programming Languages
Ryan Kavanagh

Lecture 7
Tuesday, September 25, 2018

1 Introduction

Last time, we added sums to our language. This allowed us to deal with
collections of individual “tagged” values. Sometimes we would like to
simultaneously consider multiple values. To do this, we introduce eager
products. These are akin to “pairs” or “tuples” of values.

2 Syntax

We need to extend the syntax for our types and our terms to handle the new
constructs:

e
| 71 ® 72 eager product of 71 and 7
|1 nullary product

P
| {e1,e2) ordered pair of e; and ey
| () null tuple
| case e {(z1,79) = ¢} eager pair destructor
| case e {() = ¢’} null tuple destructor
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3 Statics

The product type has the following introduction rules:

P|—81:7’1 F|—€2:T2

T():1 (I-1) Tk (e1,e2) : 71 ® T (I-®)

Its elimination rules are:
I'tFey:1 Thep:r

I'Fcaseep {()=e1}: T

(E-1)

I'tey:m®m iz :m,ze:mbe T

(E-®)
'k case ey {(z1,22) = e1}: 7

4 Dynamics

The intended semantics is that we always eagerly evaluate pairs and only
eliminate a case when both of the paired expressions are values. First, a
tuple is a value only when all of its components are values:

v1 val vy val

O oal (()-VAL) W (PAIR-VAL)

Otherwise, we reduce the components to values from left to right:

e1 — €} vival  eg > €

(STEP-L) (STEP-R)
/ /

(e1,e2) — (e}, e2) (v1, €2) = (v1, €3)

In the elimination forms, we step the subjects until they become values:

e — €

(STEP-SUBJ-1)
caseep {() = e1} — casee) {() = e}

e > €

(STEP-SUBJ-2)
case €gp {<ﬂ$1,x2> = 61} — case 66 {<$1,I2> = 61}

Then we simultaneously substitute where applicable:

(STEP-CASE-1)
case () {() = e}~ e

<1}1 s U2> val

(STEP-CASE-2)
case <2)1,U2> {<l’1,$2> = 61} — [vl,vg/xl,xg]el
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5 Desiderata

Our definition satisfies all of our desiderata. The proofs are left as exercises.

Theorem 1 (Type Safety) Our rules satisfy the progress property, that is, for all
e, T, and 2

1. if -+ e : 1, then either e val or there exists an ¢’ such that e — €', and

2. if -+ e: 7 @ 1o, then either e val or there exists an e’ such that e — €.
They also satisfy the preservation property, that is, for all e, €', 71, and T2,

1. if-Fe:1ande— €, then -+ ¢ :1,and

2. if-Fe:nn@mande s €, then -+ : 1 ® To.

Proof: The proof of progress is by induction on the derivation of - e : 7.
The proof of preservation is by induction on the derivationof e — ¢’. [

Theorem 2 (Canonical Forms for Eager Products) Values have the following
characterization:

1. If-Fe:1landeval, then e = ().

2. If-Fe: 1 ®mand eval, then e = (v1,v2), where - = v; : 7; and v; val.

6 Programming with pairs

To better grasp how these pairs work, let us do a bit of programming. We
say that types 7 and 7/ are isomorphic, 7 = 7/, if there exist terms f : 7 — 7/
and g : 7" — 7 such that are mutual inverses. The exact meaning of “mutual
inverses” is subtle because it requires us to specify what we mean by equality
when wessay f(g(x)) = z and g(f(z)) = «. For our call-by-value language, it
will be sufficient to require for certain x that f(g(z)) —* x and g(f(x)) —* .
Explicitly, types 7 and 7’ are isomorphic if there exist f and g satisfying:

o - FfiT— 1T,

o Fg:7 >,

e for all v such that - - v : 7 and v val, g(f(v)) —* v, and
e forall v such that -+ v : 7" and v val, f(g(v)) —* v.

In this case, we say that f and g are witnesses to the isomorphism.
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6.1 Unitis a unit

Our first observation is that 1 is the unit for ®, i.e., that for all 7,
TR1I=ET
This isomorphism is witnessed by the following pair of mutual inverses:

p=Azx.case z {(l, ) =},
p~t = Az, ().

We begin by showing that they have the right types. First, we show that
FpiT®R1— T

(VAR) (VAR)
r:TR1Fz:T®1 r:7Q1L0l:7,_:1FI1:T
(E-®)

r:T®1lFcasex {(I,.)=1}:7

(LAM)
‘FAzcasex {(l,.) =} :7®1—>T

1

Next, weshow - Fp™ : 7 > 7® 1:

sirbar O o Y
7k (x,())T®1
Xz, ()T T®1

(LAM)

We must also show that these two functions are mutual inverses. This
requires us to show that for all values v such that - v : 7, we have the
following reduction, where we colour-code the redexes in red:

plp~t(v)) = (Ma.case x {(I, ) = 1})((Ma.(z, ()))v)
— (Az.case z {(l,_) = 1}){v,())
— case (v, ()) {({,-) =1}
o> [, (V1 )

= .

We must also show that for all values v such that - v : 7 ® 1, we have by the
canonical forms theorem that v = (¢, ()) for some value ¢ satisfying - ¢ : 7.
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We then have the following reduction:

p~H(p(v) = (e, () (Ar.case z {(I, ) = 1})v)
= (Az.(z,()))(case v {{l, ) = 1})
= (Az.(,()))(case (t,()) {(l,-) = 1})
= (A, (O))([E, (/1,0

(Az.(x, ()t

{t, ()

I

6.2 One is not two

In general, it is not the case for arbitrary 7 that:
TETHT.

To see why; it is sufficient to take 7 = 1 and observe that 1 has one value, (),
while 1 + 1 has two, [ - () and r - (). Consequently, no term can induce a
surjection from the values of 1 to the values of 1 + 1.

6.3 Distributivity

Products distribute over sums, i.e., for all 7, p, and o:
TR((p+0)XTRp+TRo0.
This isomorphism is witnessed by the following pair of mutual inverses:

€= z.casez {(t,s) = cases {l-u=1[-(t u)
| r-w=1-(t,w)}},
¢l = r.casex {I-y = casey {(t,r) = (t,1-7)}
| r-y=casey {(t,s) = (t,r-s)}}.

In the case of £, we take in a term x of type 7 ® (p + o) and decompose it
intoat:7andans: p+ 0. We do case analysis on s to determine if is a left
injection or a right injection. If it is a left injection, then we geta term u : p
and inject the pair (¢, u) into the left to get a term of type 7 ® p+ 7 ® 0. We
proceed symmetrically if s reduces to a left right injection. The definition of
¢~ is similar. The details are left as an exercise.
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6.4 Currying

We can curry functions, i.e., for all 7, p, and o:
T—=(p—0o)=Z(T®@p) —o0.
This isomorphism is witnessed by the following pair of mutual inverses:

¢ = A Av.case x {{t,r) = ftr},
= Af AN f(t, 7).

In the ( case, the intuition is that we must take in a function f : 7 — (p — o)
and produce a function of type (7 ® p) — 0. We do so by taking in a term x
of type T ® p, and eliminating it to get terms ¢ : 7 and r : p to which we can
apply f and ft, respectively.

In the ¢! case, the intuition is that we must take in a function f :
(T ® p) = o and produce a function of type 7 — (p — o). To do so, we need
to take in a term ¢ : 7 and produce a term of type p — o. To produce such
a term, we take in a 7 : p and must produce a term of type o. By pairing
together ¢t and r, we get a term (¢,7) : 7 ® p to which we can apply f to geta
term of type o.

As we discovered in class, we could instead take the left and right
projections out of z:

(=M Ax.f(case z {(l,) = [})(case x {(_,r) = 1}).
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Lecture Notes on
General Recursion & Recursive Types

15-814: Types and Programming Languages
Ryan Kavanagh

Lecture 8
Thursday, September 27, 2018

1 Introduction

To date, our programming examples have been limited to types with no
self-referential structure: functions, sums, and products. Yet many useful
types are self-referential, such as natural numbers, lists, streams, etc. Not
only have our types not exhibited any form of self-reference, but neither
have our programs. Today, we will see how to capture recursion in a typed
setting, before then expanding our type system with recursive types. Before
doing so, we make a brief digression to generalize binary sums (Lecture 6)
to finite sums. Though we could encode finite sums as iterated or nested
binary sums, the generalization is straightforward and it will allow us to
use more descriptive labels for our injections than left “/” and right “r”.

l/l//

2 Finite sums

We generalize the definition of binary sums to finite sums indexed by some
finite set /. We begin by extending our syntax as follows:

T =
\ Z(z 1 Ti) sum of types 7; tagged with i for i € I
I
e =
|i-e inject e with tag i
| case e {i-x; = €;}ier elimination form for finite sums
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We can use this syntax to give a more suggestive definition of the bool type:

bool=(t:1)+(f:1)
true==¢- ()
false = f - ()
if ethene;elseey =casee{t-_=e¢ | f-_=ef}.

The statics and the dynamics generalize from the binary case in the obvious
manner; the reader is referred to [Har16, § 11.2] for details.

3 General recursion

Let us think back to how we implemented recursion in the simply-typed
A-calculus. We wanted to define a recursive function

F=..F-.,

but found that we could not directly do so because of the circular or self-
referential nature of the definition. To get around this, we abstracted out the
F on the right hand side

F=(\f.---f--)F

and observed that we could define F as the fixed pointof { = Af.--- f---.
We constructed this fixed point using the fixed point combinator Y, getting

F=Y(=CY)=Y(C--=-F--.

as desired. Though we cannot encode the fixed point combinator in our
typed setting, we can introduce a new term former and imbue it with the
appropriate semantics. To this end, we introduce a new fixed point construct
fix(z.e), with the intention that, as was the case with Y, we get

fix(f.-- f-- )= fix(foooofoe)een.
Its statics are captured by the rule

z:tke:r

'+ fix(z.e): 7 (FD)
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The intention is that x stand for any self-referential use of e in e. The
operational behaviour is captured by the rule

(FIX-STEP)
fix(z.e) — [fix(z.e)/x]e

With this construction, we can easily implement a divergent term:
loop = fix(z.x).

Then loop — [fix(x.x)/x]x = loop.
This isn’t a very interesting example, so let us consider recursive func-
tions on the natural numbers. Define the type of natural numbers to be

nat “=" (z: 1) 4 (s : nat).

This definition is dubious because we are defining nat in terms of itself:
the type nat appears on both sides of the equation and it is unclear that a
unique solution exists. We will give a correct definition in section 4, but
let us assume the above definition for the sake of illustrating fix(x.e). We
define numerals as follows:

0=z (),

(
n+l=s-mn

We can now implement various functions on natural numbers:
pred = An.casen {z-_=0]s-n' =n'}
add = fix(f An.dm.casen {z- _=m|s-n' =s-(fn'm)})
mult = fix(f.An.Am.casen {z- = m |s-n' = add(m)(fn'm)})
fact = fix(f.Mn.casen {z- _=1]|s-n' = mult(n)(fn')})

To illustrate the typing rule for the fix(z.e) construct, we show that

-+ add : nat — nat — nat.

LetI' = f : nat — nat — nat,n : nat, m : nat. Then:

(VAR) (VAR)
I'Fn:(z:1)+ (s: nat) [,_:1Fm:nat D

(E-+)
(LAM)
(LAM)
(FIx)

F'kcasen{z--=m|s-n'=s-(fn'm)}

f :nat — nat — nat,n : nat - Am.case n {--- } : nat — nat

f :nat — nat — nat - An.Am.casen {---} : nat — nat — nat

-k fix(f.An.Am.case n {--- }) : nat — nat — nat
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where Ty = nat — nat — nat and D is the derivation:

- (VAR) - (VAR)
I')n':nathk f: Ty I')n' : nat - m : nat

(Arp) (VAR)
I',n' :nat - fn' : nat — nat I',n' :nattn':nat

(APp)
I',n' :nat - fn'm : nat

- T I-+)
I''n' :natts- (fn'm): nat

We can also define the type of lists of elements of type 7:
7 list “=" (nil : 1) + (cons : 7 ® (7 list)).
We can then write an append function, that concatenates two lists:

append = fix(a.Al. Ar.case [ {nil - _=r
| cons - p = case p {(h,t) = cons- (h,atr)}})

In assignment 2, you are asked to explore lazy products T & o. It is interesting
to reflect on what would have happened had we used lazy products instead
of eager products in the definition of 7 list. That is, what values inhabit the
following type:

7 mystery “=" (nil : 1) + (cons : 7 & (7 mystery))?

4 Recursive types

We have so far played fast and loose with our definitions of recursive types.
We defined recursive types as solutions to type equations, where the type we
were defining appeared on both sides of the equation. It is unclear whether
a solution to such an equation exists, let alone if it is unique.

To put recursive types on surer footing, we begin by extending our
syntax of types and terms:

e
| p(a.T) recursive type
€=
| fold(e) fold e into a recursive type
| unfold(e) unfold e out of a recursive type
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We remark that o may appear bound in 7, i.e., that 7 may depend on «.
Indeed, the intention is that the bound occurrences of « in 7 stand in for any
self-reference in 7.

The intention is that we “fold” an expression e of type [p(a.7)/a]T into
the recursive type p(a.7):

L'ke:[plar)/alr
I' - fold(e) : p(a.7)

(FOLD)

Symmetrically, given an expression e of type p(a.7), we can “unfold” its
type to get an expression of type [p(a.7)/a]T:

I'ke:pla.r)
I'F unfold(e) : [p(a.7)/a]T

(FoLp)

To illustrate these concepts, we revisit the type nat. We define
nat = p(a.(z: 1) + (s: a)).
We then define

n+ 1 = fold(s - m).
These definitions type-check:

(I-+)

-I—Z'<>1(Z:1)+( ;p(a.(z:l)‘F(S:a))) (FOLD)

-Ffold(z- () : pla.(z: 1)+ (s: )

and
Fripla(z: 1)+ (s: )

Fsm:i(z:1)+ (s: pla(z:1)+ (s: )))
-Ffold(s-7) : p(a.(z: 1)+ (s: @)

We can recover our examples from Section 3 by introducing fold(-) and
unfold(-) in the appropriate places:

(I-+)
(FoLD)

pred = An.case (unfold(n)) {z- .= 0]s-n' = n'}

add = fix(f.An.Am.case (unfold(n)) {z- - = m |s-p = fold(s- (fpm))})
mult = fix(f.An.Am.case (unfold(n)) {z- - = m |s-n' = add(m)(fn'm)})
fact = fix(f.\n.case (unfold(n)) {z- - =1|s-n' = mult(n)(fn')})
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We give terms inhabiting recursive types an eager dynamics:

e val e e
fold(e) val ~ fold(e) — fold(e’)

unfold(e) — unfold(¢) unfold(fold(e)) — e

These definitions satisfy the usual progress and preservation properties.
We illustrate our dynamics by considering the following example over
the natural numbers, recalling that 1 = fold(s - 0):

add 12

= fix(f.An.Am.case (unfold(n)) {z- - = m |s-p = fold(s- (fpm))})12
> (An.Am.case (unfold(n)) {z- = m |s-p = fold(s- (addpm))})12
> (Am.case (unfold(1)) {z- - = m |s-p = fold(s- (addpm))})2

+ case unfold(fold(s-0)) {z- .= 2|s-p = fold(s- (addp2))}

+ fold(s - add 0 2)

—* fold(s - 2)

3
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Lecture Notes on
Data Representation

15-814: Types and Programming Languages
Frank Pfenning

Lecture 9
Tuesday, October 2, 2018

1 Introduction

In this lecture we’ll see our type system in action. In particular we will
see how types enable and guide data representation. We first look at a
traditional problem (representing numbers in binary form) then at a less
traditional one (representing the untyped A-calculus). Before that, we’ll
review recursive types and their properties, since they play a central role in
what follows.

2 Natural Numbers, Revisited

Recall that we were thinking of natural numbers as the type
nat=1+ 1+ (1+...))

which doesn’t seem directly implementable. Instead, we noticed that under
the approach we have

nat “="1+ nat

where the notion of equality between these two types was a bit murky. So
we devised an explicit construction p a.. 7 to form a recursive type of this
nature.

nat =pa.1+«
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The constructor for elements of recursive types is fold, while unfold destructs
elements.

Fke:|pa.7/a]r Fke:pa.T
I'Hfolde: pa.T I'Funfolde: [pa.7/a]T

This “unfolding” of the recursion seems like a strange operation, and it is.
For example, for all other data constructors the components have a smaller
type than the constructed expression, but that’s not the case here because
[pa.7/a]T is in general a larger type than pa.7. To get more intuition,
let’s look at the special case of these rules for natural numbers. We exploit
the definition of nat in order to avoid explicitly use of the p binder and
substitution.
pa.l+a/al(l+a)=1+nat

With this shortcut, the specialized rules are

I'Fe: 1+ nat 'k e:nat
'+ fold e : nat I' F unfolde : 1 + nat

When recursive types are given names (which is usually the case), this
technique makes it much easier to see how the fold and unfold operations
actually work.
The funky equality from the beginning of the lecture is actually an
isomorphism, that is,
nat = 1 + nat

In fact, the functions going back and forth are exactly fold and unfold.

fold
%
nat =
—
nfol

1 + nat

o

u

We can (re)write simple programs. As we did in lecture, you should write
these programs following the structure of the type; here we just show the

final code.
zero : nat = fold({-())

succ : nat — nat = An.fold (r - n)

In order to check the isomorphism, we need to show that the functions
compose to the identity in both directions. That is:

(i) For every value v : 1 + nat, unfold (fold v) = v, and
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(ii) for every value v : nat, fold (unfoldv) = v

Before we can prove this, we should write down the definition of values
and the operational semantics. The constructor is fold, and we had decided
to make it eager, that is

e val

fold e val

The destructor is unfold, so it acts on a value of the expect form, namely a

fold.
v val

unfold (fold v) — v

Finally, we have congruence rules: for the constructor because it is eager,
and for the destructor because we need to reduce the argument until it
exposes the constructor.

e e e e

fold e — fold e’ unfold e — unfold €’

Back to our putative isomorphism. The first direction is almost trivial, since
we can directly step.

(i) unfold (fold v) +— v since v val.
The second part is slightly more complex

(ii) We want to show that fold (unfold v) = v for any value v : nat. The left-
hand side does not appear to reduce, because fold is the constructor.
However, because v : nat is a value we know it must have the form
fold v’ for a value v’ (by the canonical forms theorem, see below) and
then we reason:

fold (unfold v)
= fold (unfold (fold v)) since v = fold v’
—  fold v/ by computation rule
= v since v = fold v/

Before stating the canonical form theorem it is worth realizing that properties
(i) and (ii) actually do not depend on the particular recursive type nat but
hold for any recursive type p «. 7. This means that we have in general
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This is why we call types in this form isorecursive. There is a different
form called equirecursive which attempts to get by without explicit fold
and unfold constructs. Programs become more succinct, but type-checking
easily becomes undecidable or impractical, depending on the details of the
language. We therefore take the more explicit isorecursive approach here.

Theorem 1 (Canonical forms for recursive types)
If -+ v:pa.Tand v val then v = fold v’ for some v’ val.

Proof: By case analysis of values and typing rules. O

3 Representing Binary Numbers

Natural numbers in unary form are an elegant foundational representation,
but the size of the representation of n is linear in n. We can do much better
if we have a binary representation with two bits. A binary number then is a
finite string of bits, satisfying something like

bin = bin + bin + 1

where the first summand represents a bit 0, the second a bit 1, and the last
the empty string of bits. Code is easier to write if we use the n-ary form of
the sum where each alternative is explicitly labeled.

bin = (b0 : bin) + (bl : bin) + (e : 1)

Here we have used the labels b0 (for a 0 bit), b1 (for a 1 bit), and ¢ (for the
empty bit string).
Now it is convenient (but not necessary) to represent 0 by the empty bit
string.
bzero : bin = fold(e-())

We can also construct larger numbers from smaller ones by adding a bit
at the end. For the purposes of writing programs, it is most convenient to
represent numbers in “little endian” form, that is, the least significant bit
comes first. The two constructors then either double the number n to 2n (if
we add bit 0) or 2n + 1 if we add bit 1.

dbl0 : bin — bin = Az.fold (b0 - x)
dbll : bin — bin = Az.fold (bl - z)

As a sample program that must analyze the structure of numbers in binary
form, consider a function to increment a number. In order to analyze the
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argument of type bin we must first unfold its represenation to a sum and
then case over the possible summands. There are three possibilities, so our
code so far has the form

inc : bin — bin =
Az. case (unfold x)
{b0-y=...
|bl-y=...
le-y=...}

In each branch, the missing code should have type bin. In the case of b0 - y
we just need to flip the lowest bit from b0 to bl and keep the rest of the bit
string the same.

inc : bin — bin =
Az. case (unfold x)
{b0 -y = fold (bl - y)
|bl-y=...
le-y=...}

In the second branch, we need to flip b1 to b0, and we also need to implement
the “carry”, which means that we have to increment the remaining higher-
order bits.

inc : bin — bin =
Az. case (unfold x)
{b0 -y = fold (bl -y)
| bl -y = fold (b0 - (incy))
le-y=...}

Finally, in the last case we need to return the representation of the number 1,
because fold (e - ()) represents 0. We obtain it from the the representation of
0 (which we called bzero) by adding a bit 1.

inc : bin — bin =
Az. case (unfold x)
{b0 -y = fold (bl -y)
| bl -y = fold (b0 - (inc y))
| €y = fold (bl - bzero) }

In the last branch, y : 1 and it is unused. As suggest in lecture, we could
have written instead

| € -y = fold (bl - fold (e - y))
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In this program we largely reduced the operations back to fold and explicitly
labeled sums, but we could have also used the dbl0 and dbl1 functions.

At this point we have seen all the pieces we need to implement addition,
multiplication, subtraction, etc. on the numbers in binary form.

4 Representing the Untyped \-Calculus

Recall that in the pure, untyped lambda calculus we only have three forms
of expression: A-abstraction A\z. e, application e; e3 and variables z. A com-
pletely straightforward representation would be given by the following
recursive type:

nat
(lam : var @ exp) + (app : exp ® exp) + (v : var)

var
exp

111

Here we have chosen variables to be represented by natural numbers be-
cause we need unboundedly many different ones.

This representation is fine, but it turns out to be somewhat awkward
to work with. One issue is that we have already said that Az.z and Ay.y
should be indistinguishable, but in the representation above they are (for
example, x might be the number 35 and y the number 36.

In order to solve this problem, de Bruijn [dB72] developed a representa-
tion where we cannot distinguish these two terms. It is based on the idea
that a variable occurrence should be a pointer back to the place where it is
bound. A convenient representation for such a pointer is a natural number
that indicates how many binders we have to traverse upwards to reach the
appropriate A-abstraction. For example:

AT.x ~ A0
Ay.y ~ A0
Az Ay x o~ AN
Az Ay y o~ A0

For free variables, we have to assume they are ordered in some context and
the variables refers to them, counting from right to left. For example:

Y,z Az, ~ A0
Y,z Ay o~ A2
Y,z dr.z ~ Al

One strange effect of this representation (which we did not mention in
lecture) is that in de Bruijn notation, the same variable may occur with
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different numbers in an expression. For example
Ar.(Ay.xy)x ~ A(A10)0

The first occurrence of = becomes 1 because it is located under another
binder (that for y), while the second occurrence of = becomes 0 because it is
not in the scope of the binder on y.

There are some clever algorithms for implementing operations such as
substitution on this representation. However, we will move on to an even
cooler representation.

5 A Shallow Embedding of the Untyped \-Calculus

The standard representations we have seen so far are sometimes called
deep embeddings: objects we are trying to represent simply become “lifeless”
data. Any operation on them (as would usually be expected) has to be
implemented explicitly and separately.

A shallow embedding tries to exploit the features present in the host lan-
guage (here: our statically typed functional language) as directly as possible.
In shallow embeddings mostly we represent only the constructors (or values)
and try to implement the destructors. In the case of the untyped A-calculus,
the only constructor is a A-abstraction so a shallow embedding would pos-
tulate

fold
(_
E =2 E—E
—
unfo

o

At first it seems implausible that a type E would be isomorphic to its own
function space, but surprisingly we can make it work! In the different
context of denotational semantics this isomorphism was first solved by Dana
Scott [Sco70]. Let’s work out the representation function "e where e is an
expression in the untyped A-calculus. We start with some examples.

Arv.x'= ...

~—~
:E

We want the representation to be of type E. Since the left-hand side rep-
resents a A\-expression, it should be the result of a fold. A fold requires an
argument of type E — E

"Az. 2" = fold
:E—E
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That should be a A-expression in the host language, which binds a variable
x of type E. The body of the expression is again of E.

