
Lecture Notes on
Session Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 22
November 27, 2018

1 Introduction

Some of the material in this lecture, specifically, the discussion of external
choice and the implementation of a counter, are already provided in the
notes for Lecture 21 on Message-Passing Concurrency. First, we have identity
(forwarding) and cut (spawn), which work parametrically over all types:

c← d implement c by d and terminate
x← P ; Q spawn [c/x]P , providing a fresh c, with client [c/x]Q

Here is a summary table of the message-passing constructs in our process
language so far, organized by type.

Type Provider Client Continuation Type
c : ⊕{` : A`}`∈L (c.k ; P) case c {`⇒ Q`}`∈L c : Ak

c : &{` : A`}`∈L case c {`⇒ P`}`∈L (c.k ; Q) c : Ak

c : 1 close c wait c ; Q (none)

Note that there is a complete symmetry here between internal and external
choice, only the role of provider and client are swapped. Compare that
to the functional world, where disjoint sums τ + σ and lazy pairs τ & σ
exhibit a number of differences. Partly, the additional simplicity gained is
due to the sequent calculus as compared to natural deduction. In particular,
in the sequent calculus all connectives have uniform right- and left-rules,
while in natural deduction the elimination rules for positive connectives
(1, τ ⊗ σ, τ + σ) all use case constructs and are therefore much different
from those for negative connectives (τ → σ, τ & σ). The other reason for the
simplicity here is linearity.

LECTURE NOTES NOVEMBER 27, 2018

http://www.cs.cmu.edu/~fp/courses/15814-f18/lectures/21-concurrency.pdf

L22.2 Session Types

2 Passing Channels

Even though the examples in this course do not use them, we can also ask
what the message-passing counterparts to τ→ σ and τ ⊗ σ are. The first one
is easy to guess: A(B corresponds to receiving a channel d of type A and
continuing with type B. Conversely, A⊗B corresponds to sending a channel
d of type A. From this we can straightforwardly reconstruct the typing rules,
but we refer the interested reader, for example, to Balzer et al. [BP17].

Type Provider Client Continuation Type
c : ⊕{` : A`}`∈L (c.k ; P) case c {`⇒ Q`}`∈L c : Ak

c : &{` : A`}`∈L case c {`⇒ P`}`∈L (c.k ; Q) c : Ak

c : 1 close c wait c ; Q (none)

c : A(B x← recv c ; P send c d B
c : A⊗B send c d x← recv c ; Q B

Again, we see a symmetry between A(B and A⊗B, while in a functional
language, functions τ → σ and eager pairs τ ⊗ σ are quite different.

3 Session Types in Concurrent C0

In the remainder of this lecture we demonstrate the robustness and practi-
cality of these somewhat abstract ideas about message-passing concurrent
computation by presenting a concrete instantiation of the ideas in Concur-
rent C0 [WPP16, BP17].

Instead of the notations of linear logic, Concurrent C0 uses more tra-
ditional notation of session types [Hon93]. Concurrent C0 is based on C0 1,
a type-safe and memory-safe subset of C0 augmented with contracts. C0
is used in the freshman-level introductory computer science class at CMU.
Many of the syntax decision are motivated by consistency with C and should
be viewed in this light.

First, session types are enclosed in angle brackets < ... > to make lex-
ing and parsing them conservative over C0 (and C). Any sending interaction
from the provider perspective is written as !_ while a receiving interaction
is written as ?_.

A choice, whether it is internal (⊕) or external (&), must be declared with
a name. This declaration is modeled after a struct declaration in C. So

{`1 : A1, . . . , `n : An}
1http://c0.typesafety.net

LECTURE NOTES NOVEMBER 27, 2018

http://c0.typesafety.net

Session Types L22.3

is written as

choice cname {
< A1 > l1;
...
< An > ln;

};

where cname is the name of this particular choice.
For example, to represent binary numbers

bin = ⊕{b0 : bin, b1 : bin, ε : 1}

we would start by declaring the choice

choice bin {
< ... > b0;
< ... > b1;
< ... > eps;

};

How do we fill in the continuation session types inside the angle brackets?
The first two are straightforward: They are of type bin, which is the internal
choice over bin.

choice bin {
<!choice bin> b0;
<!choice bin> b1;
< ... > eps;

};

In the case of epsilon (label eps) we close the channel without a continuation,
which is written as the empty session type.

choice bin {
<!choice bin> b0;
<!choice bin> b1;
< > eps;

};

For good measure, we define the type bin to stand for the internal choice
!choice bin:

typedef <!choice bin> bin;

LECTURE NOTES NOVEMBER 27, 2018

L22.4 Session Types

4 Channels and Process Definitions

In Concurrent C0, names of channels are prefixed by ‘$’ so they can be easily
distinguished from ordinary variables. A process definition then has the
general form

<A> $c pname (t1 x1, ..., tn xn) {
... process expression ...