"Az.27 = fold (Az. ... )
- E

Because we want to represent the identity function, we finish with
TAz.27 = fold (Az. x)
The following two examples work similarly:

"Az. Ay. 27 = fold (Az.fold (Ay.z))
“Az. Ay.y" = fold (A\x.fold (A\y.y))

The first hurdle arises when we try to represent application. Let’s consider
something that might be difficult, namely self-application.

W=AL.TX

Note that this expression itself cannot in the host language. If there were a
typing derivation, it would have to look as follows for some 7, o, and 7'

z:TFx:T w0 ziThx: T

r:Thxzx:0

‘FXx.xx:iT—>o0
To complete the derivations, we would have to have simultaneously
=720 and T=17
and there is no solution, because
=70

has no solution. Therefore, w cannot be typed in the simply-typed A-calculus,
even though it is a perfectly honorable untyped term. The key now is the
following general table of representations

TAz.e?’ = fold (Ax.Te™)

M = zx
Teres? = (unfoldTep™) Teg™
——————

:E—E - E
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To summarize, A-abstraction becomes a fold, application becomes an unfold,
and a variable is represented by a corresponding variable with (for conve-
nience) the same name.

To get back to self-application, we obtain

Fwl="Az.zz" = fold (Az. (unfoldz) z) : E

Recall that Q@ = ww = (Az.z z) (Az. z ) has no normal form in the untyped
A-calculus in the sense that it only reduces to itself. We would expect the
representation to diverge as well. Let’s check:

l_w w—l
(unfold"w™) Tw™
(unfold (fold (Az. (unfold z) z))) "w™

—  (Az. (unfold z) z) "w™ since (Az. (unfold z) x) val
—  (unfold"w™) "w™ since "w ™ val
— ,_(JJ w—l

We can see that the representation of 2 also steps to itself, but now in two
steps instead of one. That’s because the fold /unfold reduction requires one
additional step.

We haven’t proved this, but without a fixed point constructor for pro-
grams (fixz. e) and without recursive types, every expression in our lan-
guage reduces to a value. This example demonstrates that this is no longer
true in the presence of recursive types. Note that we did not need the
fixed point constructor—just the single recursive type E = pa. o — a was
sufficient.

6 Untyped is Unityped

In the previous section we have seen that there is a compositional embedding
of the untyped A-calculus in our simply-typed language with recursive types.
This demonstrates that we don’t lose any expressive power by moving to a
typed language, as long as we are prepared to accept recursive types. In fact,
the whole untyped language is mapped to a single type in our host language,
so we summarize this by saying that

The untyped \-calculus is unityped.

It is important to see that the typed language is in fact a generalization of
the untyped language rather than the other way around. By using fold and
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unfold we can still express all untyped programs. In the next lecture we
will explore this a little bit further to talk about dynamic typing and that the
observation made in this lecture generalizes to richer settings.

Beyond typing there is one more difference between the untyped A-
calculus and our typed representation that we should not lose sight of. The
meaning of an untyped A-expression is given by its normal form, which
means we can reduce any subexpression including under A-abstractions. On
the other hand, in the functional host language we do not evaluate under
A-abstractions or lazy pairs. For example, Az. 2 has no normal form, but its
representation " Az. 27 = fold (Az. Q") is a value. So we have to be careful
when reasoning about the operational behavior of the embedding, which is
true for all shallow embeddings.
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Lecture Notes on
Parametric Polymorphism

15-814: Types and Programming Languages
Frank Pfenning

Lecture 11
October 9, 2018

1 Introduction

Polymorphism refers to the possibility of an expression to have multiple types.
In that sense, all the languages we have discussed so far are polymorphic.
For example, we have

AL.T:T—T

for any type 7. More specifically, then, we are interested in reflecting this
property in a type itself. For example, the judgment

Ar.x Va.a— o

expresses all the types above, but now in a single form. This means we can
now reason within the type system about polymorphic functions rather than
having to reason only at the metalevel with statements such as “for all types
T,...0.
Christopher Strachey [?] distinguished two forms of polymorphism: ad
hoc polymorphism and parametric polymorphism. Ad hoc polymorphism refers
to multiple types possessed by a given expression or function which has
different implementations for different types. For example, plus might have
type int — int — int but als float — float — float with different implementations
at these two types. Similarly, a function show : Va.. a — string might convert
an argument of any type into a string, but the conversion function itself will
of course have to depend on the type of the argument: printing Booleans,
integers, floating point numbers, pairs, etc. are all very different operations.
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Even though it is an important concept in programming languages, in this
lecture we will not be concerned with ad hoc polymorphism.

In contrast, parametric polymorphism refers to a function that behaves
the same at all possible types. The identity function, for example, is para-
metrically polymorphic because it just returns its argument, regardless of
its type. The essence of “parametricity” wasn’t rigorously captured the
beautiful analysis by John Reynolds [?], which we will sketch in Lecture
12 on Parametricity. In this lecture we will present typing rules and some
examples.

2 Extrinsic Polymorphic Typing
We now return to the pure simply-typed A-calculus.

= Oz|7'1—>7‘2
e = x|Ar.e|ee

We would like the judgment e : Va. 7 to express that e has all types [o/a]T
for arbitrary o. This will close an important gap in our earlier development,
where the fixed type variables seemed to be inflexible. The construct Vo. 7
binds the type variable o with scope 7. As usual, we identify types that
differ only in the names of their bound type variables.

Now we would like to allow the following;:

bool = Va.a— «

true : bool

true = Ax.)\y.x

false :  bool

false = Az.\y.y

nat = Va.a— (a—a) =«
zero : nat

zero = Az.)S.z

succ : nat— nat

succ @ An.Az.As.s(nzs)

This form of typing is called extrinsic because polymorphic types describe a
properties of expression, but the expressions themselves remain unchanged.
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In an intrinsic formulation the expressions themselves carry types and ex-
press polymorphism. There are good arguments for both forms of presen-
tation. For the sake of simplicity we use the extrinsic form. This means
we depart from our approach so far where each new type constructor was
accompanied by corresponding expression constructors and destructors for
the new type.

In slightly different forms these calculi were designed independently by
Jean-Yves Girard [?] and John Reynolds [?]. Girard started from higher-order
logic while Reynolds from a programming where types could be passed as
arguments to functions.

Given that Az. x : @ — o we might propose the following simple rule:

I'ke:r
— VI?
I'Fe:Va.7
We can then derive, for example,
var

r:a,y: bz

—I
vI?

z:akFAy.z: 08—«
rrakAy.x:VE.6—
—1
‘FAx Ay a—= V8. 8= a )
VI
A Ay.zVa.a— V6.8 — a

This seems certainly correct. Az. A\y. x should not have type Va.. a—Vj3. 3— 3.
But:

var
rTioy:akT:a

—1

riaF\y.z:a—a
vI?

r:akFAy.z:Va.a— «

—1

‘FAr Ay a—Voa.a—
vI?

‘FAx. \y.x :Va.a = Va.a— «

is clearly incorrect, because by variable renaming we would obtain
Ar. Ay .z Va.a—=VE.6— 0

and the function does not have this type. For example, instantiating o with
bool and 8 with nat we would conclude the result is of type nat when it
actually returns a Boolean.
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The problem here lies in the instance of VI in the third line. We say that
Ay. z has type Va. o — a when it manifestly does not have this type. The
problem is that o appears as the type of x : a in the context, so we should
be not allowed to quantify over « at this point in the deduction. One way to
prohibit this is the have a side condition on the rule

I'ke:7™ anotfreeinT
I'te:Va.1

V17

This would work, but in the similar situation when we wanted to avoid
confusion between expression variables, we postulated that the variable
was not already declared. We adopt a similar restriction here by adding a
new form of context declaring type variables.

A = aq type, ..., o, type
Here, all the a; must be distinct. The typing judgment is then generalized to
A:Tke:7

where all the free type variables in I and 7 are declared in A, and (as before)
all free expression variables in e are declared in I'. We express that a type is
well-formed in the judgment

A+ T type

For now, this is just defined compositionally—we show only two rules by
way of example. We refer to these as type formation rules.

AF 1 type A 1o type A, o type = T type

QF
AF 1 ® T type A VYot type

Now we can formulate the correct rule for introducing the universal
quantifier in the type.

Ayatype;T'Fe: T
A;T'Fe:Va.r

VI

In order to keep the context A, a type well-formed, we imply that « is not
already declared in A and therefore does not occur in I'. In future, when we
might allow types in expressions, o would not be allowed to occur there as
well: it must be globally fresh. Sometimes we add the superscript on the
rule to remind ourselves of the freshness condition.
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When we instantiate the quantifer to get a more specific types we need
to make sure the type we substitute is well-formed.

As;T'Fe:VYa.r AFotype
As;Tke:[o/a)r

VE

Now we can easily derive that the Booleans frue and false have the expected
type Va.a = a« = o How about the conditional? Based on the usual
conditional, we might expect

if:bool =T —T—=T

for any type 7, where the first occurrence is the ‘then” branch, the second
the "else’ branch and the final one the result of the conditional. But we can
capture this without having to resort to metalevel quantification:

if : bool = Vp.6— B —f
But this is exactly the same as

if : bool — bool

which makes sense since we saw in the lecture on the untyped A-calculus
that
if =Xb.b

3 Encoding Pairs

Now that we have the rules in place, we can consider if we can type some of
the other constructions of generic data types in the pure A-calculus. Recall:

pair = Ax. Ay.\f. fxy

fst = Ap.p(Az. \y.x)
snd = Ap.p(Ax.\y.y)

With these definitions we can easily verify

= fst \f.fzy)

= (Af. fzy) (Az. Ay x)
=

=%y

fst (pair x y)

snd (pair z y)
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Can we type these constructors and destructors in the polymorphic A-
calculus? Let’s consider defining a type prod 7 o to form the product of
7 and o.

prodto = 77

pair : Va.VB.a— B —prodaf

pair = Ar.\y. M. fxy
N——

tprod o 3

Since z : @ and y : 5 we see that f : « — 8 — ?. But what should be the type
7? When we apply this function to the first projection (in the function fst),
then it should be o, when we apply it to the second projection it should be .
Therefore we conjecture it should be an arbitrary typey. So f : a — 8 — v
and proda f =Vy. (a = B —7) = 7.

prodto = Vy.(r—o—7)—7
pair : Ya.VB.aa— B —prodaf
pair = Ax.\y. Af. fxy

fst : Va.VB.prodaf — o

fst = Ap.p(Az. \y. )

snd : Va.VB.prodap — B

snd = Ap.p(Az. \y. x)

As an example, in the definition of fst, the argument p will be of type V. (a—
B — 7) — ~. We instantiate this quantifier with a to getp : (o = 8 — a) = a.
Now we apply p to the first projection function to obtain the result a.

The observation that it may be difficult to see whether a given expression
has a given type is not accidental. In fact, the question whether an expression
is typable is undecidable [?], even if significant information is added to the
expressions [?,?].

4 Encoding Sums
Now that we have represented products in the polymorphic A-calculus, let’s
try sums. But it is useful to analyze a bit more how we ended up encoding

products. The destructor for eager products is

'te:7®oc To:7m,y:obe:7

QL
I'kcasee {(z,y) =€} : 7
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If we try to reformulate the second premise as a function, it would be
(Az. Ay.€') : 7 — o — 7. If we think of this version of case as a function, it
would have type 7 ® ¢ — (1 — 0 — 7’) — 7. We can now abstract over 7’ to
obtain 7 ® o — V4. (T — 0 —7) — . The conjecture about the representation
of pairs then arises from replacing the function type an isomorphism

TRoEVY.(T—0—7) =7y

Our calculations in the previous section lend support to this, although we
didn’t actually prove such an isomorphism, just that the functions pair, fst,
and snd satisfy the given typing and also compute correctly.
Perhaps the elimination rule for sums is subject to a similar interpreta-
tion?
I'te:t+0 Dyz:thke:7 Tyy:obey: 7

+E
F'kcasee{l-z=e |1 -y=ea}:7

The second premise would have type 7 — 7/, the third 0 — 7’ and the
conclusion has type 7'. Therefore we conjecture

TH+oZEVy.(T—=7)—= (0 —=7) =y

As a preliminary study, we can define

sumto = Vy.(r1—=7v)—=>(c—7y) =y

inl T SUmMTOo

inl = Azx. Al Arlx

inr : O —SUMTO

inr = Ay A Arry

casessum : sumto—=>Vy.(T—=y) = (0 =)=y
casesum = As.S

Then we verify the expected reductions

casesum (inl ) z1 zo +— (inlx) z1 29

= (AL A lx) 21 29

l—)2 21T

case_sum (inr y) z1 z2 +—* 229y
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5 Predicativity

First, we summarize the language and rules of the polymorphic A-calculus,
sometimes referred to as System F, in its extrinsic formulation.

= a|n o7 | Var

e u= xz|Ar.e|eres
Ayatype;T'Fe:T As;T'Fe:Va.r Al otype
VI VE
A;TkFe:Va.r A;TFe:[o/a]r

Several objections may be made to this system. A practical objection is the
aforementioned undecidablity of the typing judgment. A philosophical ob-
jection is that the system is impredicative, that is, the domain of quantification
includes the quantifier itself. The latter can be addressed by stratifying the
language of types into simple types and type schemas.

Simple types 7 = a|m—=T|...
Type schemas ¢ == VYa.o |7

This simple stratification allows type inference using an algorithm due to
Robin Milner [?], which adopts a previous algorithm by Roger Hindley for
combinatory logic [?].

The decomposition into simple types and type schemas is the core of
the solution adopted in functional languages such as OCaml, Standard ML,
Haskell and even object-oriented languages such as Java where polymorphic
functions are implemented in so-called generic methods and classes.

The system of type schemes can be further extended (while remaining
predicative) by considering a hierarchy of universes where the quantifier
ranges over types at a lower universe. Systems with dependent types such
as NuPrl or Agda employ universes for the added generality and sound
type-theoretic foundation.
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Lecture Notes on
Parametricity

15-814: Types and Programming Languages
Frank Pfenning

Lecture 12
October 11, 2018

1 Introduction

Disclaimer: The material in this lecture is a redux of presenta-
tions by Reynolds [Rey83], Wadler [Wad89], and Harper [Har16,
Chapter 48]. The quoted “theorems” have not been checked
against the details of our presentation of the inference rules and
operational semantics.

As discussed in the previous lecture, parametric polymorphism is the
idea that a function of type Va. 7 will “behave the same” on all types ¢ that
might be used for a. This has far-reaching consequences, in particular for
modularity and data abstraction. As we will see in a future lecture, if a client
to a library that hides an implementation type is parametric in this type, then
the library implementer or maintainer has the opportunity the replace the
implementation with a different one without risk of breaking the client code.

The informal idea that a function behaves parametrically in a type vari-
able « is surprisingly difficult to capture technically. Reynolds [Rey83] real-
ized that is must be done relationally. For example, a function f : Va. o = «
is parametric if for any two types 7 and o, and any relation between values
of type 7 and o, if we pass f related arguments it will return related results.
This oversimplifies the situation somewhat, but it may provide the right
intuition. What Reynolds showed is that in a polymorphic A-calculus with
products and Booleans, all expressions are parametric.

We begin by considering how to define different practically useful no-
tions of equality since, ultimately, parametricity will allow us to prove
program equalities.
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2 Kleene Equality

The most elementary nontrivial notion of equality just requires that expres-
sions are equal if they evaluate to the same value. We write e ~ ¢’ (e is
Kleene-equal to €’) if either e —* v and ¢/ —* v for some value v, or e and €’
both diverge.

For the remainder of this lecture we assume that all expressions termi-
nate, that is, evaluate to a value. This means we cannot permit arbitrary
recursive types (due to the shallow embedding of the untyped A-calculus)
or arbitrary recursive expressions. We will not be precise about possible
syntactic restrictions or extensions in the study of parametricity, but you
may consult the given sources for details.

How far does Kleene equality go? For Booleans, for example, it works
very well because e ~ ¢’ : bool is quite sensible: two Boolean expressions are
equal if they both evaluate to true or they both evaluate to false. Similarly,
e ~ ¢’ : nat is the appropriate notion of equality: two expressions of type nat
are equal if they evaluate to the same natural number.

We can construct bigger types for which Kleene equality still has the
right meaning. For example, expressions of type bool ® nat should be equal
if they evaluate to the same value, which will be in fact a pair of two values
whose equality we already understand.

The following so-called purely positive types all have fully observable values,
so Kleene equality equates exactly those expressions we would like to be
equal.

Purely positive types 7+ == 7 @7 |1|7 +7 | 0] pat. 7t |t

With negative types, namely 7 — o or 7 & o this is no longer the case. The
problem is that we assumed we cannot directly observe the body of a
function (which is an arbitrary expression). So, even though intuitively the
function on Booleans that doubly-negates its argument and the identity
function should be equal. We write = for this stronger notion of equality.

Az. not (not x) = Az. x : bool — bool

Another way to express this situation is that we would like to consider
functions extensionally, via their input/output relationship, but not their
definition. There are other aspects of these two functions that are not equal.
For example, the identity function has many other types, while the double-
negation does not. The identity function is likely to be more efficient. And
the former may lose some points in a homework assignment on functional
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programming because it is less elegant than the latter. Similarly, a func-
tion performing bubble sort is extensionally equivalent to one performing
quicksort, while otherwise they have many different characteristics.

We ignore intensional aspects of functions in our extensional notions of
equality in this lecture. Keeping this in mind, a reasonable approach would
be to define

(=) exe 1y > miffforallv, : 7y wehaveev) =2 e vy :
&) exe:m&niffe-l=e-l:mmande-r=e -r:m

With this definition we can now easily prove that the two Boolean functions
above are extensionally equal. The key is to distinguish the cases of v; = true
and v; = false for vy : bool, which follows from the canonical form theorem.

3 Logical Equality

The notions of Kleene equality and extensional equality are almost sufficient,
but when we come to parametricity the extensional equality as sketched
so does not function correctly any more. The problem is that we want to
compare expressions not at the same, but at related types. This means, for
example, that in comparing e and ¢’ and type 71 — 72 we cannot apply e and
e’ to the exact same value. Instead, we must apply it to related values. The
second clause for lazy pairs can remain the same. We write e ~ ¢’ : 7 for
this refined notion. It is called logical equality because it is based on logical
relations, one of the many connections between logic and computation.

(=) e~eé:m o miffforall vy ~ v) : 7y wehaveevy ~ e/ v] : 7o
&) e~e:m&niffe-l~e-l:mmande-r~ée -r:m

We can also fill in the definitions for positive type constructors. Because
their values are directly observable, we just inspect their form and compare
the component values.

+H)e~eée :m+niffeithere —* [ -vy, e =* -0y and v1 ~ v} : ™ or
1 1
e—=*r-vg, e—=*r-vhand vy ~ v} : 1.

(0) e ~ € : 0never.
(®) e~eé:m @miff e =* (v1,v2) and € —* (v],v}) and v; ~ v} : 71 and

Vg ~ Vb 1 Ty
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(1) e~eé :1iffe—* ()and e —* ().

A key aspect of this notion of equality is that it is defined by induction
over the structure of the type, which can easily be seen by examining the
definitions. We always reduce the question of equality at a type to its compo-
nents (assuming there are any). This is also the reason why recursive types
are excluded, even though large classes of recursive types (in particular,
inductive and coinductive types) can be included systematically.

The question for this lecture is how to extend it to include parametric
polymorphism. The straightforward approach

e~ ¢ :Va.riff forall closed o, e ~ ¢ : [o/a]T?

fails because the type [0/a|T may contain Va.7. Moreover, parametric
functions are supposed to map related values at related types to related
results, and this definition does not express this. Instead, we write R : 0 <+
o’ for a relation between expressions e : o and ¢’ : ¢/, and e R ¢’ if R relates
e and €’. Furthermore we require R to be admissible, which means it is closed
under Kleene equality.! Thatis, if f ~ ¢, e ~ ¢/,and ¢/ ~ f’ then also f ~ f'.
Now we define

(V) e ~ € : Va.r iff for all closed types o and ¢’ and admissible relations
R:0 < o'wehavee ~ ¢ : [R/a|T

(R) e~¢é :Rwithe: 7,/ :7"and R: 7 & 7'iffe R €.

This is a big conceptual step, because what we write as type 7 actually
now contains admissible relations instead of type variables, as well as or-
dinary types constructors. Because Kleene equality itself is admissible (it’s
trivially closed under Kleene equality) we can instantiate o with Kleene
equality on the same type 0. A base case of the inductive definitions is then
ordinary Kleene equality.

The quantification structure should make it clear that logical equality in
general is difficult to establish. It requires a lot: for two arbitrary types and
an arbitrary admissible relation, we have to establish properties of e and ¢'.
It is an instructive exercise to check that

ALz~ M. x:Vo.ao— a

Conversely, we can imagine that knowing that two expressions are paramet-
rically equal is very powerful, because we can instantiate this with arbitrary
types o and ¢’ and relations between them. The parametricity theorem now
states that all well-typed expressions are related to themselves.

!Other admissibility conditions are possible, depending on the application.
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Theorem 1 (Parametricity [Rey83]) If-;-Fe:Tthene~e: T

What we suggested you tediously prove by hand above is an immediate
consequence of this theorem.

4 Exploiting Parametricity

Parametricity allows us to deduce information about functions knowing
only their (polymorphic) types. For example, with only terminating func-
tions, the type

fiVa.a—a

implies that f is (logically) equivalent to the identity function

f~Ar.z:Va.a—«

Let’s prove this. Unfortunately, the first few steps are the “difficult” direction
of the parametricity.
By definition, this means to show that

For every pair of types T and 7" and admissible relation R : T <> 7/,
we have f ~ Ax.x: R— R

Now fix arbitrary 7, 7" and R. Next, we use the definition of logical equiva-
lence at type 7 — 7’ to see that this is equivalent to

For every pair of values vy ~ v(, : R we have fvy ~ (Az.z) v} : R

By definition of logical equality at R, this is equivalent to showing that
vo R v}y implies f vy R (Az.x) v))

Since R is closed under Kleene equality this is the case if and only if
fwvo R vj, assuming vy R v,

This is true if f vy —* vg since R is closed under Kleene equality.

So our theorem is complete if we can show that f vy —* vy. To prove
this, we use the parametricity theorem with a well-chose relation. We start
with

[~ f:Va.a — a by parametricity.

Now define the new relation S : 7 <+ 7 such that vy S vy for the specific vy
from the first half of the argument and close it under Kleene equality. Then
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[~ f:S8— S bydefinition of ~ at polymorphic type.

Applying the definition of logical equality at function type and the assump-
tion that vy S vg we conclude

Jvo~ fug: S

which is the same as saying
foo S foo

By definition, S only relates expressions that are Kleene-equal to vy, so
fvo =" vo

This completes the proof.

Similar proofs show, for example, that f : Ya. a — o — a must be equal to
the first or second projection function. It is instructive to reason through the
details of such arguments, but we move on to a different style of example.

5 Theorems for Free!

A slightly different style of application of parametricity is laid out in Philip
Wadler’s Theorems for Free! [Wad89]. Let’s see what we can derive from

f:Va.a—«
First, parametricity tells us
f~f:Vaoa—a

This time, we pick types 7 and 7’ and a relation R which is in fact a function
R : 7 — 7'. Evaluation of R has the effect of closing the corresponding
relation under Kleene equality. Then

f~f:R>R

Now, for arbitrary values z : 7 and 2’ : 7/, R 2z’ actually means Rz —* 2.
Using the definition of ~ at function type we get

fz~f(Rz):R

but this in turn means

R(fz)~f(Rx)
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This means, for any function R : 7 — 7/,
Rof~foR

that is, f commutes with any function R. If 7 is non-empty and we have
vg : T and choose 7 = 7 and R = \x. vy we obtain

R (fvo) 0
f (Ruvo) f oo

so we find f vy ~ vg which, since vy was arbitrary, is another way of saying
that f is equivalent to the identity function.

For more interesting examples, we extend the notion of logical equiva-
lence to lists. Since lists are inductively defined, we can call upon a general
theory to handle them, but since we haven’t discussed this theory we give
the specific definition.

~
~

(7 list) e ~ € : 7 listiff e —* [v1,...,0v,], ¢ =" [v],...,v)]and v; ~ v} : T

foralll <i<n.

The example(s) are easier to understand if we isolate the special case R list
for an admissible relation R : 7 — 7/ which is actually a function. In this
case we obtain

e ~ ¢ : R list for an admissible R : 7 — 7/ iff (map R) e ~ €.
Here, map : (1 — 7') — (7 list — 7’ list) is the usual mapping function with
(map R) [v1,...,v5) =" [Ruy,..., Rvy]
Returning to examples, what can the type tell us about a function

[ Va.alist —» o list?

If the function is parametric, it should not be able to examine the list ele-
ments, or create new ones. However, it should be able to drop elements,
duplicate elements, or rearrange them. We will try to capture this equation-
ally, just following our nose in using parametricity to see what we end up
at.

We start with

[~ f:Va alist = «a list by parametricity.

Now let R : 7 — 7/ be an admissible relation that’s actually a function. Then
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f ~ f:Rlist — R list by definition of ~.
Using the definition of ~ on function types, we obtain

Foranyl: 7 listandl' : 7 list with | (R list) I’ we have f 1 (R list)

f
By the remark on the interpretation of R list when R is a function, this
becomes

If (map R)1 ~ 1 then (map R) (f1) ~ fU
or, equivalently,

(map R) (f1) ~ [ ((map R)I).

In short, f commutes with map R. This means we can either map R over the
list and then apply f to the result, or we can apply f first and then map R
over the result. This implies that f could not, say, make up a new element vy
not in /. Such an element would occur in the list returned by the right-hand
side, but would occur as R vy on the left-hand side. So if we have a type with
more than one element we can choose R so that R vy # vg (like a constant
function) and the two sides would be different, contradicting the equality
we derived.

We can use this equation of improve efficiency of code. For example,
if we know that f might reduce the number of elements in the list (for
example, skipping every other element), then mapping R over the list after
the elements have been eliminated is more efficient than the other way
around. Conversely, if f may duplicate some elements then it would be
more efficient to map R over the list first and then apply f. The equality we
derived from parametricity allows this kind of optimization.

We have, however, to be careful when nonterminating functions may
be involved. For example, if R diverges on an element v then the two
sides may not be equal. For example, f might drop vg from the list [ so the
right-hand side would diverge while the left-hand side would have a value.

Here are two other similar results provided by Wadler [Wad89].

f:Va. (alist) list — « list
(map R) (f1) = f ((map (map R)) 1)
f :Va. (a — bool) — « list — « list
(map R) (f (Aa.p (Rx))1) = fp((map R)1)
These theorems do not quite come “for free”, but they are fairly straightfor-

ward consequences of parametricity, keeping in mind the requirement of
termination.

LECTURE NOTES OCTOBER 11, 2018



Parametricity L12.9

References

[Har16] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, second edition, April 2016.

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymor-
phism. In R.E.A. Mason, editor, Information Processing 83, pages
513-523. Elsevier, September 1983.

[Wad89] Philip Wadler. Theorem for free! In J. Stoy, editor, Proceedings of the
4th International Conference on Functional Programming Languages
and Computer Architecture (FPCA’89), pages 347-359, London, UK,
September 1989. ACM.

LECTURE NOTES OCTOBER 11, 2018



Lecture Notes on
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15-814: Types and Programming Languages
Frank Pfenning

Lecture 14
October 23, 2018

1 Introduction

Since we have moved from the pure A-calculus to functional programming
languages we have added rich type constructs starting from functions,
disjoint sums, eager and lazy pairs, recursive types, and parametric poly-
morphism. The primary reasons often quoted for such a rich static type
system are discovery of errors before the program is ever executed and the
efficiency of avoiding tagging of runtime values. There is also the value of
the types as documentation and the programming discipline that follows the
prescription of types. Perhaps more important than all of these is the strong
guarantees of data abstraction that the type system affords that are sadly
missing from many other languages. Indeed, this was one of the original
motivation in the development of ML (which stands for MetaLanguage)
by Milner and his collaborators [GMM*78]. They were interested in de-
veloping a theorem prover and wanted to reduce its overall correctness to
the correctness of a trusted core. To this end they specified an abstract type
of theorem on which the only allowed operations are inference rules of the
underlying logic. The connection between abstract types and existential
types was made made Mitchell and Plotkin [MP88].

2 Signatures and Structures
Data abstraction in today’s programming languages is usually enforced

at the level of modules (if it is enforced at all). As a running example we
consider a simple module providing and implementation of numbers with
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constant zero and functions succ and pred. We will consider two implemen-
tations and their relationship. One is using numbers in unary form (type
nat) and numbers in binary form (type bin), and we will eventually prove
that they are logically equivalent. We are making up some syntax (loosely
based on ML), specify interfaces between a library and its client.

Below we name NUM as the signature that describes the interface of a
module.

NUM = ({
type Num
zero : Num
succ : Num —> Num

pred : Num —-> Option Num

}

The function predreturnsa Option Numsince we consider the predecessor
of zero to be undefined. Recall the option type

data Option a = Null | Just a

For the implementations, we use the following types for numbers in unary
and binary representation.

data Nat = Z | S Nat
data Bin = E | BO Bin | Bl Bin

Then we define the first implementation

NAT : NUM = {
type Num = Nat

Il
N

Zero
succ n = S n

pred Z = Null
pred (S n) = Just n
}

An interesting aspect of this definition is that, for example, zero : Nat
while the interface specifies zero : Num. But this is okay because the
type Num is in fact implemented by Nat in this version. Next, we show the
implementation using numbers in binary representation. It is helpful to
have a function map operating on optional values.
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map : (a —-> b) —-> Option a —-> Option b
map £ Null = Null
map f (Just x) = Just (f x)

BIN : NUM = {
type Num = Bin

zero = E

succ 0 x) = Bl x

B
Bl x) = BO (succ Xx)

succ E = Bl E
(
succ (

pred 1 x) = Just (BO x)

pred E = Null
(B
pred (BO x) = map Bl (pred x)

Now what does a client look like? Assume it has an implemention
N : NUM. It can then “open” or “import” this implementation to use its
components, but it will not have any knowledge about the type of the
implementation. For example, we can write

open N : NUM

isZero : Num —-> Bool

isZero x = case pred x
Null => True
Just y => False

but not
open N : NUM

isZero : Num -> Bool

isZero = true type error here: Nat not equal Num

Z %
isZero (S n) = false % and here

because the latter supposes that the library N : NUMimplements the type
Num by Nat, which it may not.
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3 Formalizing Abstract Types

We will write a signature such as

NUM = {
type Num
zero : Num
succ : Num —> Num

pred : Num -> Option Num

}

in abstract form as

Ja. o ®(a— a)® (o — a option)
—~ ~——
zero succ pred

where the name annotations are just explanatory and not part of the syntax.
Note that « stands for Num which is bound here by the existential quantifier,
just as we would expect the scope of Num in the signature to only include
the three specified components.

Now what should an expression

e:3Jda.a® (o0 — a)® (e — a option)

look like? It should provide a concrete type (such as nat or bin) for «, as
well as an implementation of the three functions. We obtain this with the

following rule
AFotype A;TFe:lo/alr

AT F(o,e): Ja.T

(I-3)

Besides checking that o is indeed a type with respect to all the type variables
declared in A, the crucial aspect of this rule is that the implementation e is
at type [o/a]T.

For example, to check that zero, succ, and pred are well-typed we substi-
tute the implementation type for Num (namely Nat in one case and Bin in
the other case) before proceeding with checking the definitions.

The pair (o, €) is sometimes referred to as a package, which is opened up
by the destructor. This destructor is often called open, but for uniformity
with all analogous cases we’ll write is as a case.

Types 7 = ...|3a.T
Expressions e == ...|(o,e)|casee {(a,z) =€}
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The elimination form provides a new name « for the implementation types
and a new variable z for the (eager) pair making up the implementations.

A;Tke:3a.7 Ajatype;T,z:7ke 7

A;TFcasee {{a,x) =€} 7

(E-3)

The fact that the type ow must be new is implicit in the rule in the convention
that A may not contain an repeated variables. If we happened to have used
the name o before then we can just rename it and then apply the rule. It is
crucial for data abstraction that this variable a is new because we cannot
and should not be able to assume anything about what a might stand for,
except the operations that might be exposed in 7 and are accessible via the
name x. Among other things, a may not appear in 7.

To be a little more explicit about this (because it is critical here), whenever
we write A ; I' F e : 7 we make the following presuppositions:

1. All the type variables in A are distinct.
2. All the variables in I' are distinct.

3. AFT7itypeforall x; : 7; € T.

4. AT type.

Whenever we write a rule we assume this presuppositions holds for the
conclusion and we have to make sure they hold for all the premises. Let’s
look at (E-3) again in this light.

1. We assume all variables in A are distinct, which also means they are
distinct in the first premise. In the second premise they are distinct
because that’s how we interpret A, a type, which may include an
implicit renaming of the type variable a bound in the the expression
(a,z) = €.

2. Similarly for the context I', where the freshness of x might be achieved
by renaming it before applying the rule.

3. By assumption (from the conclusion), every free type variable in T’
appears in A. But what about 7? Strictly speaking, perhaps we should
have a premise that A, o type - 7 type but that’s usually elided, im-
plied by adding z : 7 to the context I'.
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4. By assumption (from the conclusion), A - 7/ type. This covers the
second premise. Often, this rule is given with an explicit premise
A+ 7' type to emphasize 7’ must be independent of a. Indeed, the
scope of « is the type of x and €.

We also see that the client €’ is parametric in o, which means that it cannot
depend on what o might actually be at runtime. It is this parametricity
that will allow us to swap one implementation out for another without
affecting the client as long as the two implementations are equivalent in an
appropriate sense.

The operational rules are straightforward and not very interesting.

v val (V-3)
(o,v) val /
/ ep — €
7 (cr13) A , (CE-3)
(o,e) — (o,€) case ¢y {(a,x) = €1} — case ¢; {(a, z) = e}

(R-3)
case (0,v) {(a,z) = e} — [0/, v/z]e

4 Logical Equality for Existential Types

We extend our definition of logical equivalence to handle the case of exis-
tential types. Following the previous pattern for parametric polymorphism,
we cannot talk about arbitrary instances of the existential type, but we must
instantiate it with a relation that is closed under Kleene equality.

Recall from Lecture 12:

(V) e ~ € : Va7 iff for all closed types o and ¢’ and admissible relations
R:0 <+ o'wehavee ~ ¢ : [R/a|T

(R) e~¢é :Rwithe: 7,/ :7"and R: 7 & 7'iffe R €.
We add

(D e~e€ :3a.Tiffe ~ (0,e) and € ~ (0, ¢)) for some closed types o, o’
and expressions ey, ¢, and there is an admissible relation R : ¢ > ¢’
such that eg ~ ¢f, : [R/a]T.

In our example, we ask if

NAT ~ BIN : NUM
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which unfolds into demonstrating that there is a relation R : nat <+ bin such
that

(Z,(S,pred,)) ~ (E, (succy, pred,)) : R® (R — R) ® (R — R option)

Here we have disambiguated the occurrences of the successor and predeces-
sor function as operating on type nat or bin.

Since logical equality at type 71 ® T just decomposes into logical equality
at the component types, this just decomposes into three properties we need
to check. The key step is to define the correct relation R.

5 Defining a Relation Between Implementations

R : nat < bin needs to relate natural numbers in two different representa-
tions. It is convenient and general to define such relations by using inference
rules.

Once we have made this decision, the relation could be based on the
structure of n : nat or on the structure of = : bin. The former may run into
difficulties because each number actually corresponds to infinitely many
numbers in binary form: just add leading zeros that do not contribute to its
value. Therefore, we define it based on the binary representation. In order
to define it, we use a function dbl on unary numbers.

dbl : Nat -> Nat

dbl 2 = 27
dbl (S n) = S (S (dbl n))
R, n Rz Ry nRx R
ZRE (dbln) R (By x) S (dbln) R (B x)

6 Verifying the Relation

Because our signature exposes three constants, we now have to check three
properties.

Lemmal Z ~F: R

Proof: By definition Z ~ E : R is equivalent to Z R E, which follows
immediately from rule R.. O
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Lemma2 S ~ succ, : R — R.

Proof: By definition of logical equality, this is equivalent to showing
For all n : nat, x : bin with n R x we have (S n) R (succy =) : R.

Since R is defined inductively by a collection of inference rules, the natural
attempt is to prove this by rule induction on the given relation, namely
n R x.

Case: Rule

€

Z RE

withn = Z and x = E. We have to show that (Sn) R (succ x)
(abbreviating now succy, as succ).

ZRE By rule R,
(SdblZ)) R (B E) By rule R;
(SZ) R (B1E) Since dbl Z ~ Z
(SZ) R (succ E) Since succ £ ~ By Z
(Sn) R (succx) Sincen=Zandz =F

This proof is most likely discovered and should perhaps be read start-
ing with the last line and going upwards.

Case: Rule
n' R

(dbln') R (By )

where n = dbl n’ and x = By 2’. We have to show that (Sn) R (succ x).
Again, you may want to read the proof below starting at the bottom.

0

n' R’ Premise in this case
(S (dbln')) R (By «) By rule R;
(S (dbln')) R (succ (Bo x')) Since succ (By ') ~ By o’
(Sn) R (succ x) Since n = dbl n’ and v = By 2’
Case: Rule ' B o
n' Rz R

S (dbln') R (By 2')

where n = S (dbl n’) and = B; z’. We have to show that (Sn) R
(succ x). Again, you may want to read the proof below starting at the
bottom.
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n' R '
S n') R (succ ')

dbl (Sn')) R (By (succ z'))
(By (succ x'))
(succ (By ')

(
(

(S (S (dbl n')) R
(S (S

(

S (S (dbl n'))) R
Sn) R (succ x)

Premise in this case
By induction hypothesis

By rule Ry

Since dbl (S n') ~ S (S (dbl n'))
Since succ (By z') ~ By (succ x )
Since n = S (dbl n') and x = B; o’
O

In order to prove the relation between the implementation of the prede-
cessor function we should explicitly write out the interpretation of 7 option.

(r option) e ~ ¢’ : 7 option iff either ¢ ~ null and ¢’ ~ null or ¢ ~ just ¢;

and ¢ ~ just ¢) and e; ~ €] : T

Lemma 3 pred, ~ pred, : R — R option

Proof: By definition of logical equality, this is equivalent to show

Forall n : nat, x : bin with n R x we have either (i) pred, n ~ null
and pred, x ~ null or (ii) pred, n ~ just n' and pred, x ~ just 2’

andn' R z'.

This can now be proven by rule induction on the given relation, with a

slightly more complicated argument.

Case: Rule

€

withn = Z and x = E. Then pred, Z = null = pred, E.

Case: Rule

where n = dbl n’ and x = By 2'.

n Ra'

Either pred, n' = null = pred, 2’

(dbln') R (Bp «')

Premise in this case

or pred, n’ = just n” and pred, 2’ = just 2" withn” R 2"

pred, n' = null = pred, '
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n' =2z By inversion on the defn. of pred ,
pred, (dbl n') = pred, Z = null By definition of pred,,
pred, x = pred, (Bo x') = map By (pred, x')

= map By null = null By definition of pred,

pred, n' = just n” and pred, 2’ = just 2" and n"” R 2"
Second subcase

n=Sn" By inversion on the definition of pred,,
pred, (dbl n') = pred (S (S (dbl n")))

= just (S (dbl n")) By definition of pred,,
pred, (Bo «') = map By (pred, «')

= map By (just 2”’) = just (B 2”) By definition of pred,
(S (dbln")) R (By ) By rule R;

Case: Rule
n' R

S (dbln') R (B; ')
wheren = S (dbl n') and z = B; «'.

pred, n = pred, (S (dbln')) = just (dbl n’) By defn. of pred,,
pred, x = pred, (B, «') = just (By ') By defn. of pred,
(dbln') R (Bg x') By rule Ry

O

7 The Upshot

Because the two implementations are logically equal we can replace one
implementation by the other without changing any client’s behavior. This is
because all clients are parametric, so their behavior does not depend on the
library’s implementation.

It may seem strange that this is possible because we have picked a
particular relation to make this proof work. Let us reexamine the (E-3) rule:

A;The:3a.7 Aatype;T,z:7ke 7

E-3
A; Tt casee {(a,z) =€} : 7 (E-3)

In the second premise we see that the client ¢’ is checked with a fresh type «
and z : 7 which may mention «. if we reify this into a function, we find

Me.e Na.m =1
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where 7’ does not depend on «.

By Reynolds’s parametricity theorem we know that this function is
parametric. This can now be applied for any ¢ and ¢’ and relation R : o <> o’
to conclude that if vy ~ vf, : [R/a]7 then [vy/z]e’ ~ [v)/z]e’ : [R/a]T’. But «
does not occur in 7/, so this is just saying that [vy/x]e’ ~ [v)/x]e’ : /. So the
result of substituting the two different implementations is equivalent.
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Lecture Notes on
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15-814: Types and Programming Languages
Frank Pfenning

Lecture 15
October 25, 2018

1 Introduction

After examining an exceedingly pure, but universal notion of computation
in the A-calculus, we have been building up an increasingly expressive
language including recursive types, universal types (parametric polymor-
phism), and existential types (abstract types). The standard theorems to
validate the statics and dynamics are progress and preservation, relying
also on canonical forms. The pinnacle of this development is Reynolds’s
parametricity theorem that ensures data abstraction for implementations of
libraries using existential types. We have also seen that the supposed oppo-
sition of dynamic and static typing is instead just a reflection of breadth of
properties we would like to enforce statically, and the supposed opposition
of eager (strict) and lazy constructors is just a question of which types we
choose to include in our language.

At this point we turn our attention to defining the dynamics of the
constructs at a lower level of abstraction that we have done so far. This
introduces some complexity in what we call “dynamic artifacts”, that is,
objects beyond the source expressions that help us describe how programs
execute. In this lecture, we show the K machine in which a stack is made
explicit. This stack can also be seen as a continuation, capturing everything
that remains to be done after the current expression has been evaluated. At
the end of the lecture we show an elegant high-level implementation of the
K'machine in Haskell.
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2 Introducing the K Machine

Let’s review the dynamics of functions.

(V)
Ax. e val
e1 €} vy val ey €
——  (CE-—) (CE-—9)
6162'—>6,162 U162'—>2}16/2
(R-—)

(Az. €]) vy — [ve/x]€]

The rule (CE-—1) and (CE-—3) are congruence rules: they descend into an
expression e in order to find a redex, (Ax. €]) v2 in this case. The reduction
rule (R-—) is the “actual” computation, which takes place when a constructor
(here: A-abstraction) is met by a destructor (here: application).

The rules for all other forms of expression follow the same pattern. The
definition of a value of the given type guides which congruence rules are
required. Overall, the preservation and progress theorems verify that a
particular set of rules for a type constructor was defined coherently.

In a multistep computation

epr> €1~ e ey =V

each expression e; represents the whole program and v its final value. This
makes the dynamics economical: only expressions are required when defin-
ing it. But a straightforward implementation would have to test whether
expressions are values, and also find the place where the next reduction
should take place by traversing the expression using congruence rules.

It would be a little bit closer to an implementation if we could keep track
where in a large program we currently compute. The key idea needed to
make this work is to also remember what we still have to do after we are done
evaluating the current expression. This is the role of a continuation (read: “how
we continue after this”). In the particular abstract machine we present, the
continuation is organized as a stack, which appears to be a natural data
structure to represent the continuation.

The machine has two different forms of states

k> e evaluate e with continuation &
k <v return value v to continuation k&
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In the second form, we will always have v val. We call this an invariant or
presupposition and we have to verify that all transition rules of the abstract
machine preserve this invariant.

As for continuations, we’ll have to see what we need as we develop the
dynamics of the machine. For now, we only know that we will need an
initial continuation or empty stack, written as e.

Continuations k == ¢€|...
In order to evaluate an expression, we start the machine with
ede
and we expect that it transitions to a final state
€4

if and only if e —* v. Actually, we can immediately generalize this: no
matter what the continuation k, we want evaluation of e return the value of
e to k:

For any continuation k, expression e and value v,
kve—*k<av iff e="v

We should keep this in mind as we are developing the rules for the K
machine.

3 Evaluating Functions

Just as for the usual dynamics, the transitions of the machine are organized
by type. We begin with functions. An expression Az. e is a value. Therefore,
it is immediately returned to the continuation.

k>dr.e — k<dlr.e

It is immediate that the theorem we have in mind about the machine is
satisfied by this transition.

How do we evaluate an application e; eo? We start by evaluating e; until
it is a value, then we evaluate e3, and then we perform a S-reduction. When
we evaluate ¢; we have to remember what remains to be done. We do this
with the continuation

(_e2)
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which has a blank in place of the expression that is currently being evaluated.
We push this onto the stack, because once this continuation has done its
work, we still need to do whatever remains after that.

kD€162 — ko(_eg)l>€1

When the evaluation of e; returns a value v; to the continuation & o (_ e2)
we evaluate e; next, remembering we have to pass the result to v;.

ko(_e)<vy — ko(vi_)>es

Finally, when the value v; of e is returned to this continuation we can carry
out the S-reduction, substituting v for the formal parameter z in the body €}
of the function. The result is an expression that we then proceed to evaluate.

ko((A\x.e)) _)<ave — kb [va/xle]
The continuation for [v2/z]e] is the original continuation of the application,

because the ultimate value of the application is the ultimate value of [ve/z]€].
Summarizing the rules pertaining to functions:

kE > Mr.e — k < MAr.e
k > €1 €9 — ko (_ 62) > er
ko (_ 62) <4 v — ko (Ul _) > e
Eo((Ax.€)) ) < v > E > [ve/x]e}
And the continuations required:
Continuations k£ = ¢

| ko(_62)|ko(v1_)

4 A Small Example

Let’s run the machine through a small example,
(Az. Ay.x) v1) vo
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for some arbitrary values v; and vs.

e > ((Az. \y.x)vr) vy
— eo(_wve) > (Ax.A\y.z)v;
> eo(_wv)o(_v) > Az \y.x
— eo(_wv9)o(_v1) < Ar.Ay.x
= eo(_wva)o((Az.Ay.z) ) > 0
=t eo(Cu)o (e gx) ) 4 v
— eo(_v9) > Ay.up
— €o(_v2) < Ay.up
— eo((A\y.v1) ) > wy
—* eo((A\y.v1) ) < wy
— €E D> U1
—* € 4 11

If v and vy are functions, then the multistep transitions based on our desired
correctness theorem are just a single step each.

We can see that the steps are quite small, but that the machine works as
expected. We also see that some values (such as v;) appear to be evaluated
more than once. A further improvement of the machine would be to mark
values so that they are not evaluated again.

5 Eager Pairs

Functions are lazy in the sense that the body of a A-abstraction is not eval-
uated, even in a call-by-value language. As another example we consider
eager pairs 71 ® 7. Recall the rules:

v1 val v val
— (V-®)
<'l)1, 'U2> val

e €} vy val ey €l
(CI-®) (CI-®2)
(e1,e2) — (e, e2) (v1,e2) = (v1,e3)

ey — €

/ (CE-®)
case ey {(z1,x2) = e} > case ¢ {(z1,22) = €}

v1 val v val

(R-®)
case (v, v2) {(x1,22) = e} — [v1/21,v2/x2]e
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We develop the rules in a similar way. Evaluation of a pair begins by
evaluating the first component.

k> (e1,e2) — ko{_,e2)>e;
When the value is returned, we start with the second component.
ko(_,es) vy +— ko(vy,_)b>ey

When the second value is returned, we can immediately form the pair (a
new value) and return it to the continuation further up the stack.

k‘o<1)1,_><11}2 — k<1<1)1,112>
For a case expression, we need to evaluate the subject of the case.
k> case eg {(r1,22) = e} — kocase_ {{x1,22) = e} > ey

When e has been evaluated, a pair should be returned to this continuation,
and we can carry out the reduction and continue with evaluating e after
substitution.

kocase _ {(x1,x2) = e} < (v1,v2) +— k> [vi/x1,v2/x0]€

To summarize:

k> <€1,€2> — ko <_, 62> > ep
ko<_,€2><1’l)1 — ko(vl,_>l>62
ko(vy, )<wvy +  k<(v,ve)
k> case ep {(r1,22) = e} +— kocase_ {{x1,72) = e} > ey
kocase _ {(x1,z2) = e} < (v1,v2) +— k> [vi/x1,v2/0]e
Continuations k£ == ¢
| ko(_eg)|ko(v_) (=)
|

ko(_,es)|ko(vy, ) |kocase_ {{(r1,22) = e} (®)

6 Correctness of the K Machine

Given the relatively simple construction of the machine it is surprisingly
tricky to prove its correctness. We refer to the textbook [Har16, Chapter 28]
for a complete formal development. We already cited the key property

For any continuation k, expression e and value v,
kve—*kav iff e—*v
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This implies that k£ > v —* k < v because v —* v.

A key step in the proof is to find a relation between expressions and
machine states k > e and k < v. In this case we actually define this relation
as a function that unravels the state back into an expression. As stated in
the property above, the state k > e expects the value of e being passed to k.
When we unravel the state we don’t wait for evaluation finish, but we just
substitute expression e back into k. Consider, for example,

k>6162 — ko(_eg)Dq

If we plug e; into the hole of the continuation (_ e2) we recover e; e, which
we can then pass to k.

We write k 1 e = € for the operation of reconstituting an expression
from the state k > e or k < e (ignoring the additional information that e is a
value in the second case). We define this inductively over the structure of k.
First, when the stack is empty we just take the expression.

eEXle =¢

Otherwise, we plug the expression into the frame on top of the stack (which
is the rightmost part of the continuation), and then recursively plug the
result into the remaining contintuation.

e e = e

k:o(_eg)bqel = k?[><1€162

ko(vl_)meg = kNUleg

ko <_, 62> X e = kx <€1,62>
ko<1}1,_>l><162 = kl><l<111,€2>
kocase _ {(x1,22) = e} ey = kocaseeg{(r,r2) = e}

We now observe that the rules of the K machine that decompose an expres-
sion leave the unravelling of a state unchanged.

Wewritee Rsife=kx fwhens=kp> fore=kxtvwhens==k<aw.
This relation R between is' a bisimulation in the sense that

(i) If e — ¢ and e R s then there exists an s’ with ¢’ R s’ and s —* §'.
(ii) If s — s’ and s R e then there exists an ¢’ with s’ R ¢/ and e —* ¢’

This form of relationship is often displayed in pictorial form, where solid
lines denote given relationship and dashed lines denote relationship whose

'we conjecture, but have not proved
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existence is to be proved. In this case we might display the two properties
as

These are generic pictures for relation R to be a weak bisimulation, where
“weak” indicates that the side simulating a one-step transition may take
many steps (including none at all).

7 Typing the K Machine

In general, it is informative to maintain static typing to the extent possible
when we transform the dynamics. If there is a new language involved we
might say we have a typed intermediate language, but even if in the case of the
K machine where we still evaluate expressions and just add continuations,
we still want to maintain typing.

We type a continuation as receiving a value of type 7 and eventually
producing the final answer for the whole program of type o. That is, k +
7 = o. Continuations are always closed, so there is no context I" of free
variables. We use a different symbol + for typing and = for the functional
interpretation of the continuation so there is no confusion with the usual
notation.

The easiest case is

€ETT =T

since the empty continuation ¢ immediately produces the value that it is
passed as the final value of the computation.

We consider k o (_ e3) in some detail. This is a continuation that takes a
value of type 7 — 71 and applies it to an expression es : 2. The resulting
value is passed to the remaining continuation k. The final answer type of
ko (_e2) and k are the same 0. Writing this out in the form of an inference

rule:
k—-m=0 -Fey:m

ko(_ey)+~(ro—m)=0

The order in which we develop this rule is important: when designing or
recalling such rules yourself we strongly recommend you fill in the various
judgments and types incrementally, as we did in lecture.
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The other function-related continuations follows a similar pattern. We

arrive at
k~mm=>0 ‘Fvi:m—omn 1)17)611

k‘O(’Ul_)+7'2:>U

Pairs follow a similar pattern and we just show the rules.

E-(memn) =0 -Fe:n E+-(m®mn)=0 -Fv:m v oal

ko(_,ex)+~711 =0 ko(v, )+m=o0

k-7 =0 x1:7m,20:0F€e 7

kocase _ {{x1,20) =€} - (MmO m) =0

With these rules, we can state preservation and progress theorems for the K
machine, but their formulation and proof entirely follow previous develop-
ments so we elide them here.

8 Implementing the K Machine

The K machine can be extended to encompass all the type constructors we
have introduced so far. Both statics and dynamics (almost) write themselves,
following the same ideas we have presented in this lecture. During lecture,
we also live-coded an elegant implementation of the K-machine, adding the
unit type 1 for good measure.

The first question is how to implement the source expressions. We use a
deep embedding in the sense that both constructors and destructors of each
type have an explicit representation. But we nevertheless use functions in
the metalanguage to represent bound variables together with their scope
in the object language, a technique called higher-order abstract syntax. In the
textbook, at the level of mathematical discourse, expressions with bindings
are represented as abstract binding trees.

In Haskell, we write

data E = Lam (E -> E)
| App E E
| Pair E E
| CasePair E (E —> E -> E)
| Unit
|

CaseUnit E E
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Note that A-abstraction binds one variable and the case construct over pairs
binds two.

The second question is how we represent the continuation stack. The
idea suggested by the analysis in the previous section is that the continuation
stack itself might be represented as a function. We represent k > e by eval e k
and k < v by retn v k. Writing the continuation as a second argument aids in
the readability of the code.

eval :: E -—> (E —> E) —> E
retn :: E —> (E —> E) —> E

Now we transcribe the rules. For example,
k>Adr.e — k<alr.e

Since a A-expression is a value, evaluating it immediately returns it to the
continuation. This becomes

eval (Lam f) k = retn (Lam f) k

Also, returning a value to a continuation simply applies the continuation
(which is a function) to the value.

retn v k = k v

Application e; e is a bit more complicated. First, we evaluate e, returning
its value to the continuation.

eval (RApp el e2) k = eval el (\vl -> ...)

The continuation (here . . .) that expects v; has to evaluate ez next and pass
its value to a further continuation.

eval (App el e2) k = eval el (\vl -> eval e2 (\v2 —>

Now we have to perform the actual reduction, substituting v» in the body of
the A-expression that is v1. In order to be able to write that, we pattern-match
against a A\-value when we receive v;.

eval (App el e2) k = eval el (\(Lam f) -> eval e2 (\v2 ->

Since the constructor Lam :: (E -> E) -> E,weseethatf :: E -> E.
Applying £ to e2 will effectively substitute e2 into the body of f.

eval (App el e2) k =

eval el (\(Lam f) -> eval e2 (\v2 -> ... (f v2) ...))
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That will result in an expression representing [vs/z]€}, which we need to
evaluate further.

eval (App el e2) k =
eval el (\(Lam f) -> eval e2 (\v2 -> eval (f v2) ...))

Finally, we have to pass the original continuation to this evaluation.

eval (App el e2) k =
eval el (\(Lam f) -> eval e2 (\v2 -> eval (f v2) k))

The remaining cases in evaluation are derived from the transition rules of
the abstract machine in a similar manner. We do not make continuations or
stacks explicit as a data structure, but represent them as functions. We show
the completed code.

data E = Lam (E -> E)
| App E E
| Pair E E
| CasePair E (E —> E —> E)
| Unit
| CaseUnit E E
eval :: E -—> (E -> E) -> E
retn :: E —> (E —> E) —> E
eval (Lam f) k = retn (Lam f) k

eval (RApp el e2) k = eval el (\(Lam f) ->
eval e2 (\v2 —-> eval (f v2) k))

eval (Pair el e2) k = eval el (\vl —>
eval e2 (\v2 -> retn (Pair vl v2) k))
eval (CasePair e f) k = eval e (\(Pair vl v2) —-> eval (f vl v2) k)

eval (Unit) k = retn (Unit) k
eval (CaseUnit e f) k = eval e (\(Unit) -> eval f k)

retn v k = k v

This interpreter can fail with an error because we have not implemented
a type-checker. Such as error could arise because pattern-matching against
(Lam f), (Pair v1 v2),and (Unit) in the cases for App, CasePair,
and CaseUnit may fail to match the value returned if the expression is not
well-typed. Writing a type-checker on this representation is a bit tricky, and
we might discuss it at a future lecture.

A more complete implementation, including fixed points, recursive
types, and sums can be found on the course schedule page.

LECTURE NOTES OCTOBER 25, 2018


http://www.cs.cmu.edu/~fp/courses/15814-f18/lectures/15-kmachine/

L15.12 The K Machine

This form of continuation-passing interpreter has been proposed by
Reynolds [Rey72] as a means of language definition. The K machine can be
seen as a “defunctionalization” of such a higher-order interpreter.
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Modeling Store

15-814: Types and Programming Languages
Frank Pfenning

Lecture 16
October 30, 2018

1 Introduction

The dynamics we have constructed so far treat both expressions and values
as abstract terms, while in an actual machine architecture both expressions
and values need to be stored in memory. In this lecture we introduce a
store, arriving at the S machine. The idea is for the store to hold values. We
leave expressions as terms with binders that we interpret directly. In the next
lecture we’ll look at expressions in (slightly) more detail.

We present the dynamics with store in the form of a substructural opera-
tional semantics [Pfe04, PS09, Sim12]. In this form of presentation the state
is a collection of semantic objects which are rewritten following transition
rules describing the semantics. We can think of them as inference rules, but
unlike our original dynamics they would not have any premises.

2 Semantic Objects in the S Machine

At the heart of the S machine are destinations d (also called addresses) to
hold values in the store. The only operation on them is to generate fresh
ones—in a low-level implementation a system function such as malloc
may be called. We assume the memory at a destination is not initialized
until is written to.

The state of the S machine consists of the following objects:

eval e d. Evaluate expression e, storing the result in destination d. The
destination d here is an address in the store which we assume has been
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allocated with enough memory to hold the value of e.

Icell d c. Cell d has contents c. Because a value (such as a list) may be large,
each cell contains only part of the value, and we use ¢ to describe
what (small) data may be stored in a cell. The exclamation mark ‘!
indicates that cells are persistent, which means the value of a cell can
never change and will be available during the whole remainder of the
computation.

cont d k d'. Continuation k receives a value in destination in d and puts
result into d'.

As before, we will develop the semantics incrementally to see what cells
might contain, and which continuations we might need.

2.1 Unit

Evaluating the unit element immediately just stores it in memory at the
given destination. We write:

eval ()d — lcelld ()

The whole state of the S machine is a whole collection of objects, but we
leave them implicit here because every rule is intended to apply to a subset
of the objects, replacing those matching the left-hand side of the rule by the
right-hand side. More explicit would be

S,eval ()d +— S,lcell d ()

Second, if we have a case over a value of unit element we begin by evaluating
the subject of the case, and remember in the continuation that we are waiting
on this value.

!/

eval (case e {() = €'})d + evaled,contd (case_{{)=¢€})d (dfresh)

Let’s read this. We create a fresh destination d to hold the value of e. The
object cont d (eval _ {() = ¢’}) d’ waits on the destination d before proceed-
ing. Once the cell d holds a value (which must be ()), the continuation must
evaluate ¢/ with destination d'.

Icell d (),cont d (case _ {()=¢€'})d +— evaled

In this rule, the persistent !cell object on the left-hand side remains in the
store, even though it is not explicitly mentioned on the right-hand side. The
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continuation on the other hand is ephemeral, that is, it is consumed in the
application of the rule and replaced by the eval object on the right-hand side.

As a simple example, consider the evaluation of case () {() = ()} with
some initial destination dy, showing the whole state each time.

eval (case () {() = ()}) do
eval () di,cont d; (case _ {() = ()}) do (dy fresh)

Icell dy (), contd; (case _ {() = ()}) do
Icell dy (), eval () dy
Icell dy (), !cell dp ()

11117

We see that in the final state the initial destination dy holds the unit value
(). In addition, there is some “junk” in the configuration, namely the cell d;.
This could safely be garbage-collected, although in this lecture we are not
concerned with the definition and process of garbage collection.

In this example it may look like that the two objects that interact in the
rules for continuations have to be next to each other, which is not the case in
general. Even though we tend to write the state of the S machine in a sort-of
canonical order with the store (cell objects) farthest to the left, then the eval
object, if there is one, and then a sequence of continuations (cont objects)
with the most recently created leftmost, this is not technically required.

2.2  Functions

Functions are relatively complex and thereby a good sample for how to
design an abstract machine. A-expressions are values, so the first rule is
straightforward.

eval (Az.e)d +— lcelld (Az.e)

Some sound objection might be raised to this rule, since allocated memory
should have fixed size but the a A-expression may not. In this lecture, we
ask you to suspend this objection; in the next lecture we will present one
way to make this aspect of the S machine more realistic.

As usual in a call-by-value language, an application is evaluated by first
evaluating the function, then the argument, and then perform a 3-reduction.
We will reuse the continuations previously created for this purpose in the K
machine.

eval (e1e2) d +— evalej dy,contd; (_eg)d (d; fresh)
Icell dy ¢1,contdy (_ez) d +— eval ey ds,contds (dy_)d (ds fresh)
Icell dy (Mx.€)),!cell dy ca,cont dy (d1_) d + eval ([de/z]€}) d
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The first two rules should be expected, since they are a a straighforward
rewrite of the K machine’s transition rules. Note that in the second rule
we check that the cell d; holds a value (c;), but we actually do not use the
contents. Nevertheless, this check is necessary to ensure that operation of
the S machine is deterministic: there always is a unique next step, assuming
we start in state

eval e dy

and stop when there are no eval or cont cells left.

The interesting aspect of the last rule is that it we substitute not a value
(as we have done in the dynamics so far, including the K machine), but the
address ds of a value. This necessitates a further rule, namely how to evaluate
a destination! The destination amounts to a reference to the store, so we
have to copy the contents at one address to another. Since we imagine the
size of storage locations to be fixed and small, this is a reasonable operation.

lcelld c,eval dd’ s lcelld ¢

There is an alternative line of thought where we store in the cell d’ not a
copy of the value ¢, but a reference to the value c. Then, of course, we would
have to follow chains of references and rules that need to access the contents
of cells would become more complicated.

Because fixed points are usually used for functions, the simple and
straightforward rule just unrolls the recursion.

eval (fixx.e)d ~— eval ([fixxz.e/x]e) d
In the next lecture we will look at a different semantics for fixed points since

we want to avoid substitution into expressions.

3 A Simple Example

As a simple example, we consider the evaluation of ((Az. Ay.z) 7) 5 with an
initial destination dy. Here, 7 and 5 stand in for values that can be directly
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stored in memory, to simplify the example.

eval ((Az. Ay.z)7)5) do

— eval (Ax. \y.x)7) di,cont dy (_5) do (dy fresh)
— eval (Azx. \y.x) da,cont dy (_7) dy,cont d; (_5) dp (do fresh)
— lcell do (Ax. \y.x),cont dg (_7) dy,cont dy (_5) dy

—  lcell dg (Ax. \y.x),eval 7 ds,cont d3 (da _) di,cont dy (_5) dy (ds3 fresh)
— lcell do (Ax. \y. x),!cell d3 7,cont d3 (d2 _) dy,cont dy (_5) do

— lcell do (Az. Ay. ), Icell d3 7, eval (Ay.ds) di,cont dy (_5) do

— lcell do (Ax. \y. z), cell d3 7, cell dy (Ay.ds),cont dy (_5) dy

— lcell do (Az. Ay. ), Icell ds 7,!cell dy (Ay.ds),eval 5 dy,cont dy (dy _) dy (dy4 fresh)
= lcell do (Ax. \y. x), cell d3 7, !cell dy (A\y.ds),!cell dy 5,cont dy (dy _) dy

—lcell do (Az. Ay. ), Icell ds 7, Icell dy (Ay.d3),!cell dy 5,eval ds dy

= lcell do (Ax. \y. x), Icell d3 7, cell dy (Ay.ds), !cell dy 5, !cell dy 7

4 Eager Pairs

Eager pairs are somewhat similar to functions, but we construct a pair
in memory as soon as the two components are evaluated. An interesting
aspect of the S machine is that we form a new cell containing just a pair of
destinations, indicating where the components of the pair are stored.

eval (e1,ea) d — evalej di,contd; (_,e2)d (dy fresh)
Icell dy ¢1,cont dy (_,e3) d +— eval eg do,cont dy (dy,_) d (do fresh)
Icell dy co, cont do <d1,_> d — lcelld <d1, d2>

In lecture, it was pointed out is might make sense to also check that cell d;
holds a value, with a another persistent !cell d; ¢; on the left-hand side. This
is redundant because in a sequential semantics the continuation (d;,_) only
makes sense if d; already holds a value. The difference between the rules is
therefore just a matter of style.

In the rule for the destructor of eager pairs we perform again a substitu-
tion of destinations in an expression, as already seen for functions.

eval (case e {{x1,29) = €'})d +— evaled,contd (case _ {(z1,22) = €'}) d’
(d fresh)

Icell d (dy,ds2),cont d (case _ {(z1,22) = €'}) d’ +— eval ([d1/z2,ds/x2]e’) d’
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5 Typing the Store

First, a summary of the three types we have considered so far.

Expressions e = x (variables)
| d (destinations)
| Az.el|ejey (—)
| () [casee{() =€} (1)
| (e1,e2) | case e {(x1,12) = €'} (®)
Continuations k == (_e2) | (d1_) (=)
; case _{()=¢€'} (1)

(e2) [ {di, ) | case _{{z1,m2) = €'} (®)

Cell Contents ¢ == ()| (di,d2) | Az.e

From these examples we can readily extrapolate the rest of the S machine.
Continuations haven’t really changed from the K machine except we only
use a small piece at a time and not whole stacks. We just show the possible
cell contents, organized by type, thereby describing the possible shapes of
memory.

Cell Contents ¢ == () (1)
| (di,d2) (®)
| Ld o (4)
| foldd (p)
| lene2) (&)
| Az.e (=)

We assign types to the store by typing each destination and then checking
for consistent usage. We use
Store Typing ¥ = dy:71,...,dy 7Ty

In a store typing, all destinations must be distinct. Notice the difference
to the usual typing context I' that types variables, while X assign types to
destinations. At runtime, we only execute expression without free variables,
but several rules (for example, for function calls) will substitute a destination
for a variable. Therefore, we type expressions with 3,I' - e : 7 with the
additional rule
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while in all other rules we just add ¥ and propagate it from the conclusion
to all premises.

Next we move on to typing objects. For uniformity we write ¥ I~ d : 7 if
d : 7 € ¥. We type each object P with the judgment ¥ - P obj. From this,
the typings are rather straightforward.

YHEd:7 YtFe:T YFEd:7 YFcecuT
Y (eval e d) obj Y (Icell d ¢) obj

YFdi:mm YXFdo:m Y2Hk-1 =1
Y | (cont dy k d2) obj

A state is well-typed with respect to store typing ¥ if each object in it is a
valid object. This form of typing is inadequate in several respects and, in par-
ticular, it does not guarantee progress. An initial state has the form eval e dy
for a destination dy and a final state consists solely of memory cells !cell d; ¢;
(which should include dp). However, a state such as cont dy (dy1,_) dpis a
perfectly valid state for the store typing

do: T ®To,dy :T1,do: T

for any types 71, T2, but cannot make a transition. We may address the
question how to obtain a more precise typing for states of the machine with
store in a later lecture.

We still owe the rules for the contents of the store. They do not present
any difficulty. In the rules for the eager constructs ((C-1), (C-®), (C-+), (C-p))
we refer only directly to the types of other destinations, while for the lazy
ones ((C-&), (C-—)) we have to type the embedded expressions.

Shdin Shds
——— () L 22 ()

Y E() Y E{(di,d2) i1 @712
YHd:7 (i€L) Yhd:[pa.T/a]T
. (C-+) (C-p)
Sthi-d:Yeep(l:m) Y Ffoldd: pa.t
YFei:m XFer:m Yx:mibe:
1:T1 2 Q(C-&) T1 T2 (C)
Y F (e, e2) i & 7o YA e =

6 Concurrency/Parallelism

Both in the K machine and the S machine we ensured that evaluation was
sequential: there was always a unique next step to take. Our dynamics
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formalism is general enough to support parallel or concurrent evaluation.
Consider, for example, an eager pair. We can evaluate the components of
a pair independently, each with a new separate destination. Moreover, we
can immediately fill the destination with a pair so that further computation
can proceed before either component finishes!

eval <61,62> d — lcelld (dl,d2>,eval el dl,eval €9 dg

Recall the rules for the pair destructor.

U

eval (case e {(x1,29) = €'})d +— evaled,contd (case _ {(x1,z2) = €'}) d’

(d fresh)
Icell d (d1,d2),cont d (case _ {(x1,22) = €'}) d'" — eval ([d1/x2,da/x2]e’) d’

We see that the body of the case construct can evaluate as soon as the
cell d has been filled with a pair of destinations, but before either of these
destinations has been filled. This enables a lot of fine-grained parallelism,
so much so, that if we try to do everything in parallel in many programs
there would simply be too many threads of control to execute efficiently.

We also observe that the distinction between eager (or strict) and lazy is
difficult to apply to this situation. Both components of the pair are evaluated,
but we don’t wait for them to finish. If only one component is needed in the
body of the case, the other might not terminate and yet we may have filled
the initial destination dj.

We may return to a closer examination of a language supporting paral-
lelism or concurrency in a future lecture.
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Closures

15-814: Types and Programming Languages
Frank Pfenning
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1 Introduction

In the S machine, we still freely substitute into expressions, which goes
somewhat against the idea that expressions should be compiled. Also,
we directly store expressions in memory cells, even though their space
requirements are not clear and not small.

In this lecture we first review the S machine and then update it to avoid
substitution into expressions. Instead we construct environments to hold the
bindings for the variables in an expression and then closures to pair up an
environment with an expression as a closed value.

2 Semantic Objects in the S Machine

We briefly summarize the S machine from the previous lecture. At its core
are destinations d (also called addresses) to hold values in the store. The only
operation on them is to generate fresh ones. The state of the S machine
consists of the following objects:

eval e d. Evaluate expression e, storing the result in destination d.

Icell d c. Cell d has contents c. The exclamation mark ‘! indicates that cells
are persistent, which means the value of a cell can never change and
will be available during the whole remainder of the computation.

cont d k d’. Continuation k receives a value in destination in d and puts
result into d'.
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Closures

First, a summary of the three types we have considered so far.

Expressions e = T (variables)
| d (destinations)
| Az.el|erer (—)
| () |casee{() =€} (1)
| (e1,e2) | case e {(x1,12) = €'} (®)
Continuations k == (_e2) | (d1_) (=)
; case _{()=¢€'} (1)

(e2) [ {di, ) | case _{(z1,72) = €'} (®)
Cell Contents ¢ == ()| (di,d2) | Az.e
From these examples we can readily extrapolate the rest of the S machine. We

just show the possible cell contents, organized by type, thereby describing
the possible shapes of memory.

Cell Contents ¢ == () (1)
| (di,d2) (®)
| 4-d (+)
| foldd (p)
| e e2) (&)
|  Az.e (=)

We assign types to the store by typing each destination and then checking
for consistent usage. We use

Store Typing X = dy:71,...,dy 7Ty
where all the destinations d; are distinct. We type semantics objects as

YFd:Tt YFe:T
Y F (eval e d) obj

YFd:T YFcuT
Y F (Icell d ¢) obj

YFdi:mm YbFdo:m YHk+-m=m1
Y F (cont dy k d2) obj
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and the contents of cells with the following rules:

Skdi:n Shdo:m

—— (C-1) (C-®)

SE() 1 Yk (di,da) : 11 @ T2

YXFd:r (iel) Yhd:[pa.t/alT

: (C-+) (C-p)
Sthi-d:Yeep(l:m) Y Ffoldd: pa.t
YFei:m XhFer:m Yx:Tmibe:

Ln SRENTHS A (e,
Y F (e, e2) i & 1o YFM.enm =1

The dynamics is given with the following rules:

lcelld c,eval d d’ +— lcell d' ¢

eval () d — lcelld ()
eval (casee {() = ¢€'})d +— evaled,contd (case _{()=¢'})d (dfresh)
Icell d (),contd (case _{()=¢€'})d — evaled

eval (Az.e)d +— lcelld (\z.e)

eval (e1e2) d +— evalej dj,contd; (_eg)d (dy fresh)

Icell dy c1,contdy (_ez) d +— evales do,contdy (dy_) d (do fresh)
Icell di (Ax.¢€)),!cell dg ca,cont dy (di ) d +— eval ([d2/z]€)) d

eval (e1,ea) d — evalej di,contd; (_,es)d (dy fresh)

Icell dy ¢1,cont dy (_,ea) d +— eval eg do,cont dy (dy,_) d (dg fresh)

Icell dy co, cont do <d1,_> d — lcelld <d1, d2>

eval (case e {(x1,29) = €'})d +— evaled,contd (case _ {(z1,22) = €'}) d’
(d fresh)

Icell d (dq,ds2),cont d (case _ {{x1,22) = €'})d +— eval ([di/x2,d2/x2)e") d

eval (fixxz.e)d — eval ([fixx.e/zle) d

3 Environments

For the eager constructs of the language, this representation of values in the
store is adequate, if perhaps consuming a bit too much space. For example,
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the value 1 at destination dy would be

Icell dy (fold dy),
Icell dy (s - d2),
Icell do (fold ds),
Icell d3 (z - dy),
Icell dy ()

Up to a constant factor, this is what one might expect.

However, expressions such as the values Az. e and {e1, ez) are treated not
quite in the way we might envision in a lower-level semantics. Functions
should be compiled to efficient machine code, which is justified in part
by saying that we can not observe their internal forms. Moreover, in the
dynamics of the S machine we substitute destinations into expressions to
obtain new ones that we then evaluate. In a lower-level implementation,
such a substitution is unrealistic. Instead, we compile variables so they
reference the store, either on a stack or in the heap. While we don’t model
this distinction here, we would still like to model that code is essentially
immutable, and the values held in variables are stored in memory.

The first key idea is not to substitute into an expression, but instead
maintain an environment that maps variables to values. In the case of the K
machine, these values would be the same as we had in our original, high-
level semantics. In the case of the S machine, the values are simply store
addresses where the value is represented.

Environments n == di/z1,...,dy/zy

We require that all the variables x; are distinct so that the value of each
variable is uniquely determined. The destinations d; however do not need
to be distinct: it is perfectly possible that two different program variables
contain references to the same storage cell.

Previously we were careful to evaluate only closed expressions. Now
we evaluate expressions in an environment that substitutes destinations for
all of its free variables. Of course, the type of the destination must match
the type of the variables it substitutes for. To ensure this we use the typing
judgment X - 7 : I" defined by the two rules

YXkn:T' YXFd:T
SE(:()  BF(dfa): [Tair)
Now evaluation depends on an environment
YFd:7 YXFn:T T'kFe:7
Y Feval e dobj
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Compared to the S machine in the previous lecture, expressions now no
longer contain destinations, so the typing judgments for expressions reverts
tobe pure, I' - e : 7.

4 Evaluation with Environments

Now we revisit the rules of the S machine in the presence of environments.
Let’s call this new machine the S, machine. Previously we had

lcelld c,eval dd s !celld ¢ (Smachine)

Now, this becomes a rule for variables which must be defined in the environ-
ment
lcell d c,evalnz d + lcelld ¢ (d/z €n)

For functions, we had

eval (Az.e)d +— lcelld (Azx.e) (S machine)

Now we have to pair up the environment with the A-abstraction in order to
form a closure. It is called a closure because it “closes up” the expression e
all of whose free variables are defined in 7.

evaln (Ax.e)d — lcelld (n,A\x.¢e)

For an application e; ea we have to evaluate e;, but we also have to remem-
ber the environment in which e; makes sense. In a another implementation,
this might be captured in an environment stack. Here, we just keep track of
the environment in the continuation, building a temporary closure (7, e2).
After evaluation of ¢; we continue the evaluation of es in the saved environ-
ment.

eval ) (e1e2) d +— evalnep di,contd; (_(n,e2))d (d; fresh)
Icell dy ¢q1,cont dy (_(n,e2)) d +— evalneyda,contds (dy_)d (dofresh)

The most interesting rule is the one where we actually pass the argument to
the function. Previously, we just substituted the address of the argument
value; now we add it to the environment.

Icell dy (n, A\x. €}),!cell dg ca,cont dy (dy _) d + eval (n,ds/z) €] d

It is easy to see that this environment is the correct one. On the left-hand
side, given the store typing ¥, we have

YFn:T and Tk Az.e):7
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for some I" and 7. By inversion, we also have
C,x:mbel:im
with 7 = 7 — 7. Also
YF(n,de/x): (T, : 19)

since X - dy : 79 — 11 and X  dy : 79 from inversion on the continuation
typing.

There is nothing much interesting in the remaining rules, but we will
show those for lazy pairs because they also involve closures precisely be-
cause they are lazy.

eval n (ef) e d — lcelld (n, {ee)yer)
evaln(e-i)d — evalnedi,contd; (_-i)d (d; fresh)
Icell dy (1, {es)yep),contdy (_-i)d — evalne;d

At this point we might ask if we have actually satisfied our goal of
storing only data of fixed size. We imagine that in an implementation the
code is compiled, with variables becoming references into an environment.
Then the expression part of a closure is a pointer to code that in turn expect
to be passed the address of the environment. As such, it is only the size of
the environment which is of variable size. However, it can be predicted at
the time of compilation. In our simple model, it consists of bindings for all
variables that might occur free in e, that is, all variable in I' if e was checked
with I' - e : 7. We can slightly improve on this, keeping only the variables
of I that actually occur free in e. Thus, while the space for different closures
is of different size, we can calculate it at compile time, and it is proportional
to the number of free variables in e.

5 Fixed Points

Fixed points are interesting. The rule of the S machine
eval (fixx.e)d ~— eval ([fixxz.e/x]e) d

(and also the corresponding rule of the K machine) substitutes an expression
for a variable, while all other rules in our call-by-value language just sub-
stitute either values (K machine) or destinations (S machine). Since one of
our goals is to eliminate substitution into expressions, we should change
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this rule somehow. First idea might be to just add the expression to the
environment, but a rule such as

evaln (fixz.e)d — eval (n,(fixz.e)/z)ed 2?7

would add expressions to the environment, upsetting our carefully con-
structed system. In particular, looking up a variable doesn’t necessarily
result in a destination. Perhaps even worse, the expression fix z. e is not
closed, so at the very least we’d have to construct another closure.

eval ) (fixz.e)d — eval (n,(n,fixz.e)/x)ed ?2?

We pursue here a different approach, namely evaluating the body of the
tixed point as if d already held a value!

eval n (fixz.e)d — eval (n,d/z)ed

This upsets another invariant of our semantics so far, namely that any desti-
nation in the environment is defined in the store. This new rule speculates
that d will contain a value by the time e might reference the variable z.
This is not a trivial matter. Consider the expression fix . z in the empty
environment (-).

eval (-) (fixz.x) dy — eval (do/z) z dp
At this point the rule for variables
lcelld c,evalnxd +— lcelld ¢ (d/z €n)

cannot be applied because destination dy does yet hold a value. In other
words, the progress property fails!

This situation can indeed arise in Haskell where it is called a black hole.
It is actually detected at runtime and a “black hole” is reported during
execution. For example,

blackHole :: Int
blackHole = blackHole

main = print blackHole
compiles, but running it reports

black_hole: <<loop>>
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We can imagine how this may be done: when the fixed point is executed
we actually allocate a destination for its value and initialize it with a recog-
nizable value indicating it has not yet been written. We may then modify
the progress theorem to account for a black hole as a third form of outcome
of the computation, besides a value or divergence.

In a call-by-value language there is a different solution: we can restrict
the body of the fixed point expression to be a value, where the fixed point
variable x does not count as a value. We believe! that this guarantees that
the destination of the fixed point will always be defined before the fixed
point variable x is encountered. The revised rule then reads

eval n (fixz.v)d +— eval (n,d/x)vd

where we have to be careful not to count = as a value. Evaluating the
expression v will construct its representation in the store.
As an example, consider the following definition of natural number
streams:
nat (z: 1)+ (s: nat)
zero = fold (z- ())

12

stream ~ nat & stream

Zeros . stream
zeros = fixz.fold (zero, z)

The stream zeros corresponds to a potentially unbounded number of zeros,
computed lazily. We see that fold (zero, z) is a value even if x is not, since
any lazy pair is a value. Starting with the empty environment and initial
destination dy, we evaluate zeros as follows:

eval (+) (fix . fold (zero, z)) dy

eval (dy/z) (fold (zero, z)) dy

eval (do/x) (zero, x| dy,cont d; (fold _) dy (dy fresh)
Icell dy ((do/x), {zero, z)), cont d; (fold _) dy

Icell dy <(d0/x), 4287’0, .%'D>, Icell d() (fOld dl)

11117

At this point we have constructed a store with a circular chain of references:
cell dy contains a reference to di, and d; contains a reference to dj in the

'but have not proven
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environment stored with the closure. If we define

hd : stream — stream
hd = Ms.(unfolds) -1
tl . stream — stream
tI = MAs.(unfolds)-r

we should be able to check that hd zeros returns (a representation of) zero,
while tail zeros returns (a representation of) zeros.

It is a good exercise to check that the ascending function below behaves
as expected, where ascending "n' computes an ascending stream of natural
numbers starting at "n .

succ : nat — nat

succ = An.fold (s n)

ascending : nat — stream

ascending = An.fold (n,ascending (succ n))
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Lecture Notes on
Quotation

15-814: Types and Programming Languages
Frank Pfenning

Lecture 18
November 6, 2018

1 Introduction

One of the features that appear to be more prevalent in dynamically than
statically typed languages is that of quotation and evaluation. In this lecture
we will make sense of quotation type-theoretically and see that as a program-
ming language construct it is closely related to prior work in philosophy on
modal logic aimed at capturing similar phenomena in logical reasoning.

Our concrete aim and underlying intuition is to model runtime code
generation [LL98]. This has actually become a staple of many programming
language implementations in the guise of just-in-time compilation (see, for
example, [KWM™08]). Languages such as Java may be compiled to bytecode,
which is then interpreted during execution. As long as we have interpreters
for various machine architectures, this makes the code portable, but for
efficiency reasons we may still want to compile the bytecode down to actual
machine code “just in time” (essentially: as it runs). In our model, the
programmer (rather than the environment) is in full control over whether
and when code is generated, so it differs in this respect from much of the
work on just-in-time compilation and is more similar to the quote and eval
constructs of languages such as Lisp, Scheme, and Racket.

The approach of using a modal type system [DP01, PD01] has made its
way into statically typed languages such as MetaOCaml [Kis14], although
some of the technical details differ from what we present in this lecture.
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2 A Type for Closed Source Expressions

Early attempts at runtime code generation for functional languages were
based on the simple idea that a curried function such as f : 7 = (172 = o)
could take an argument of type 7; and then generate code for a residual
function f’ : 7 — 0. The problem with this approach was that, often, the
program was written in such a way that the best that could be done is to
generate a closure. Since generating code at runtime is expensive, in many
cases programs would get slower. If we had a closed source expression for
T2 — 0 we would be sure it no longer depended on the argument v; of type
71 and we could generate specialized code for this particular v;.

As a start, let’s capture closed expression of type 7 in a type O7. The
constructor is easy, using box e as the notation for a quoted expression e.

‘Fe:T

—— (I-0)
I'Fboxe:Or

No variables that are declared in I' may appear in e, because we erase it in
the premise.

The elimination rule is difficult. Most immediate attempts will be too
weak to write interesting programs or are unsound. In the end, there seem to
be essentially two approaches [DP01, PD01] that are equivalent in expressive
power. We choose the simpler one, introducing a new kind of variable u
that stands only for source expressions. We generalize our judgment to

U:I'ke:r

where ¥ consists of expression variables u; : 7; and I' consists of value
variables z; : 7;. Then the rule

U:I'Fe:Or Wu:r;0Fe:7

(E-00)
U ;T casee{boxu=¢€}:7

introduces a new expression variable u : T with scope ¢’. The next key insight
is that expression variables may appear under box constructors, because
they will always be bound to source code. We revise our introduction rule:

U, -Fe:rT
VU:T'Fboxe:Or

(I-0)
In the dynamics, every quoted expression is simply a value.

— (V-0)
box e val
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We have to keep in mind, however, that it is different from lazy evaluation
in that e must also be available in source form (at least conceptually, if not
in an actual implementation). While an equivalent-looking lazy expression
(e, ()) : 7 & 1 can only be awakened for evaluation by the left projection, a
quoted expression that be unwrapped and substituted into another quoted
expression.

R-0))

case (box e) {box u = €'} — [e/u]é

We have used a different notation for substitution here to remind ourselves
that we are substituting a source expression for an expression variable,
which may have a very different implementation than substituting a value
for an ordinary value variable.

We also have a standard congruence rule for the elimination construct.

e — €

(CE-D))
case e {box u = €'} — case ¢{ {box u = €'}

3 An Example: Exponentiation

As an example, we consider exponentiation on natural numbers in unary
representation. We allow pattern matching (knowing how it is elaborated
into multiple case expressions) and assume multiplication can be written in
infix notation ey * es.

We define a function pow n b = b", with the exponent as the first argu-
ment since it is defined recursively over this argument.

pow : nat — (nat — nat)

pow Z b = SZ
pow (Sn)b = bxpownb

We would now like to rewrite this code to another function exp such that
exp n returns code to compute b". It’s type should be

exp : nat — O(nat — nat)
The case for n = Z is easy:

exp Z = box (A\b.SZ)
exp (Sn) =
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The case for sucessor, however is tricky. We can not write something of the

form
exp Z = box (Ab. S Z)
exp (Sn) = box (Ab....)

because the value variable n is not available in the scope of the box. Clearly,
though, the result will need to depend on n.

Instead, we make a recursive call to obtain the code for a function that
computes Ab. b".

exp Z = box (A\b.S Z)
exp (Sn) = case (expn) {box u=

}

N——
: O(nat — nat)

Because u is an expression variable we can now employ quotation

exp Z = box (Ab.S5Z)
exp (Sn) = case (expn) {box u = box (

)}

——
: nat — nat

Instead of the recursive call exp n we use u to construct the code we’d like
to return.

exp Z = box (A\b.SZ)
exp (Sn) = case (expn) {box u = box (Ab.b* (ub))}

Let’s consider this code in action by computing exp (S (S Z)). Ideally, we
might want something like

exp (S (S Z))—" Xb.bxb
but let’s compute:

exp (S(SZ)) —* case (exp (S Z)){box u = box (Ab.b= (ub))}
exp (S Z) —* case (exp Z){box u = box (\b.bx (ub))}
exp Z —* box (A\b. S Z)

Substituting back (including some renaming) and continuing computation:

exp (S Z) —* case box (A\by. S Z){box u = box (A\b1.b; * (ub1))}
— box ()\bl. bl * ((Abo SZ) bl))

And one more back-substitution:

LECTURE NOTES NOVEMBER 6, 2018



Quotation L18.5

exp (S(SZ)) —* case (exp (S Z)){box u = box (Aba.ba * (ubs2))}
—* case box (Ab1. by * (Abg. S Z) b1)) {box u = box (Aba. by * (ubs))
— box ()\bg bg * (()\bl bl * (()\bo SZ) bl)) bg))

This is not quite what we had hoped for. But we can perform a simple
optimization, substituting variables for variables (noting that (Az.e)y ~

ly/]e):
exp (S(SZ))—*v withv >~ \bg.by x (by xS Z)

We could eliminate the multiplication by 1 by introducing another case into
the definition of the function

exp Z = box (Ab.SZ)
exp (S Z) = box (Ab.b)
exp (S(Sn)) = -case (exp (Sn)) {box u=box (Ab.b* (ub))}

But the variable for variable reduction is more difficult to eliminate. If we
don’t want to rely on the smarts of the compiler to perform this kind of
inlining, we can further generalize the type U7 to Ur 7 by allowing the free
variables in I' to appear in e : Or 7. This is a subject of contextual modal
types [NPPOS8].

4 Evaluation

We have now seen an example of how we build a complex quoted expression.
But how do we actually run it? For example, how do we compute 52 using
the staged exponential function? We can define

exp) : nat— nat — nat
exp) = An.\b.caseexpn {boxu = ub}

and then pow "27 757" — T257.

We see that the pow function computes the quoted expression of type
O(nat — nat), binds u to the quoted function, and then applies that function.
The way this differs from what we wrote in the definition of exp is that the
expression variable u appears outside another box constructor. It is such
an occurrence that causes the expression to be actually evaluated. In fact,
we can define a polymorphic function (with parentheses in the type for
emphasis):

eval : (Oa) — «
eval = M\z.case z {box u = u}
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Critically, we can not define a (terminating) polymorphic function
quote : o — (Oov)  (impossible)
Intuitively, that’s because we cannot complete
quote = Ax.box ???

because underneath the box operator we cannot mention the value variable
x. We see it is critical that box is a language primitive and not a function. This
mirrors that fact that in modal logic we have an inference rule of necessitation

for an arbitrary proposition A but we cannot prove - A D A.

What else can we write? We can certainly quote a quoted expression.
And we can take a quoted function and a quoted argument and synthesize
a quoted application. We express these functions via pattern matching, but
it should be clear how to decompose this into individual case expressions.

eval : Do — «
eval (box u) = u

quote : o — H0o
quote (box u) = box (box u)

apply : O(a — B) = Oa— OB
apply (box u) (box w) = box (uw)

If we view these types as axioms in a logic

FOADA
FOADOOA
FOAD>B)>DOADOB

then together with the rule of necessitation these are characteristic of the
intuitionistic modal logic S4 [PD01]. This is not an accident and we will
elaborate further on the connection between logics and type systems in the
next lecture.

One limitation: while pattern matching is convenient, we cannot match
against the structure of expressions underneath the box constructor. Al-
lowing this requires yet another big leap (see, for example, the work on

LECTURE NOTES NOVEMBER 6, 2018



Quotation L18.7

Beluga [PC15]). Not being able to do this allows us to implement runtime
code generation efficiently, because we compile a value box e of type O 7
to a code generator for e. Then substitution for expression variables [e/u]e’
composes code generators, and using an expression variable v outside a
box will finally call the code generator then jump to the code it produces
(see, for example, [WLP98]).

5 Lifting

Not all programs can be restaged in the neat way of the exponentiation
function, but there are many examples that work more or less well. Here
are some hinted at that can be found in the literature:

parse : grammar — (I(string — tree option)

The staged version of a parser is a parser generator which takes a grammar
and returns a parsing function from strings to parse trees (when they exist).

momult : matrix — O(vector — vector)

The staged version that multiplies a matrix with a vector returns the source
of a function that embodies the matrix values. This is generally a bad idea
(the code could be very large) unless we know that the matrix is sparse.
For spare matrices, however, it can pay off because we can eliminate multi-
plication by 0 and potentially get code that approximates the efficiency of
specialized code for sparse matrix multiplication.

In general, in these example we sometimes have include observable values
from one stage into the next stage, for example, integers. We recall from
earlier that purely positive types have observable values. Ignoring universal
and existential types, we have

Purely Positive Types 7+ == 1|7 @7 |0|7 +7 | pat. 77 | ot

Also positive, but with a negative type underneath, is (O7~)*. For positive
types, we can define functions by (nested) pattern matching, but not for
negative types (which have the form 7;" — 7, and 7;” & 7, ). We can also
define a family of functions

lift_, :+ vt —=>0Or"

but it would be defined differently for different types 7. In other words,
the [ift function would not be parametric! However, when included as a
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primitive (justified because it is definable at every positive type) we may
be able to rescue some parametricity property. As an example, we consider
lifting natural numbers.

lift, . : nat — O nat
lift, . Z = box 7
lift, .. (Sn) = -caselift, , n{boxu= box (Su)}

It is straightforward but tedious to translate this definition into one using
only the language primitives directly.

References

[DPO1] Rowan Davies and Frank Pfenning. A modal analysis of staged
computation. Journal of the ACM, 48(3):555-604, May 2001.

[Kis14] Oleg Kiselyov. The design and implementation of BER MetaO-
Caml. In M. Codish and E. Sumii, editors, 12th International
Symposium on Functional and Logic Programming (FLOPS 2014),
pages 86—-102. Springer LNCS 8475, 2014.

[KWMT08] Thomas Kotzmann, Christian Wimmer, Hanspeter Mdssenbock,
Thomas Rodriguez, Kenneth Russell, and David Cox. Design

of the java hotspot client compiler for java 6. ACM Transactions
on Architecture and Code Optimization, 5(1):7:1-7:32, May 2008.

[LL98] Mark Leone and Peter Lee. Dynamic specialization in the
Fabius system. Computing Surveys, 30(3es), 1998. Published
electronically.

[NPPO08] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka.
Contextual modal type theory. Transactions on Computational
Logic, 9(3), 2008.

[PC15] Brigitte Pientka and Andrew Cave. Inductive Beluga: Pro-
gramming proofs. In A. Felty and A. Middeldorp, editors, 25th
International Conference on Automated Deduction (CADE 2015),
pages 272-281, Berlin, Germany, August 2015. Springer LNCS
9195.

[PDO01] Frank Pfenning and Rowan Davies. A judgmental reconstruc-
tion of modal logic. Mathematical Structures in Computer Science,

LECTURE NOTES NOVEMBER 6, 2018



Quotation L18.9

11:511-540, 2001. Notes to an invited talk at the Workshop on
Intuitionistic Modal Logics and Applications (IMLA’99), Trento,
Italy, July 1999.

[WLP98]  Philip Wickline, Peter Lee, and Frank Pfenning. Run-time code
generation and modal-ML. In Keith D. Cooper, editor, Pro-
ceedings of the Conference on Programming Language Design and
Implementation (PLDI'98), pages 224-235, Montreal, Canada,
June 1998. ACM Press.

LECTURE NOTES NOVEMBER 6, 2018



Lecture Notes on
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15-814: Types and Programming Languages
Frank Pfenning

Lecture 19
November 8, 2018

1 Introduction

These lecture notes are pieced together from several lectures in an
undergraduate course on Constructive Logic, so they are a bit more
extensive than what we discussed in the lecture.

2 Natural Deduction

The goal of this section is to develop the two principal notions of logic,
namely propositions and proofs. There is no universal agreement about the
proper foundations for these notions. One approach, which has been par-
ticularly successful for applications in computer science, is to understand
the meaning of a proposition by understanding its proofs. In the words of
Martin-Lof [ML96, Page 27]:

The meaning of a proposition is determined by [...] what counts as a
verification of it.

A verification may be understood as a certain kind of proof that only
examines the constituents of a proposition. This is analyzed in greater detail
by Dummett [Dum91] although with less direct connection to computer
science. The system of inference rules that arises from this point of view is
natural deduction, first proposed by Gentzen [Gen35] and studied in depth
by Prawitz [Pra65].
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In this chapter we apply Martin-Lof’s approach, which follows a rich
philosophical tradition, to explain the basic propositional connectives.

We will define the meaning of the usual connectives of propositional
logic (conjunction, implication, disjunction) by rules that allow us to infer
when they should be true, so-called introduction rules. From these, we derive
rules for the use of propositions, so-called elimination rules. The resulting
system of natural deduction is the foundation of intuitionistic logic which has
direct connections to functional programming and logic programming.

3 Judgments and Propositions

The cornerstone of Martin-Lof’s foundation of logic is a clear separation of
the notions of judgment and proposition. A judgment is something we may
know, that is, an object of knowledge. A judgment is evident if we in fact
know it.

We make a judgment such as “it is raining”, because we have evidence for
it. In everyday life, such evidence is often immediate: we may look out the
window and see that it is raining. In logic, we are concerned with situation
where the evidence is indirect: we deduce the judgment by making correct
inferences from other evident judgments. In other words: a judgment is
evident if we have a proof for it.

The most important judgment form in logic is “ A is true”, where A is a
proposition. There are many others that have been studied extensively. For
example, “A is false”, “ A is true at time t” (from temporal logic), “ A is neces-
sarily true” (from modal logic), “program M has type 7" (from programming
languages), etc.

Returning to the first judgment, let us try to explain the meaning of
conjunction. We write A true for the judgment “A is true” (presupposing
that A is a proposition. Given propositions A and B, we can form the
compound proposition “A and B”, written more formally as A A B. But
we have not yet specified what conjunction means, that is, what counts as a
verification of A A B. This is accomplished by the following inference rule:

A true B true
A N B true

Here the name A stands for “conjunction introduction”, since the conjunc-
tion is introduced in the conclusion.

This rule allows us to conclude that A A B true if we already know that
A true and B true. In this inference rule, A and B are schematic variables,
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and Al is the name of the rule. Intuitively, the AI rule says that a proof of
A N B true consists of a proof of A true together with a proof of B true.
The general form of an inference rule is

Ji...o Iy
————— name

where the judgments Ji,. .., J, are called the premises, the judgment J is
called the conclusion. In general, we will use letters J to stand for judgments,
while A, B, and C are reserved for propositions.

We take conjunction introduction as specifying the meaning of A A B
completely. So what can be deduced if we know that A A B is true? By the
above rule, to have a verification for A A B means to have verifications for
A and B. Hence the following two rules are justified:

A N B true A N B true
e — /\El E— /\E2
A true B true

The name AE; stands for “first/left conjunction elimination”, since the
conjunction in the premise has been eliminated in the conclusion. Similarly
AE5 stands for “second /right conjunction elimination”. Intuitively, the AE;
rule says that A true follows if we have a proof of A A B true, because “we
must have had a proof of A true to justify A A B true”.

We will later see what precisely is required in order to guarantee that
the formation, introduction, and elimination rules for a connective fit to-
gether correctly. For now, we will informally argue the correctness of the
elimination rules, as we did for the conjunction elimination rules.

As a second example we consider the proposition “truth” written as
T. Truth should always be true, which means its introduction rule has no
premises.

TI
T true

Consequently, we have no information if we know T true, so there is no
elimination rule.

A conjunction of two propositions is characterized by one introduction
rule with two premises, and two corresponding elimination rules. We may
think of truth as a conjunction of zero propositions. By analogy it should
then have one introduction rule with zero premises, and zero corresponding
elimination rules. This is precisely what we wrote out above.
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4 Hypothetical Judgments

Consider the following derivation, for arbitrary propositions A, B, and C:
AN (BAC) true

B A C true
B true

ANE;

Have we actually proved anything here? At first glance it seems that cannot
be the case: B is an arbitrary proposition; clearly we should not be able to
prove that it is true. Upon closer inspection we see that all inferences are
correct, but the first judgment A A (B A C) true has not been justified. We
can extract the following knowledge:

From the assumption that AN (B A C) is true, we deduce that B must
be true.

This is an example of a hypothetical judgment, and the figure above is an
hypothetical deduction. In general, we may have more than one assumption,
so a hypothetical deduction has the form

Jo Ty
J
where the judgments Ji, ..., J, are unproven assumptions, and the judg-
ment J is the conclusion. All instances of the inference rules are hypothetical
judgments as well (albeit possibly with 0 assumptions if the inference rule
has no premises).

Many mistakes in reasoning arise because dependencies on some hid-
den assumptions are ignored. When we need to be explicit, we will write
Ji,...,Jn | J for the hypothetical judgment which is established by the
hypothetical deduction above. We may refer to Ji, ..., J, as the antecedents
and J as the succedent of the hypothetical judgment. For example, the
hypothetical judgment A A (B A C) true - B true is proved by the above
hypothetical deduction that B true indeed follows from the hypothesis
AN (B A C) true using inference rules.

Substitution Principle for Hypotheses: We can always substitute a

proof for any hypothesis J; to eliminate the assumption. Into the above
hypothetical deduction, a proof of its hypothesis J;

Kl Km
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can be substituted in for J; to obtain the hypothetical deduction
K 1 e K m

J - J; .
J
This hypothetical deduction concludes J from the unproven assumptions
Ji,o o Jic, Koo, Ky Jisa, - - -, Jy and justifies the hypothetical judgment
Tiseo s T, Koo Koy Jit ooy I T

That is, into the hypothetical judgment Ji, ..., J, I J, we can always substi-
tute a derivation of the judgment J; that was used as a hypothesis to obtain
a derivation which no longer depends on the assumption J;. A hypothetical
deduction with 0 assumptions is a proof of its conclusion J.

One has to keep in mind that hypotheses may be used more than once,
or not at all. For example, for arbitrary propositions A and B,

A N B true A A B true
- /\_E2 -
B true A true
B N\ A true

ANEq

can be seen a hypothetical derivation of A A B true - B A A true. Similarly, a
minor variation of the first proof in this section is a hypothetical derivation
for the hypothetical judgment A A (B A C) true - B A A true that uses the
hypothesis twice.

With hypothetical judgments, we can now explain the meaning of im-
plication “A implies B” or “if A then B” (more formally: A D B). The intro-
duction rule reads: A D B is true, if B is true under the assumption that A4 is
true.

u
A true

B true 5
A D B true

The tricky part of this rule is the label v and its bar. If we omit this annotation,

the rule would read
A true

B true
- DO
A D B true
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which would be incorrect: it looks like a derivation of A D B true from the
hypothesis A true. But the assumption A true is introduced in the process
of proving A D B true; the conclusion should not depend on it! Certainly,
whether the implication A D B is true is independent of the question whether
Aitselfis actually true. Therefore we label uses of the assumption with a new
name v, and the corresponding inference which introduced this assumption
into the derivation with the same label w.

The rule makes intuitive sense, a proof justifying A D B true assumes,
hypothetically, the left-hand side of the implication so that A true, and
uses this to show the right-hand side of the implication by proving B true.
The proof of A D B true constructs a proof of B true from the additional
assumption that A true.

As a concrete example, consider the following proof of AD (B D (AAB)).

U w
A true B true

AN B true 5
B D (AN B) true

D
AD(BD(AAB)) true

Note that this derivation is not hypothetical (it does not depend on any
assumptions). The assumption A true labeled u is discharged in the last
inference, and the assumption B true labeled w is discharged in the second-
to-last inference. It is critical that a discharged hypothesis is no longer
available for reasoning, and that all labels introduced in a derivation are
distinct.

Finally, we consider what the elimination rule for implication should
say. By the only introduction rule, having a proof of A D B true means that
we have a hypothetical proof of B true from A true. By the substitution
principle, if we also have a proof of A true then we get a proof of B true.

A D B true A true
B true

DF

This completes the rules concerning implication.

With the rules so far, we can write out proofs of simple properties con-
cerning conjunction and implication. The first expresses that conjunction is
commutative—intuitively, an obvious property.
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— —u
AN B true AN B true
e — s ——— NEj
B true A true A
B N\ A true
DI¥
(AANB)D (BAA)true

When we construct such a derivation, we generally proceed by a com-
bination of bottom-up and top-down reasoning. The next example is a
distributivity law, allowing us to move implications over conjunctions. This
time, we show the partial proofs in each step. Of course, other sequences of

steps in proof constructions are also possible.

(A5 (BAC) > (A4S B)A(ASC)) true

First, we use the implication introduction rule bottom-up.

u

AD (BACQC) true

(ADB)AN(ADC) true
(AD(BAC)D((ADB)N(ADCQ)) true

DI

Next, we use the conjunction introduction rule bottom-up, copying the
available assumptions to both branches in the scope.

u

u
AD(BAC) true AD(BAC) true

AD B true ADC true
(ADB)AN(ADC) true
>
(AD(BAC))D((ADB)AN(ADCQC)) true

u

We now pursue the left branch, again using implication introduction

bottom-up.
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u w
AD(BACQC) true A true

u
AD(BAC) true

B true 5 :
A D B true ADC true
(ADB)AN(ADC) true

(A> (BAC)) > (A B)A(ASC)) true

u

Note that the hypothesis A true is available only in the left branch and
not in the right one: it is discharged at the inference D/". We now switch to
top-down reasoning, taking advantage of implication elimination.

u w
AD(BACQC) true A true

OF
B A C true u
: AD(BAC) true
B true :
— DIV )
A D B true A D C true

(ADB)AN(ADC) true
(A (BAC) 5 (A>B)A(ASC)) true

u

Now we can close the gap in the left-hand side by conjunction elimina-
tion.

u w
AD (BACQC) true A true

OF U
B A C true AD(BAC) true
— AEj
B true :
— DI¥ )
A D B true ADC true

(ADB)AN(ADC) true
(A> (BAC)) > (A> B)A(ASC)) true

U

The right premise of the conjunction introduction can be filled in analo-
gously. We skip the intermediate steps and only show the final derivation.
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u w u v
AD (BACQC) true A true AD(BACQC) true A true

OF OF
B A C true B A C true
— ANE; ———— AEy
B true C true
P — :) w - v
A D B true ADC true

(ADB)AN(ADC) true
(A> (BAC)) > (Ao B)A(ASC)) true

U

5 Disjunction and Falsehood

So far we have explained the meaning of conjunction, truth, and implication.
The disjunction “A or B” (written as A vV B) is more difficult, but does
not require any new judgment forms. Disjunction is characterized by two
introduction rules: A V B is true, if either A or B is true.
A true B true
— VI — Vo
AV B true AV B true

Now it would be incorrect to have an elimination rule such as

AV B true

VE?
A true

because even if we know that A V B is true, we do not know whether the
disjunct A or the disjunct B is true. Concretely, with such a rule we could
derive the truth of every proposition A as follows:

TrI

T true
AV T true

2
VE?
A true

Thus we take a different approach. If we know that A v B is true, we
must consider two cases: A true and B true. If we can prove a conclusion
C true in both cases, then C must be true! Written as an inference rule:

u
A true B true

AV B true C true C true
C true

\/Eu,'w
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If we know that A vV B true then we also know C true, if that follows
both in the case where A VV B true because A is true and in the case where
AV B true because B is true. Note that we use once again the mechanism
of hypothetical judgments. In the proof of the second premise we may use
the assumption A true labeled u, in the proof of the third premise we may
use the assumption B true labeled w. Both are discharged at the disjunction
elimination rule.

Let us justify the conclusion of this rule more explicitly. By the first
premise we know A V B true. The premises of the two possible introduction
rules are A true and B true. In case A true we conclude C true by the
substitution principle and the second premise: we substitute the proof of
A true for any use of the assumption labeled v in the hypothetical derivation.
The case for B true is symmetric, using the hypothetical derivation in the
third premise.

Because of the complex nature of the elimination rule, reasoning with
disjunction is more difficult than with implication and conjunction. As a
simple example, we prove the commutativity of disjunction.

(AVv B) D (BVA)true

We begin with an implication introduction.
_—
AV B true

BV A true 5
(AV B) D (BVA) true

u

At this point we cannot use either of the two disjunction introduction
rules. The problem is that neither B nor A follow from our assumption
AV B! So first we need to distinguish the two cases via the rule of disjunction
elimination.

v
A true B true

w

U : :
AV B true BV Atrue BV Atrue
BV A true
oI
(AVv B)D(BVA)true

\/E’U,w

u

The assumption labeled w is still available for each of the two proof obliga-
tions, but we have omitted it, since it is no longer needed.
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Now each gap can be filled in directly by the two disjunction introduction
rules.

v w
A true B true
U Vlp —— VI
AV B true BV A true BV A true
vV EvW
BV A true

u

DI
(AV B)D (BVA) true

This concludes the discussion of disjunction. Falsehood (written as L,
sometimes called absurdity) is a proposition that should have no proof!
Therefore there are no introduction rules.

Since there cannot be a proof of L true, it is sound to conclude the truth
of any arbitrary proposition if we know _L true. This justifies the elimination

rule
1 true

C true

We can also think of falsehood as a disjunction between zero alternatives.
By analogy with the binary disjunction, we therefore have zero introduction
rules, and an elimination rule in which we have to consider zero cases. This
is precisely the L F rule above.

From this is might seem that falsehood it useless: we can never prove it.
This is correct, except that we might reason from contradictory hypotheses!
We will see some examples when we discuss negation, since we may think
of the proposition “not A” (written ~A) as A D L. In other words, —A is true
precisely if the assumption A true is contradictory because we could derive
L true.

6 Summary of Natural Deduction

The judgments, propositions, and inference rules we have defined so far col-
lectively form a system of natural deduction. It is a minor variant of a system
introduced by Gentzen [Gen35] and studied in depth by Prawitz [Pra65].
One of Gentzen’s main motivations was to devise rules that model math-
ematical reasoning as directly as possible, although clearly in much more
detail than in a typical mathematical argument.

The specific interpretation of the truth judgment underlying these rules
is intuitionistic or constructive. This differs from the classical or Boolean in-
terpretation of truth. For example, classical logic accepts the proposition
AV (A D B) as true for arbitrary A and B, although in the system we have
presented so far this would have no proof. Classical logic is based on the
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Introduction Rules Elimination Rules
A true B true A N B true A N B true
— AJ —— NEy ———— AEy
A N B true A true B true
TI
T true no TE rule
u
A true
B true " A D Btrue A true
- DO
A D B true B true

u w
A true B true

A true B true AV B true C true C true
— V[ —— VI, V Fusw
AV B true AV B true C true
1 true
no LI rule C true

Figure 1: Rules for intuitionistic natural deduction

principle that every proposition must be true or false. If we distinguish
these cases we see that A V (A D B) should be accepted, because in case
that A is true, the left disjunct holds; in case A is false, the right disjunct
holds. In contrast, intuitionistic logic is based on explicit evidence, and
evidence for a disjunction requires evidence for one of the disjuncts. We will
return to classical logic and its relationship to intuitionistic logic later; for
now our reasoning remains intuitionistic since, as we will see, it has a direct
connection to functional computation, which classical logic lacks.

We summarize the rules of inference for the truth judgment introduced
so far in Figure 1.
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7 Propositions as Types

We now investigate a computational interpretation of constructive proofs
and relate it to functional programming. On the propositional fragment of
logic this is called the Curry-Howard isomorphism [How80]. From the very
outset of the development of constructive logic and mathematics, a central
idea has been that proofs ought to represent constructions. The Curry-Howard
isomorphism is only a particularly poignant and beautiful realization of
this idea. In a highly influential subsequent paper, Per Martin-L6f [ML80]
developed it further into a more expressive calculus called type theory.

In order to illustrate the relationship between proofs and programs we
introduce a new judgment:

M:A M is a proof term for proposition A

We presuppose that A is a proposition when we write this judgment. We will
also interpret M : A as “M is a program of type A”. These dual interpretations
of the same judgment is the core of the Curry-Howard isomorphism. We
either think of M as a syntactic term that represents the proof of A true, or
we think of A as the type of the program M. As we discuss each connective,
we give both readings of the rules to emphasize the analogy.

We intend that if M : A then A true. Conversely, if A true then M : A
for some appropriate proof term M. But we want something more: every
deduction of M : A should correspond to a deduction of A true with an
identical structure and vice versa. In other words we annotate the inference
rules of natural deduction with proof terms. The property above should
then be obvious. In that way, proof term M of M : A will correspond directly
to the corresponding proof of A true.

Conjunction. Constructively, we think of a proof of A A B true as a pair of
proofs: one for A true and one for B true. So if M is a proof of Aand N is a
proof of B, then the pair (M, N) is a proof of A A B.

M:A N:B
i
(M,N): A\B

The elimination rules correspond to the projections from a pair to its first
and second elements to get the individual proofs back out from a pair M.
M:ANB M:ANB
— A — A

Es
M-1: A M-r:B
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Hence the conjunction A A B proposition corresponds to the (lazy) product
type A & B. And, indeed, product types in functional programming lan-
guages have the same property that conjunction propositions A A B have.
Constructing a pair (M, N) of type A & B requires a program M of type
A and a program N of type B (as in AI). Given a pair M of type A & B,
its first component of type A can be retrieved by the projection M - [ (as in
AE7), its second component of type B by the projection M - r (as in AE»).

Truth. Constructively, we think of a proof of T true as a unit element that
carries no information.

<]D:TT[

Hence T corresponds to the (lazy) unit type with one element that we
haven’t encountered yet explicity, but is the nullary version of the product
& {}. There is no elimination rule and hence no further proof term con-
structs for truth. Indeed, we have not put any information into () when
constructing it via T, so cannot expect to get any information back out
when trying to eliminate it.

Implication. Constructively, we think of a proof of AD B true as a function
which transforms a proof of A true into a proof of B true.

We now use the notation of M\-abstraction to annotate the rule of implica-
tion introduction with proof terms.

u

u: A

M:B

Au.M:ADB

The hypothesis label v acts as a variable, and any use of the hypothesis
labeled w in the proof of B corresponds to an occurrence of v in M. Notice
how a constructive proof of B true from the additional assumption A true to
establish A D B true also describes the transformation of a proof of A true to
a proof of B true. But the proof term Au. M explicitly represents this trans-
formation syntactically as a function, instead of leaving this construction
implicit by inspection of whatever the proof does.
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As a concrete example, consider the (trivial) proof of A O A true:

U

A true
EEE—— |
A D A true

If we annotate the deduction with proof terms, we obtain

U
u: A

DO
(Au.u): ADA

U

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with the identity function id(u) = u
orid = (Au.u).

Constructively, a proof of A D B true is a function transforming a proof
of A true to a proof of B true. Using A D B true by its elimination rule
DE, thus, corresponds to providing the proof of A true that A D B true is
waiting for to obtain a proof of B true. The rule for implication elimination
corresponds to function application.

M:A>DB N:A
MN :B

DF

What is the meaning of A D B as a type? From the discussion above
it should be clear that it can be interpreted as a function type A — B. The
introduction and elimination rules for implication can also be viewed as
formation rules for functional abstraction Au. M and application M N. Form-
ing a functional abstraction \u. M corresponds to a function that accepts
input parameter u of type A and produces M of type B (as in D). Using a
function M : A— B corresponds to applying it to a concrete input argument
N of type A to obtain an output M N of type B.

Note that we obtain the usual introduction and elimination rules for
implication if we erase the proof terms. This will continue to be true for
all rules in the remainder of this section and is immediate evidence for the
soundness of the proof term calculus, that is, if M : A then A true.

As a second example we consider a proof of (A A B) D (B A A) true.

— —u

A N B true A N B true

— NEy —— ANE;
B true A true AT

B A A true

D)
(AANB) D (BAA)true

u

LECTURE NOTES NOVEMBER 8§, 2018



L19.16 Propositions as Types

When we annotate this derivation with proof terms, we obtain the swap
function which takes a pair (M, N) and returns the reverse pair (N, M).

— —u
uw:AANB u:ANB
— L ANE, A
w-r:B u-l: A
(u-r,u-l): BANA

(Au.{u-ryu-1)): (ANB)D(BAA)

Ey

D IU

Disjunction. Constructively, we think of a proof of A V B true as either
a proof of A true or B true. Disjunction therefore corresponds to a disjoint
sum type A + B that either store something of type A or something of type
B. The two introduction rules correspond to the left and right injection into

a sum type.
M:A N:B
— VI} ——————— VI
[-M:AVB r-N:AV B
When using a disjunction A V B true in a proof, we need to be prepared to
handle A true as well as B true, because we don’t know whether VI or VIs
was used to prove it. The elimination rule corresponds to a case construct

which discriminates between a left and right injection into a sum types.

u — W

u: A w: B

M:AVB N:C P:C
case M {l-u= N|r-w= P}:C

\/Eu,w

Recall that the hypothesis labeled u is available only in the proof of the
second premise and the hypothesis labeled w only in the proof of the third
premise. This means that the scope of the variable u is IV, while the scope of
the variable w is P.

Falsehood. There is no introduction rule for falsehood (). We can there-
fore view it as the empty type 0. The corresponding elimination rule allows
a term of L to stand for an expression of any type when wrapped in a case
with no alternatives. There can be no valid reduction rule for falsehood,
which means during computation of a valid program we will never try to
evaluate a term of the form case M { }.

M: 1L

———— 1F
case M{}:C
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Interaction Laws. This completes our assignment of proof terms to the
logical inference rules. Now we can interpret the interaction laws we intro-
duced early as programming exercises. Consider the following distributivity
law:
(L11a) (AD(BAC))D(ADB)AN(ADC) true
Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs
of type B A C, returns two functions: one which maps A to B
and one which maps A to C.

This is satisfied by the following function:
. ((Aw. (vw) - 1), (M. (wv) - r))

The following deduction provides the evidence:

u w u v
u:AD(BACQ) w:A u:AD(BAC) v:A
DFE OFE
uw: BAC uv:BAC
—— A — AFp
(uw)-1:B (uv)-r:C

)\w.(uw)-l:ADBD )\v.(uv)-r:ADC’D
((Aw. (uw) - 1), (M. (uv) 7)) : (ADB)AN(ADC) o
Au. (Aw. (uvw) - 1), (M. (uv) 7)) : (AD(BAC))D(ADB)AN(ADC))

Programs in constructive propositional logic are somewhat uninteresting
in that they do not manipulate basic data types such as natural numbers,
integers, lists, trees, etc. We introduce such data types later in this course,
following the same method we have used in the development of logic.

Summary. To close this section we recall the guiding principles behind the
assignment of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction
of M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms M and deductions of A true
is a bijection.
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8 Reduction

In the preceding section, we have introduced the assignment of proof terms
to natural deductions. If proofs are programs then we need to explain
how proofs are to be executed, and which results may be returned by a
computation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction written M — M’ and read
“M reduces to M'”. In the second step, a computation then proceeds by a
sequence of reductions M — M; — Ms ..., according to a fixed strategy,
until we reach a value which is the result of the computation.

As in the development of propositional logic, we discuss each of the
connectives separately, taking care to make sure the explanations are inde-
pendent. This means we can consider various sublanguages and we can
later extend our logic or programming language without invalidating the
results from this section. Furthermore, it greatly simplifies the analysis of
properties of the reduction rules.

In general, we think of the proof terms corresponding to the introduction
rules as the constructors and the proof terms corresponding to the elimination
rules as the destructors.

Conjunction. The constructor forms a pair, while the destructors are the
left and right projections. The reduction rules prescribe the actions of the
projections.

(M,N)-1 — M
(M,N)-r — N

These (computational) reduction rules directly corresponds to the proof
term analogue of the logical reductions for the local soundness detailed in
Section 11. For example:

M:A N:B

N
(M,N): ANB

ANEq
(M,N)-1:A — M:A

Truth. The constructor just forms the unit element, (). Since there is no
destructor, there is no reduction rule.
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Implication. The constructor forms a function by A-abstraction, while
the destructor applies the function to an argument. The notation for the
substitution of N for occurrences of u in M is [IN/u|M. We therefore write
the reduction rule as

(M. M)N — [N/ulM

We have to be somewhat careful so that substitution behaves correctly. In
particular, no variable in NV should be bound in M in order to avoid conflict.
We can always achieve this by renaming bound variables—an operation
which clearly does not change the meaning of a proof term. Again, this
computational reduction directly relates to the logical reduction from the
local soundness using the substitution notation for the right-hand side:

U
u:A

M:B
.M :ADB N:A g
»
(M. M)N : B — [N/uM

Disjunction. The constructors inject into a sum types; the destructor dis-
tinguishes cases. We need to use substitution again.

case/-M{l-u=N|r-w=P} — [M/ulN
caser-M{l-u= N|r-w= P} — [M/w]P

The analogy with the logical reduction again works, for example:

U w
u: A w: B
M:A : :
— VI : :
l-M:AV B N:C P:C -
casel- M {l-u=N|r-w= P}:C —  [M/u]lN

Falsehood. Since there is no constructor for the empty type there is no
reduction rule for falsehood. There is no computation rule and we will not
try to evaluate case M { }.

This concludes the definition of the reduction judgment. Observe that
the construction principle for the (computational) reductions is to investigate
what happens when a destructor is applied to a corresponding constructor.

LECTURE NOTES NOVEMBER 8, 2018



L19.20 Propositions as Types

This is in correspondence with how (logical) reductions for local soundness
consider what happens when an elimination rule is used in succession on
the output of an introduction rule (when reading proofs top to bottom).

9 Summary of Proof Terms

Judgments.
M:A M is a proof term for proposition A, see Figure 2
M — M’ M reduces to M’, see Figure 3

10 Summary of the Curry-Howard Correspondence

The Curry-Howard correspondence we have elaborated in this lecture has
three central components:

e Propositions are interpreted as types
e Proofs are interpreted as programs

e Proof reductions are interpreted as computation

This correspondence goes in both directions, but it does not capture every-
thing we have been using so far.

Proposition Type
ANB T& o
ADB T—=0
AV B T+o

T &{}
L 0
? A® B
? 1
?? po. T

For A ® B and 1 we obtain other forms of logical conjunction and truth
that hav the same introduction rules as A A B and T, respectively, but other
elimination rules:

—u —w
A B

A®B C 1 ¢
ZE2 Y gEww - Y E
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Constructors Destructors
M:ANB
7/\/\E1

M:A N:B Al M-1l:A
(M,N): ANB
M:ANB
A AFE5
M-r:B
— 11
(): T no destructor for T
U
u: A
M : B - M:ADB N:ADE
.M : ADB MN : B
u — W
u: A w: B
M: A : :
— V; : :
l-M:AVB M:AvB N:C P:C e
case M {l-u= N|r-w= P}:C
N:B
— VI,
r-N:AVB
M : 1L
no constructor for L case M {}:C

Figure 2: Proof term assignment for natural deduction
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IM,N) -1 — M
(M,N)-r — N

no reduction for ()
(Au. M) N [N/u] M

—
casel-M{l-u=N|r-w=P} — [M/ulN
caser- M {l-u= N|r-w= P} — [M/w]O

no reduction for case M { }

Figure 3: Proof term reductions

These are logically equivalent to existing connectives (A ® B = A A B and
1 = T), so they are not usually used in a treatment of intuitionistic logic, but
their operational interpretations are different (eager vs. lazy).

As for general recursive types pa. 7, there aren’t any good propositional
analogues on the logical side in general. The overarching study of type
theory (encompassing both logic and its computational interpretation) treats
the so-called inductive and coinductive types as special cases. Similarly, the
fixed point construction fix x. e does not have a good logical analogue, only
special cases of it do.

11 Harmony

This is bonus material only touched upon in lecture. It elaborates on
how proof reduction arises in the study of logic.

In the verificationist definition of the logical connectives via their intro-
duction rules we have briefly justified the elimination rules. We now study
the balance between introduction and elimination rules more closely.

We elaborate on the verificationist point of view that logical connectives
are defined by their introduction rules. We show that for intuitionistic
logic as presented so far, the elimination rules are in harmony with the
introduction rules in the sense that they are neither too strong nor too weak.
We demonstrate this via local reductions and expansions, respectively.

In order to show that introduction and elimination rules are in harmony
we establish two properties: local soundness and local completeness.

Local soundness shows that the elimination rules are not too strong: no
matter how we apply elimination rules to the result of an introduction we
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cannot gain any new information. We demonstrate this by showing that we
can find a more direct proof of the conclusion of an elimination than one
that first introduces and then eliminates the connective in question. This is
witnessed by a local reduction of the given introduction and the subsequent
elimination.

Local completeness shows that the elimination rules are not too weak: there
is always a way to apply elimination rules so that we can reconstitute a
proof of the original proposition from the results by applying introduction
rules. This is witnessed by a local expansion of an arbitrary given derivation
into one that introduces the primary connective.

Connectives whose introduction and elimination rules are in harmony in
the sense that they are locally sound and complete are properly defined from
the verificationist perspective. If not, the proposed connective should be
viewed with suspicion. Another criterion we would like to apply uniformly
is that both introduction and elimination rules do not refer to other propo-
sitional constants or connectives (besides the one we are trying to define),
which could create a dangerous dependency of the various connectives
on each other. As we present correct definitions we will occasionally also
give some counterexamples to illustrate the consequences of violating the
principles behind the patterns of valid inference.

In the discussion of each individual connective below we use the notation

D . D
Atrue — B A true

for the local reduction of a deduction D to another deduction D’ of the same
judgment A true. In fact, =g can itself be a higher level judgment relating
two proofs, D and D/, although we will not directly exploit this point of
view. Similarly,
D D’
Atrue —F A true

is the notation of the local expansion of D to D'
Conjunction. We start with local soundness, i.e., locally reducing an elim-
ination of a conjunction that was just introduced. Since there are two elimi-

nation rules and one introduction, we have two cases to consider, because
there are two different elimination rules AF; and AE» that could follow the
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Al introduction rule. In either case, we can easily reduce.

D £
A true B true N;
A N B true D
A true A true
D &
A true B true Al
AN B true <

A
B true > =R Bire

These two reductions justify that, after we just proved a conjunction A A B
to be true by the introduction rule AI from a proof D of A true and a proof
& of B true, the only thing we can get back out by the elimination rules is
something that we have put into the proof of A A B true. This makes AE;
and AE, locally sound, because the only thing we get out is A true which
already has the direct proof D as well as B true which has the direct proof £.
The above two reductions make AE; and AE» locally sound.

Local completeness establishes that we are not losing information from
the elimination rules. Local completeness requires us to apply eliminations
to an arbitrary proof of A A B true in such a way that we can reconstitute a
proof of A A B from the results.

D D
A N B true A N B true
— /\El ES— /\EQ
D A true B true AT
AANBtrue ~F A A B true

This local expansion shows that, collectively, the elimination rules AE; and
AE5 extract all information from the judgment A A B true that is needed
to reprove A A B true with the introduction rule AI. Remember that the
hypothesis A A B true, once available, can be used multiple times, which is
very apparent in the local expansion, because the proof D of A A B true can
simply be repeated on the left and on the right premise.

As an example where local completeness fails, consider the case where
we “forget” the second/right elimination rule AE> for conjunction. The
remaining rule is still locally sound, because it proves something that was
put into the proof of A A B true, but not locally complete because we cannot
extract a proof of B from the assumption A A B. Now, for example, we
cannot prove (A A B) D (B A A) even though this should clearly be true.
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Substitution Principle. We need the defining property for hypothetical
judgments before we can discuss implication. Intuitively, we can always
substitute a deduction of A true for any use of a hypothesis A true. In
order to avoid ambiguity, we make sure assumptions are labelled and we
substitute for all uses of an assumption with a given label. Note that we can
only substitute for assumptions that are not discharged in the subproof we
are considering. The substitution principle then reads as follows:

If

u
A true

&
B true

is a hypothetical proof of B true under the undischarged hypoth-
esis A true labelled u, and

D
A true

is a proof of A true then

D

A true
&
B true

u

is our notation for substituting D for all uses of the hypothesis
labelled u in £. This deduction, also sometime written as [D/u]€
no longer depends on u.

Implication. To witness local soundness, we reduce an implication intro-
duction followed by an elimination using the substitution operation.

u
A true
&
B true S D A? U
A D B true A true g gr ue
D
B true =R B true

The conditions on the substitution operation is satisfied, because u is intro-
duced at the DI* inference and therefore not discharged in €.
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Local completeness is witnessed by the following expansion.

D u
A D Btrue A true
OF
D B true 5
A>Btrue ~ ' F A D B true

Here v must be chosen fresh: it only labels the new hypothesis A true which
is used only once.

Disjunction. For disjunction we also employ the substitution principle
because the two cases we consider in the elimination rule introduce hypothe-
ses. Also, in order to show local soundness we have two possibilities for the
introduction rule, in both situations followed by the only elimination rule.

D u w
A true B true D
A true y £ F v U
AV B true L C true C true rue
\/Eu,w _— g
C true R C true
D u w
A true B true D
B true VI < F Y w
AV B true R C true C true }_me
\/Eu,w i
C true R C true

An example of a rule that would not be locally sound is

AV B true

VE?
A true

and, indeed, we would not be able to reduce

B true
AV B true

R
VE?
A true

In fact we can now derive a contradiction from no assumption, which means
the whole system is incorrect.

TI
T true
1 VT true Vin
—— VE}?
1 true
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Local completeness of disjunction distinguishes cases on the known
AV B true, using AV B true as the conclusion.

U w
D A true B true

\/ e
D AV Btrue AV B true E AV B true
AV Btrue ~F AV B true

\/Eu,w

Visually, this looks somewhat different from the local expansions for con-
junction or implication. It looks like the elimination rule is applied last,
rather than first. Mostly, this is due to the notation of natural deduction:
the above represents the step from using the knowledge of AV B true and
eliminating it to obtain the hypotheses A true and B true in the two cases.

Truth. The local constant T has only an introduction rule, but no elimina-
tion rule. Consequently, there are no cases to check for local soundness: any
introduction followed by any elimination can be reduced, because T has no
elimination rules.

However, local completeness still yields a local expansion: Any proof of
T true can be trivially converted to one by T1.

D N .
T true E T true

Falsehood. As for truth, there is no local reduction because local sound-
ness is trivially satisfied since we have no introduction rule.

Local completeness is slightly tricky. Literally, we have to show that
there is a way to apply an elimination rule to any proof of L true so that
we can reintroduce a proof of L true from the result. However, there will
be zero cases to consider, so we apply no introductions. Nevertheless, the
following is the right local expansion.

D
D 1 true

Ltrue ~ 7 F 1 true

Reasoning about situation when falsehood is true may seem vacuous, but
is common in practice because it corresponds to reaching a contradiction.
In intuitionistic reasoning, this occurs when we prove A O | which is often
abbreviated as —A. In classical reasoning it is even more frequent, due to
the rule of proof by contradiction.
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Lecture Notes on
Sequent Calculus

15-814: Types and Programming Languages
Frank Pfenning

Lecture 20
November 13, 2018

1 Introduction

So far, we have presented logical inference in the style of natural deduction.
Propositions corresponded to types, proofs to programs, and proof reduction
to computation.

In this lecture we develop an alternative presentation of logical inference
using the sequent calculus, also due to Gentzen [Gen35]. From a logical
perspective, we change the direction of proof construction, without changing
what can be proved. From a computational perspective, this opens up new
avenues for capturing computational phenomena, namely message-passing
concurrency (as we will see in the next lecture).

2 Sequent Calculus Constructs Natural Deductions

As we have seen in the last lecture, during proof construction we

1. Use introduction rules from the bottom up. For example, to prove
A N B true we reduce it to the subgoals of proving A true and B true,
using A1

2. Use elimination rules from the top down. For example, if we know
A N B true we may conclude A true using AEy.

The two directions of inference “meet in the middle”, when something we
have inferred by eliminations matches the conclusion we are trying to prove.
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Schematically (and somewhat oversimplified), proving conclusion C' from
assumptions x1 : Ay,...,x, : A, labeled with variables looks like

T1:Ayxy s Ay

where I indicates introduction rules, ¥ indicates elimination rules, and the
dashed line is where proof construction meets in the middle.

This bidirectional reasoning can be awkward, especially if we are trying
to establish metatheoretic properties such as consistency of a logical system,
that is, that it cannot prove a contradiction L. Gentzen’s idea was to write
down the current state of proof construction in a sequent

x1: A1, g Ay I C

and have right rules decomposing the succedent C while left rules decompose
the antecedents A;. In this transformation, the right rules correspond very
directly to the introduction rules of natural deduction, because they proceed in
the same direction (bottom-up). On the other hand, the left rules correspond
to the inverted elimination rules because we have to changes their direction
from top-down to bottom-up. Schematically:

pier] [t

a:lel,...,xn:An I+ C

Rather then meeting in the middle, we now complete the proof construction
when we have inferred an antecedent that exactly matches the succedent
with the identity rule.

Tz AFaAd

For this and the following rules to make sense, we assume the antecedents
are unordered (can be freely exchanged) and all variables z; are distinct.

LECTURE NOTES NOVEMBER 13, 2018



Sequent Calculus L20.3

Let’s use our basic intuition to derive some rules, starting with conjunction.
THFA TIFB x:AANB,y: AIFC I Ix:AANB,z:BIFC
AR AN
''rAAB Ix:AANBIFC Ix:AANBIFC

The right rule corresponds direction to the introduction rule and the two
left rules to the two elimination rules (read upside down) with the twist that
the antecedent = : A A\ B persists in the premise. All of our left rules in this
lecture will preserve the antecedent to which we apply the rule so we can
use it again, even though it some cases that may seem redundant. As usual,
we assume that all antecedent labels z; are distinct, so that y (in AL;) and z
(in ALg) are not aready declared in I' and different from z.
The right rule for implication is also straightforward.

I'z:AIFB

I'r-rA>B SR

How do we use the knowledge of A D B in a proof of C? If we can also
supply a proof of A we are allowed to assume B in the proof of C'.

I'Nz:ADBIFA T,z:ADB,y: BIFC
z:ADBIFC

DL

This rule looks a little clunky because we repeat x in both premises. If we
leave this implicit
A TI'y: BIFC
T,2:ADBIFC

it looks better, but only if we understand that x : A O B actually persists in
both premises.

In lecture, a student asked the excellent question why we only extract
A or B from A A B with the two left rules in the antecedent, but not both
together? One answer that we want to faithfully model proof construction
in natural deduction, and there happen to be two separate rules to extract
the two components. Another answer is: yes, let’s do this! What we obtain
is actually a different logical connective!

lNz:A®B,y: A, z:BIFC
Nz: A BIFC

DL*

®L

The corresponding right rule is actually familiar:

rmAa T'HB
'rA® B
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When we reverse-engineer the corresponding natural deduction rules we
have

Yy z
A true B true

A true B true o A ® B true C tﬁte
A ® B true C true

)

When looking at this from the lense of proof terms, we realize that A A B
corresponds to lazy pairs T & o, while A ® B corresponds to eager pairs 7 @ o.
So even though, purely logically, A A B = A ® B, they have a different
computational meaning. This meaning will diverge even further in the
next lecture when we refine the logic and the two connectives are no longer
equivalent.

We have left out disjunction, truth, and falsehood, but the rules for them
are easy to complete.

However, there is still one rule we need, which is the converse of the
identity rule. Identity

F,az:AH—AId

expresses that if we assume A we can conclude A. The converse would say
if we conclude A we can assume A. Expressed as a rule this is called cut:

THFA T,2:AlFC
TIFC

cut

Mathematically, this corresponds to introducing the lemma A into a proof
of C. We have to prove the lemma (first premise) but then we can use it to
prove our succedent (second premise). Generally, in mathematics, finding
the right lemma (such as: a generalization of the induction hypothesis) is
a critical part of finding proofs. Here, in pure logic with only the usual
connective, this rule turns out to be redundant. That is, any sequent I' I C
we can derive with the rule of cut we can also derive without the rule of cut.
This is of fundamental logical significance because it allows us to establish
easily that the system is consistent. All other rules break down either a
succedent or an antecedent, and there is no rule to break down falsehood _L,
and therefore the cannot be a cut-free proof of - I L.
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3 Soundness of the Sequent Calculus

By soundness we mean: whenever I' |- A in the sequent calculus then also
I" + A in natural deduction. In other words, if we view natural deduction as
defining the meaning of the logical connectives, then the sequent calculus
let’s us draw only correct conclusions. In the next section we prove that the
other direction also holds.

Theorem 1 (Soundness of the Sequent Calculus) IfI' I A then I' - A.

Proof: The proof is by rule induction over the given sequent calculus deriva-
tion. In constructing the natural deduction proof we write all the hypothesis

— =z
as x : A to the left of the turnstile instead of the assumption A  in the usual
two-dimensional form. We show only two cases.

Case:
Nz:AlFB
— DR
r-A>B -
Then
INxz: A+ B By i.h.
'A>B By rule DI”
Case:
I'z:ADBIFA T,z:ADB,y:BIFC .
D)
z: ADBIFC
Then
Ir:ADBFADB By rule var
Nz:ADBFA By i.h. on first premise
'x:ADBFB By rule DF
INz:ADB,y: B-C By i.h. on second premise
Ie:ADBFEC By substitution

In the last step we use the substitution property on the two lines just
above, substituting the proof of B for the hypothesis y : B in the proof
of C.

O
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A perhaps more insightful way to present this proof is to annotate the
sequent derivation with proof terms drawn from natural deduction. We
want to synthesize

rFM:A

such that
T'FM:A

that is, M is a well-typed (natural deduction) proof term of A. If we can
annotate each sequent derivation in this manner, then it will be sound.
Fortunately, this is not very difficult. We just have to call upon substitution
in the right places. Consider identity and cut.

v Aerl TFM:A Ta:AFN:C
7'd
TlFa:A TIF [M/z]N : C

cut

Identity just uses a variable, while cut corresponds to substitution. Note
that if M : A we can substitute it for the variable x : A appearing in N.

Next consider implication. The right rule (as usual) just mirrors the
introduction rule. Intuitively, we obtain M from the induction hypothesis
(for an induction we are not spelling out in detail).

z:AlFM:B
DR
' . M:ADB

The left rule is trickier (also as usual!)
Ne:ADBIFM:A Tx:ADB,y:BIFN:C
Fxa:ADBIF??:C

DL

We assume we can annotate the premises, so we have M and N. But how
to we construct a proof term for C' that does not depend on y? The explicit
proof that we have done before tells is it has to be by substitution for y : B
and the term will be z (of type A D B) applied to M (of type A):
Ne:ADBIFM:A Tx:ADB,y:BIFN:C

Fx: ADBIF[(x M)/y|N : C

DL

The rules for conjunction are even simpler: in the left rule the additional
antecedent y or z is justified by the first and second projection of x.

'"M:A TIFN:B
L'F(M,N): AANB

x:AANB,y: AIFN:C I Ix:AANB,z:BIFN:C
A
T,z:AABI|(z-)/yIN:C ' T,z:AABIW[(z-7)/2]N:C

ALsg
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Finally, the other (eager) form of conjunction. No substitution is required
here because the case-like elimination construct already matches the sequent
calculus rule.

'M:A TIFN:B MNz:A®B,y: A,z: BIFN:C

® QL
'F(M,N): A® B I''z:A® BlFcasex {(y,z) = N} :C

4 Completeness of the Sequent Calculus

Now we would like to go the other direction: anything we can prove with
natural deduction we can also prove in the sequent calculus.

Theorem 2 (Completeness of the Sequent Calculus) IfI'- A then T' I A.

Proof: By rule induction on the deduction of I' - A. We show only two
representative cases.

Case:
Nz: A+ B

DI
'HADB

Then we construct
i.h.
I''z:AlFB

DR
I'FADB

Case:
I'HFADB TFRHA

I'tB

This case requires some thought. From the induction hypothesis we
obtainI'IF A D Band I' I A and we need to conclude I'' I B. The left
rules of the sequent calculus, however, go in the wrong direction, so
we cannot easily use the knowledge of A D B.

In order to create an implication on the left-hand side, we can use the
rule of cut, which says that if we know A we can assume A for any
proposition A. That is,

i.h.
'FADB T,xz:ADBIF??

IiE7?

cut
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Since we are trying to prove I' I B, using B for ?? appears to be the
obvious choice.

i.h.
rmAoB T,x:ADBIFB
T'FB

cut

Now we can use the DL rules as intended and use the proof of A we
have by induction hypothesis.

ih.
. 'rA I''y: BIFB
i.h. oL
'rRA>B Iz:ADBIFB
cut

I'-B

The final unproved goal now just follows by the identity.

ih.
. 'mA I''y: BIFB
l.h. :)L
rmA>B I''z:ADBIFB
cut

I'-B

Here, we have omitted some unneeded antecedents, particularly z :
A D B in the premises of D L. They easily be restored by adding them
to the antecedents of every sequent in the deduction. We do not prove
this obvious property called weakening.

O

Before we investigate what this translation means on proof terms, we
revise our language of proof terms for the sequent calculus.

5 Proof Terms for Sequent Calculus

In the soundness proof, we have simply assigned natural deduction proof
terms to sequent deductions. This served the purpose perfectly, but such
terms do not contain sufficient information to actually reconstruct a sequent
proof. For example, in

''tM:A Tyz:AFN:C
L'k [M/z]N:C

cut

LECTURE NOTES NOVEMBER 13, 2018



Sequent Calculus L20.9

we would know only the result of substituting M for x in N, which is clearly
not enough information to extract M, N, or even A. We restate the rules,
this time giving informative proof terms.

r:Ael I'FM:A Tx:AFN:C
.d t
Thre:A'Y Tilete:A=MinN:C
I''z:Al-M:B . I'z:ADBIFM:A T,z:ADB,y:BIFN:C I
D) D)
I''FX.M:ADB I'z:ADBlFlety=a2Min N : C
'NM:A TIFN:B
L'+ ({M,N): AANB
Nx:AANB,y: AIFN:C Iz:AANB,z:BIFN:C
- NLq . ALs
INz:AANBlFlety=z-lin N :C Nz:AANBlletz=z-rin N :C
PEM:A TEN:B Ie:A®B,y:A,z:BIFN:C ol
'+-(M,N): A® B INNz: A® BlFcasex {{y,z) = N}: C

Just like continuation-passing style, this form of proof term names inter-
mediate values, but it does not make a continuation explicit. We could
now rewrite our dynamics on these terms and the rules would be more
streamlined since they already anticipate the order in which expressions
are evaluated. We can also easily translate from this form to natural deduc-
tion terms by replacing all constructs let + = M in N by [M/x]N. More
formally, we write M

()1 =

(letx: A=Min N)I = [MT/z]NT
(Az. M)T = Az Mf
(let y = 2 M in N)T = [z MT/y]NT
(M, N)T = (M',NT)
(lety—x lin N)t = [z-1/y]NT
(let z =z -rin N)T = [z-r/z]NT
(M, N)T = (MT,NT)

(

caseac{(y, 2y = NPI = casex {(y,z) = NT}

One question is how we translate in the other direction, from natural
deduction to these new forms of terms. We write this as M*. Our proof of
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the completeness of the sequent calculus holds the key. We read off:

(z)* =z
Az. M)* = dx. M*
(MN)* = letz=M"inlety=xN*iny

Here, we have omitted the type of x (that is, the type of M) in the last
line since, computationally, we are not interested in this type. We only
tracked it in order to be able to reconstruct the sequent derivation uniquely.
Completing this translation is straightforward, keep in mind the proof term
language we assigned to the sequent calculus.

quN[)* = (M*,N7)

(M- 1) = letz=M*inlety==x-liny

(M -r)* = letz=M"inletz=xz-rinz
(M, N)* = (M*,N%)

(case M {(y,z) = N})* = letxz = M"*in case z {(y,z) = N*}

A remarkable property of these translations is that if we translate from
natural deduction to sequent calculus and then back we obtain the original
term. This does not immediately entail the operational correctness of these
translations in the presence of recursion and recursive types, but it does
show that the sequent calculus really is a calculus of proof search for natural
deduction. If there is a natural deduction proof term M we can find a
sequent proof term M’ that translates back to M—we have “found” M by
construction M’. In general, there will be many different sequent terms M’
which all map to the same natural deduction term M, because M’ tracks
some details on the order which rules were applied that are not visible in
natural deduction.

6 Cut Elimination

Gentzen'’s goal was to prove the consistency of logic as captured in natural
deduction. One step in his proof was to show that it is equivalent to the
sequent calculus. Now we can ask if the sequent calculus is enough to show
that we cannot prove a contradiction. For that purpose we give the rules for
Lt

— 1L
no LR rule Fx:LIFC
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Ideally, we would like to show that there is there cannot be a proof of
kL

This, however, is not immediately apparent, because we may just need to
find the right “lemma” A and prove

A 2z AL
R L

cut

Then Gentzen showed a remarkable property: the rule of cut, so essentially
in everyday mathematics (Which proof gets by without needing a lemma?)
is redundant here in pure logic. That is:

Theorem 3 (Cut Elimination [Gen35]) IfI' I A then there is a proof of I' I A
without using the rule of cut.

This immediately implies consistency by inversion: there is no rule with a
conclusion matching - I- L.

The proof of cut elimination is deep and interesting, and there are many
resources to understand it.! From a computational perspective, however,
it is only the so-called cut reductions we will discuss in the next lecture
that are relevant. This is because in programming languages we impose a
particular strategy of evaluation, and, moreover, one that does not evaluate
underneath A-abstractions or inside lazy pairs. In cut elimination, we obey
no such restrictions. Plus, in realistic languages we have recursion and
recursive types and cut elimination either no longer holds, or holds only for
some restricted fragments.

In the next lecture we explore the computational consequences of the
sequent calculus from the programming language perspective.

References

[Gen35] Gerhard Gentzen. Untersuchungen tiber das logische Schliefsen.
Mathematische Zeitschrift, 39:176-210, 405-431, 1935. English trans-
lation in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen,
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1 Introduction

In the last lecture we have seen the sequent calculus as a calculus of proof
search for natural deduction. The “informative” proof term assignment
decomposed the computation into smaller steps. Today, we will take a leap
and provide an interpretation of the sequent calculus based on processes
that execute concurrently and pass messages between each other.

2 Destinations

Let’s reconsider for a moment the informative proof terms assigned to the
sequent calculus, just looking at identity and cut.

_ ''FM:A T,z:AIFN:C
F,az:AH—az:Ald lFkFletx: A=Min N :C

cut

We can almost give this a store semantics, maybe simplifying the S machine,
if we think of every variable standing in for a location at runtime. The only
missing piece is that there is no destination for the result of the computation.
We can fix that by also naming the right-hand side (statically with a variable,
and dynamically with a destination):

FE??2(x:A) Tye: AR (2:0)
id cut
F,x:AII—??::(y:A)I LIE??7:(2:0)
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The proof term for the identity should copy x to y, which is also the opera-
tional interpretation of a destination expression in the S machine.

Dox: AlF(y+x)::(y: A) d

The cut rule creates a new destination for x then runs M to fill it and N to

use it.
PFEM:(x:A) TDyx:AlFN:=:(z:0)

Fkletx: A=Min N :: (z2:C)

cut

If M and N run in sequentially, this fits within the model for a functional
language we have introduced so far. If M and N run in parallel, then this
is the behavior of a future [Hal85]. We can develop the dynamics of the
remaining proof terms under this interpretation. The proof terms represent
a kind of low-level language for instructions of the S machine.

Instead of pursuing this further, we make a deceptively small change
in the sequent calculus to obtain an alternate interpretation as message
passing.

3 Linearity
The key reinterpretation of the judgment

x1: A1, xn  AplE P (2:O)

is that the z; and z are channels for communication and P is a process. We
say P provides channel z and uses channels x;. The propositions A; and C
describe a protocol for interaction along the channel z; and z, respectively.

The first fundamental invariant we want to preserve throughout compu-
tation is:

Linearity: Every channel has exactly one provider and exactly one
client.

The second one enables us to identify processes with the channels they
provide:

Uniqueness: Every process provides exactly one channel.
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It is possible to relax both of these, but in this lecture we are concerned with
the core of the computational interpretation of the (linear) sequent calculus.
Let’s reconsider identity and cut in light of these invariants.

Fy:AlF??:(z: A) d

The process 77 is obligated to provide a service following protocol A along x.
It also uses a channel y of the same type A. One way to fulfill its obligation
is to forward between x and y and terminate. We can also say that this
process identifies x and y so that further communication along « will go to
the provider of y, and further communication along = will go the client of y.
We write this as « <— y and read it as “x is implemented by y”.

Since this process terminates by forwarding, it cannot be using any other
channels. If it did, those channels would be left without a client, violating
linearity! So our final rule is

id
y: Ak (x«+y):(z: A
Let’s move on to cut, not yet committing to the process expression/proof

term for it.
F'FPu(x:A) Ta:AFQ:(2:0)

CIE??:(2:0)

cut

We can observe a few things about this rule. Since channels must be distinct,
x is not already declared in I'. Moreover, P provides a service of type A
along x and @ is the client. Also, whatever ?? turns out to be, it provides
along z, the same channel as Q. So 7?7 spawns a new process P that provides
along a fresh channel = and continues with ). We write this as

z+ P;Q

Both P and @ depend on z, P being the provider and @ being the client.
Before we can complete the rule, we should consider I'. In the current form,
every channel in I"' suddenly would have two clients, namely P and Q. This
violates linearity, so instead we need to “split up” the context: some of the
channels should be used by P and others by (). We use the notation A;, As
for joining two contexts with no overlapping names. Then we have

AjlFPu(x:A) Agz: AFQ:(2:0)
AL A lE (2 P;5Q):(2:0)

cut

LECTURE NOTES NOVEMBER 15, 2018



L21.4 Message-Passing Concurrency

We use A as our notation for contexts of channels that should be used
linearly, that is, with exactly one provider and exactly one client.
In summary, we have

y:AlF(z+y):(z:A) d

AFP(z:A) Agz: AIFQ:(2:0)
A, A lF (2 P;Q):(2:0C)

cut

4 Intuitionistic Linear Logic

The sequent calculus we have started derives from intuitionistic linear logic [GL87,
CCP03]. It is “intuitionistic” because the right-hand side of the sequents are
singletons, thereby maintaining our uniqueness invariant. Classical linear
logic [Gir87] has symmetric sequents, which has some advantages and some
disadvantages for our purposes.

All of the rules we will provide in the remainder of this lecture are
indeed also logical rules when one ignores the process expressions. In linear
logic, a sequent A |- A expresses that A can be proved from A using each
antecedent in A exactly once. Often, this is explained by thinking of the
antecedents as abstract resources that must be consumed in a proof.

In order to recover the usual expressive power of logic (in our case,
intuitionistic logic), linear logic adds a modality ! A. Only antecedents of this
form may be reused or discarded in a proof. We do not develop this modality
in this lecture, but might return to it in one of the remaining lectures.

5 Internal Choice

As a first logical connective we consider a form of disjunction, written in
linear logic as A @ B. From the computational perspective, a provider of
x : A @ B should send either [ or r. If the provider sends [, communication
should the continue following the type A; if it sends r it should continue
following B.

AlFP:(x: A AlFP:(x:B)

SRy DRy
AlF(xl;P):(x:Ad® B) Alk(xr;P):(z: A® B)

The proposition A @ B is called internal choice because the provider decides
whether to choose A (by sending [) or B (by sending r). Conversely, the
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client must be ready to receive either [ or  and then continue communication
at type A or B, respectively.

Az:AFQ:=(2:C) Axz:BIFR:(2:0)
Ajx: A®BlF(casexz {I=Q|r=R}):(z:C)

L

At this point you might, and probably should object: didn’t we say that each
antecedent in A should be used exactly once in a proof? Or, computational,
each channel in A should have exactly one client? Here, it looks as if A is
duplicated to that each channel has two clients: ) and R.

Thinking about the operational semantics clarifies why the rule must be
as shown. Imagine the provider of (z.l ; P) :: (z : A@ B) sends [ to a client
of z, say case = {l = @Q | r = R}. The provider continues with P :: (z : A)
and the client continues with Q. Now each channel used by the original
client is used by @, precisely because we have propagated all of A to the
tirst branch. If the provider sends r, then the continuation R is the one that
will use all these channels. So linearity is preserved in both cases. If we had
split A into two, linearity could in fact have been violated because in each
case some of the providers could be left without clients.

To formally describe the dynamics we use semantic objects of the form
proc P ¢ which means that process P executes providing along channel c.
Just as in destination-passing style, we do not explicit record the channels
that P uses—they simply occur (free) in P. In the S machine we also needed
memory cells !cell d v and continuations cont d k d’ which turn out not to be
required here. In linear logic, every semantic object is in fact a process.

The possible interactions for internal choice then are described by the
following two rules:

(®C1) proc (c.l; P)c,proc (casec{l=Q |r= R})d + proc P c,procQd
(®Cq) proc (c.r; P) c,proc (case c{l = Q| r= R})d +— proc Pc,proc Rd

Returning to identity and cut, we get the following rules, writing out for-
mally what we described informally.

(idC)  proc P d,proc (¢ < d) ¢ +— proc ([¢/d]P) ¢
(cutC) proc (z <« P;Q)d — proc([c/z]P) c,proc ([c/z]Q) d (c fresh)

6 An Example: Bit Streams

Already in the fragment with identity, cut, and internal choice, we can
write some interesting programs provided we have recursion, both at the
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level of types and the level of processes. We add this here intuitively, to be
formalized later.
Consider a type for a processes sending an infinite stream of bits 0 and 1.

bits = &{b0 : bits, bl : bits}

For simplicity, we consider this as an equality (so-called equirecursive types)
rather then an isomorphism (isorecursive types), which allows us to avoid
sending fold or unfold messages. We use here the generalized form of
internal choice

&{l: Ar}eer

for a finite set of labels L. We have A ® B = &{l : A,r : B}, so this is the
same idea as behind disjoint sums.

We can write a process (a form of transducer) that receives a bit stream
along some channel x it uses and sends a bit stream along the channel y is
provides, negating every bit.

x : bits |- neg :: (y : bits)

neg = ...
The first thing neg has to do is to receive one bit along z, which corresponds

neg = case x (b0 = ...
|bl=...)

If we receive b0 we output bl along y and recurse (to process the remaining
stream); if we receive b1l we output b0 and recurse.

neg = case = (b0 = y.bl ; neg
| bl = y.b0 ; neg)

What about a process and that takes the conjunction of the two bits from
corresponding streams? In each phase we have to read the two bits from the
two channels, output one bit, and recurse.

x @ bits,y : bits |- and :: (z : bits)

and = case z (b0 = case y (b0 = z.b0 ; and
| bl = 2.b0 ; and)
| bl = case y (b0 = 2.b0 ; and

| bl = 2.bl ;and))
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An interesting twist here is that we already know, after receiving b0 that the
output will also be b0, so we can output it right away. We just need to be
careful to still consume one bit along channel y, or the two input streams
fall out of synch.

x : bits,y : bits |k and :: (z : bits)

and = case z (b0 = 2.b0 ; case y (b0 = and
| bl = and)

| bl = case y (b0 = 2.b0 ; and
| bl = z.bl;and))

As a final example along similar lines we consider a process compress
that compresses consecutives zeros into just one zero. The case where we
see a bl is easy: we just output it and recurse.

x : bits I compress :: (y : bits)
compress = case x (b0 = ...

| bl = y.bl ; compress )

When we see a b0 we don’t know how many b0’s are still to come. So we
can output the first b0, but then we need to continue to ignore all following
b0’s until we see a bl. We need another process definition ignore for this
purpose.

x : bits I compress :: (y : bits)
x : bits |+ ignore :: (y : bits)

compress = case x (b0 = ...
| bl = y.bl ; compress)

ignore = case x (b0 = ignore
| bl = y.bl ; compress)

At this point it only remains to fill the call to ignore after an output of the
tirst b0 seen.

x : bits |+ compress :: (y : bits)
x : bits |- ignore :: (y : bits)

compress = case x (b0 = y.b0 ; ignore
| bl = y.bl ; compress )

ignore = case x (b0 = ignore
| bl = y.bl ; compress)
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7 Ending a Session

Viewed as types, the propositions of linear logic are called session types,
as pioneered by Honda [Hon93]. The logical origins of session types had
been in the air (see, for example, Gay and Vasconcelos [GV10]) but wasn’t
formally spelled out and proved until 2010 [CP10, CPT16]. The concept of a
session is a sequence of interactions between two processes (for us, provider
and client) as specified by a session type.

In the examples so far, all sessions are infinite, which is common and
expected in the theory of processes. But we should also have a way to end
a session after finitely many interactions. This is the role played by the
type 1. As a propositions, it means the “empty” resource (or the absence
of resources). Computationally, a provider of = : 1 can end a session and
terminate, while a client waits for the session to be ended. We can also think
of this as closing a channel of communication. To preserve our linearity
invariant, the process that ends the session cannot use any other channels.

AlFQ:(z:0)

1R 1L
-IFclosex :: (z:1) Az 1l (waitz; Q) = (2:C)

The reduction:
(1C) proc (closec) ¢, proc (wait ¢; Q) d +— proc Q d
A few words on our conventions:

¢ Even though the semantic objects in a configuration are unordered,
we always write the provider of a channel to the left of its client.

e We use P for providers, and @ for clients.

e We use z,y, z for expression variables that stand for channels, while
¢, d, e are used for channels as they exist as processes execute. This
is the same distinction we make between variables in a functional
program and destinations or memory addresses at runtime.

8 An Example: Binary Numbers

As another example we use numbers in binary form represented as a se-
quence of messages. This is almost like bit streams, but they can be termi-
nated by ¢, which represents 0 as the empty string of bits.

bin = @®{b0 : bin,bl : bin, e : 1}
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A process zero producing the representation of 0 is easy. After sending the
label € we have to end the session by closing the channel because the type of
x at this point in the session has become 1.

- Ik zero :: (x : bin)
zero = x.€ ; closex

A process that computes the successor of a binary number is more compli-
cated.

x : bin Ik succ :: (y : bin)

succ = case x (b0 = ...
|bl= ...
le=...)

Let’s start with the last case. The label € represents 0, so we have to send
along y the representation of 1, which is b1 followed by e.

x : bin |+ succ :: (y : bin)

succ = case x (b0 = ...
|bl= ...
le=ybl;ye;...)

At this point we have x : 1 in the context and the successor process must
provide y : 1. We could accomplish this by forwarding y < x or by waiting
for x to close and then close y. Let’s use the latter version.

x : bin |+ succ :: (y : bin)

succ = case x (b0 = ...
|bl= ...
| e = y.bl;y.e;
wait x ; close y )

In the case of b0, succ just outputs bl. Then the remaining string of bits is
unchanged, so we just forward.

x : bin |- succ :: (y : bin)

succ =casex (b0 = y.bl;y«+
|bl= ...
| e = y.bl;y.e;
wait x ; close y )
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When the first (lowest) bit of the input is bl we have to output b0, but we
still need to take care of the carry bit. We can do this simply by calling succ
recursively.

x : bin |+ succ :: (y : bin)

succ = case x (b0 = y.bl;y«+ x
| bl = y.b0 ; succ
| e = y.bl;y.e;
wait z ; close y )

9 External Choice

In internal choice A @ B it is the provider who gets to choose. External
choice A & B let’s the client choose, which means the provider has to be
ready with two different branches.

AlFP :(x:A) AlFP:(x:B)

&R
Al-(casez {l= P |r= P}):(x: A& B)
Ax:AlFQ:(2:0) Az :BlFQ::(z:C)
&Ll &L2
Ayx: A& BlFzl;Q = (z:0) Az: A& BlFzr;Q:(z:C)

We see that internal choice and external choice are quite symmetric in the
linear sequent calculus, while in natural deduction (and functional program-
ming) they look much further apart. The transition rules follow the pattern
of internal choice, with the role of provider and client swapped.

(&C1) proc (case c{l = P, |r = P»}) ¢,proc (c¢.l;Q)d ~ proc P; c,proc Q d
(&C5) proc (case c {l = P, | r = P»}) ¢,proc (c.r ; Q) d +— proc P ¢c,proc Q d

With external choice we can implement a counter that can take two
labels: increment (inc) that increments its internal value and val after which
it streams the bits making up the current value of the counter. In the latter
case, the counter is also destroyed, so with this interface we can request its
value only once.

ctr = &{inc : ctr,val : bin}

We implement the counter as a process that holds a binary number as an
internal data structure, which is implemented as a process of type bin.
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y : bin IF counter :: (x : ctr)

We say y represents an internal data structure because counter is the only
client of it (by linearity), so no other process can access it.

The counter distinguishes cases based on the label received along x.
After all, it is an external choice so we need to know what the client requests.

y : bin |- counter :: (x : ctr)

counter = case x (inc = ...
|val=...)

We increment such a counter by using the succ process from the previous
example. We can do this by spawning a new successor process without
actually receiving anything from the stream .

y : bin IF counter :: (x : ctr)
counter = case x (inc =y < succ + y ;
|val=...)
In order to spawn a new process and not become confused with different
variables called y, we use the notation

r— f<vy,...,yn; P

for a cut, passing channels y, ..., y, to process f that provides along the
fresh channel x that can be used in P. Note that due to linearity, y1,...,yn
will no longer be available since now the freshly spawned instance of f is
their client.

We use this same notation for the recursive call to counter.

y : bin |- counter :: (x : ctr)

counter = case x (inc =y’ < succ + vy ;
x < counter <y’
|val=...)

Just so we don’t make a mess of the bound variables, we define counter
as depending on two channels, x and y. When counter is called,  will be
created fresh since a new process is spanned, and y will be passed to this
this new process.

LECTURE NOTES NOVEMBER 15, 2018



L21.12 Message-Passing Concurrency

y : bin Ik counter :: (z : ctr)

T 4— counter < y =
case z (inc =y < succ <y ;
x < counter <y’
|val=...)

Now we can fill in the last case, where we just forward to the privately held
binary number, thereby terminating and communicating the number back
to the client.

y : bin IF counter :: (x : ctr)

counter = case x (inc =y < succ + y ;
x <+ counter <y’
|val= z +vy)

To assure you that this is type-correct, we see that the type of counter, after
seeing the val becomes bin, which is exactly the type of y.

We can create a new counter with some initial value by calling this
process and passing it a process holding the initial value. For example,

Z 4+ zero ;
c < counter < z ;
P

creates a new counter c that can be used in P. The channel z, on the other
hand, is not accessible there because it has been passed to the instance of
counter.

More formally, if we see a type declaration and a definition

y1:Bi,...,yn: Byl fi(x: A)
r—f+<y,...,yn =P

then we check
y1:Bi,...,yn : By lF P (z: A)

and every call

/ / /
==y, Y

is executed as

' [xl/xvyi/yh o 7941,/1/7‘&]13

A tail call (which has no continuation)
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Ty,
is syntactically expanded into a call, followed by a forward

/ / /.
= =y Y
x4+

We can now rewrite the earlier definitions in this style, for consistency. We
only show this for the processes on binary numbers.

bin = ©{b0 : bin,bl : bin,e : 1}
- Ik zero :: (x : bin)

x < zero = x.€ ; closex

x @ bin Ik succ :: (y : bin)

Y < SUCC +— x =
case z (b0 = y.bl;y « x
| b1 = y.b0 ; succ
| e=y.bl;y.e;
wait x ; close y )

Taking stock, we see that external choice provides an object-oriented style
of concurrent programming where we send messages to objects and may (or
may not) receive replies. In contrast, internal choice looks more like functional
programming, done concurrently: instead of representing data in memory,
they are represented via messages. However, nonterminating process such
as transducers make perfect sense because we care about the interactive
behavior of processes and not just a final value.
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1 Introduction

Some of the material in this lecture, specifically, the discussion of external
choice and the implementation of a counter, are already provided in the
notes for Lecture 21 on Message-Passing Concurrency. First, we have identity
(forwarding) and cut (spawn), which work parametrically over all types:

c«d implement ¢ by d and terminate
x < P;Q spawn [c/z]|P, providing a fresh ¢, with client [¢/x]Q

Here is a summary table of the message-passing constructs in our process
language so far, organized by type.

Type Provider Client Continuation Type
c:®{l: Aptoer (ck; P) case c {{ = Qu}ocr c: Ag
c:&{l: Av}tier, casec{l = Pilycs (ck;Q) c: Ag
c:1 close ¢ wait ¢ ; Q (none)

Note that there is a complete symmetry here between internal and external
choice, only the role of provider and client are swapped. Compare that
to the functional world, where disjoint sums 7 + o and lazy pairs 7 & o
exhibit a number of differences. Partly, the additional simplicity gained is
due to the sequent calculus as compared to natural deduction. In particular,
in the sequent calculus all connectives have uniform right- and left-rules,
while in natural deduction the elimination rules for positive connectives
(1,7 ® 0,7 + o) all use case constructs and are therefore much different
from those for negative connectives (7 — o, 7 & o). The other reason for the
simplicity here is linearity.

LECTURE NOTES NOVEMBER 27, 2018


http://www.cs.cmu.edu/~fp/courses/15814-f18/lectures/21-concurrency.pdf
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2 Passing Channels

Even though the examples in this course do not use them, we can also ask
what the message-passing counterparts to 7 — o and 7 ® o are. The first one
is easy to guess: A — B corresponds to receiving a channel d of type A and
continuing with type B. Conversely, A ® B corresponds to sending a channel
d of type A. From this we can straightforwardly reconstruct the typing rules,
but we refer the interested reader, for example, to Balzer et al. [BP17].

Type Provider Client Continuation Type
c:®{l: Aptoer (ck; P) case c {{ = Qulicr, c: Ag

c:&{l: Aptier, casec{l = Pilycr (ck;Q) c: Ay

c:1 close ¢ wait ¢ ; Q (none)

c:A—-B r<+recve; P send c d B

c:A®B send c d x<recvce;Q B

Again, we see a symmetry between A — B and A ® B, while in a functional
language, functions 7 — o and eager pairs 7 ® o are quite different.

3 Session Types in Concurrent C0

In the remainder of this lecture we demonstrate the robustness and practi-
cality of these somewhat abstract ideas about message-passing concurrent
computation by presenting a concrete instantiation of the ideas in Concur-
rent CO [WPP16, BP17].

Instead of the notations of linear logic, Concurrent C0O uses more tra-
ditional notation of session types [Hon93]. Concurrent CO is based on CO b
a type-safe and memory-safe subset of CO augmented with contracts. CO
is used in the freshman-level introductory computer science class at CMU.
Many of the syntax decision are motivated by consistency with C and should
be viewed in this light.

First, session types are enclosed in angle brackets < ... > to make lex-
ing and parsing them conservative over C0 (and C). Any sending interaction
from the provider perspective is written as ! _ while a receiving interaction
is written as ?_.

A choice, whether it is internal (®) or external (&), must be declared with
a name. This declaration is modeled after a st ruct declaration in C. So

{61 :/417---7£n :/4n}

http://c0.typesafety.net
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is written as

choice cname {
< Al > 11;

< An > 1n;
bi

where cname is the name of this particular choice.
For example, to represent binary numbers

bin = &{b0 : bin, bl : bin,e : 1}
we would start by declaring the choice

choice bin {

< ... > Db0;
< ... > bl;
< ... > eps;

}i

How do we fill in the continuation session types inside the angle brackets?
The first two are straightforward: They are of type bin, which is the internal
choice over bin.

choice bin {
<!choice bin> b0;
<!choice bin> Dbl;
< Lo > eps;
bi
In the case of epsilon (label eps) we close the channel without a continuation,

which is written as the empty session type.

choice bin {
<!choice bin> b0;
<!choice bin> Dbl;
< > eps;
bi

For good measure, we define the type bin to stand for the internal choice
!choice bin:

typedef <!choice bin> bin;
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4 Channels and Process Definitions

In Concurrent C0, names of channels are prefixed by “$” so they can be easily
distinguished from ordinary variables. A process definition then has the
general form

<A> $c pname (tl x1, ..., tn xn) {
process expression

}

where 2 is the session type of the channel ¢ provided by the process name
pname. Each of the arguments xi can be either a channel or an ordinary
variable.

We start by defining the process that send the representation of the
number 0.

bin $z zero () {
Sz.eps ; close(Sz);

}

We see that sending a label 1 along channel $c is written as $c.1 and
closing a channel $c is simply close ($c).

Next, we implement the successor process that receives a stream of
binary digits representing n along a channel z it uses, and sends a stream
of digits representing n along a channel y is provides. Recall from the last
lecture:

x : bin |- succ :: (y : bin)

succ =case x (b0 = y.bl;y«+ x
| bl = y.b0 ; succ
| e =y.bl;y.e;
wait z ; close y )

Following the style of C, the case construct is written as a switch statement
whose subject is a channel $c. We select the appropriate branch according
to the label received along $c.

bin $y succ(bin $x) {
switch ($x) {
case b0: {

Sy.bl; Sy = $x;
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case bl: {
Sy.b0; $y = succ(S$x);
}
case eps: |
Sy.bl; wait ($x); Sy.eps; close(Sy);

}

Forwarding y < z is written as an assignment $y = $x.

5 Functions Using Channels

In Concurrent C0, functions that return values may also use channels. For
example, here is a function to print a number in binary form, with the most
significant bit first (the way we are used to seeing numbers).

void print_bin_rec(bin $x) {
switch ($x) {

case b0: {
print_bin_rec ($x);
print ("0");
return;

}

case bl: {
print_bin_rec ($x);
print ("1");
return;

}

case eps: |
wait ($x);
return;

void print_bin(bin $x) {
print_bin_rec ($x);
print (".\n");
return;
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}

Now we can implement a simple main function for testing purposes.

6 Functions Using Channels

In Concurrent C0, functions that return values may also use channels. For
example, here is a function to print a number in binary form, with the most
significant bit first (the way we are used to representing numbers).

void print_bin_rec (bin $x) {
switch ($x) {

case b0: {
print_bin_rec ($x);
print ("0");
return;

}

case bl: {
print_bin_rec($x);
print ("1");
return;

}

case eps: {
wait ($x);
return;

void print_bin(bin $x) {
print_bin_rec ($x);
print (".\n");
return;

The following simple main function should print 100 . and finish. Note
that the call to print_lbin is sequential, while the calls to zero and succ
spawn new processes. We also see how each channel is created and then
used, so that at the end of the functions all channels have been used.

int main () {
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bin $z = zero();

bin $Sone = succ($z);

bin $two = succ($one);
bin S$three = succ ($two);
bin $four = succ ($three);
print_bin ($four);

return O;

7 Implementing a Counter Process

Recall that a counter has the interface
ctr = &{inc : ctr,val : bin}

that is, it receives either a inc or val label. There are no new ideas required to
represent this type. We just use external choice ?_ instead of internal choice
' _ where appropriate.

choice ctr {
<?choice ctr> inc;
<!choice bin> wval;
bi

typedef <?choice ctr> ctr;
Recall from the last lecture

x : bin Ik counter :: (c : ctr)

counter = case ¢ (inc = y <— suUcc < x ;
c < counter <—y
|val= c+ )

This is easy to transliterate:

ctr $c counter (bin $x) {
switch ($c) |
case inc: {
bin $y = succ ($x);
Sc = counter ($y);
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case val: {
Sc = $x;

}

We now write a more complicated main function, using two loops. For each
loop, we have to make sure that the type of any channel is loop invariant,
since we do not know how many times we go around the loop.

int main() {

bin $z = zero();

bin $Sone = succ($z);

bin $two = succ(Sone);

bin $three = succ ($two);

bin $four = succ(Sthree);

for (int i = 0; i < 1000; i++) {
Sfour = succ(S$four);

}

ctr $c = counter ($four); /* counter, initialized with 1004 =/

for (int i = 0; i < 2000; i++) {
Sc.inc;
}
Sc.val;
print_bin($c); /* 3004 =/
return O;

8 Lists and Stacks

As a final example, we program lists of binary numbers and stacks, where a
stack is like an object holding a list. This example demostrates the passing
of channels.

list = ®{nil : 1, cons : bin ® list}
stack = & {push : bin —o stack, pop : response}
response = @{none : 1,some : bin & stack}

We say “list”, but it is not represented in memory but a protocol by which
individual elements are sent across a channel. Note that type stack and
response are mutually recursive. In Concurrent CO:
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choice list {
< > nil;
<!bin ; !choice list> cons;

}i
typedef <!choice list> list;

choice stack {
<?bin ; 7?choice stack> push;
<!choice response> Pop;
Vi
choice response {
< > none;
<!bin ; ?choice stack> some;
i
typedef <?choice stack> stack;

Then we have processes Nil and Cons, somewhat similar to zero and
sSucCcC.

list S$n Nil () {
Sn.nil; close(Sn);

list $k Cons(bin $x, list $1) {
Sk.cons; send($k,S$x); Sk = $1;

Finally, the process implementing a stack. It is the sole client of the list
$1, which acts as a “local” storage.

stack $s stack_proc(list $1) {
switch ($s) {
case push: {
bin $x = recv($s);
list Sk = Cons($x,8$1);
$s = stack_proc (Sk);
}
case pop: {
switch ($1) {
case nil: {
wait ($1);
S$Ss.none; close(S$s);
}

case cons: {
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bin $x = recv($1l);
Ss.some; send(Ss, $x);
$s = stack_proc(S$l);

In the updated main function we just push one element onto the stack,
pop it off, and print it. We should now actually call pop again and wait for
the stack process to terminate, but we ran out of time during lecture so we
just raise an error. With this particular code we cannot reach the end of the
main function, so we have to comment out the return since Concurrent C0
detects and flags unreachable code.

int main () {
bin $z = zero();
bin $one = succ(S$z);
bin $two = succ(S$Sone);
bin $three = succ ($two);
bin $four = succ(Sthree);
for (int i = 0; i < 1000; i++) {
Sfour = succ(S$Sfour);
}
ctr $c = counter ($Sfour);
for (int i = 0; i < 2000; i++) {
Sc.inc;
}
Sc.val;
// print_bin($c); /* 3004 «/
list $n = Nil();
stack $s = stack_proc($n);
$s.push; send(S$s, Sc);
$s.pop;
switch ($s) {
case none: {
error ("impossible");
}
case some: |
bin $d = recv ($s);
print_bin($d);
error ("out of time");
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}

// return 0;

}
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