}

where A is the session type of the channel c provided by the process name
pname. Each of the arguments xi can be either a channel or an ordinary
variable.

We start by defining the process that send the representation of the
number 0.

bin $z zero () {
$z.eps ; close($z);

}

We see that sending a label l along channel $c is written as $c.l and
closing a channel $c is simply close($c).

Next, we implement the successor process that receives a stream of
binary digits representing n along a channel x it uses, and sends a stream
of digits representing n along a channel y is provides. Recall from the last
lecture:

x : bin
 succ :: (y : bin)

succ = case x (b0⇒ y.b1 ; y ← x
| b1⇒ y.b0 ; succ
| ε⇒ y.b1 ; y.ε ;

wait x ; close y)

Following the style of C, the case construct is written as a switch statement
whose subject is a channel $c. We select the appropriate branch according
to the label received along $c.

bin $y succ(bin $x) {
switch ($x) {

case b0: {
$y.b1; $y = $x;

}

LECTURE NOTES NOVEMBER 27, 2018

Session Types L22.5

case b1: {
$y.b0; $y = succ($x);

}
case eps: {

$y.b1; wait($x); $y.eps; close($y);
}

}
}

Forwarding y ← x is written as an assignment $y = $x.

5 Functions Using Channels

In Concurrent C0, functions that return values may also use channels. For
example, here is a function to print a number in binary form, with the most
significant bit first (the way we are used to seeing numbers).

void print_bin_rec(bin $x) {
switch ($x) {

case b0: {
print_bin_rec($x);
print("0");
return;

}
case b1: {

print_bin_rec($x);
print("1");
return;

}
case eps: {

wait($x);
return;

}
}

}

void print_bin(bin $x) {
print_bin_rec($x);
print(".\n");
return;

LECTURE NOTES NOVEMBER 27, 2018

L22.6 Session Types

}

Now we can implement a simple main function for testing purposes.

6 Functions Using Channels

In Concurrent C0, functions that return values may also use channels. For
example, here is a function to print a number in binary form, with the most
significant bit first (the way we are used to representing numbers).

void print_bin_rec(bin $x) {
switch ($x) {

case b0: {
print_bin_rec($x);
print("0");
return;

}
case b1: {

print_bin_rec($x);
print("1");
return;

}
case eps: {

wait($x);
return;

}
}

}

void print_bin(bin $x) {
print_bin_rec($x);
print(".\n");
return;

}

The following simple main function should print 100. and finish. Note
that the call to print_bin is sequential, while the calls to zero and succ
spawn new processes. We also see how each channel is created and then
used, so that at the end of the functions all channels have been used.

int main() {

LECTURE NOTES NOVEMBER 27, 2018

Session Types L22.7

bin $z = zero();
bin $one = succ($z);
bin $two = succ($one);
bin $three = succ($two);
bin $four = succ($three);
print_bin($four);
return 0;

}

7 Implementing a Counter Process

Recall that a counter has the interface

ctr = &{inc : ctr, val : bin}

that is, it receives either a inc or val label. There are no new ideas required to
represent this type. We just use external choice ?_ instead of internal choice
!_ where appropriate.

choice ctr {
<?choice ctr> inc;
<!choice bin> val;

};

typedef <?choice ctr> ctr;

Recall from the last lecture

x : bin
 counter :: (c : ctr)

counter = case c (inc⇒ y ← succ← x ;
c← counter← y

| val⇒ c← x)

This is easy to transliterate:

ctr $c counter(bin $x) {
switch ($c) {

case inc: {
bin $y = succ($x);
$c = counter($y);

}

LECTURE NOTES NOVEMBER 27, 2018

L22.8 Session Types

case val: {
$c = $x;

}
}

}

We now write a more complicated main function, using two loops. For each
loop, we have to make sure that the type of any channel is loop invariant,
since we do not know how many times we go around the loop.

int main() {
bin $z = zero();
bin $one = succ($z);
bin $two = succ($one);
bin $three = succ($two);
bin $four = succ($three);
for (int i = 0; i < 1000; i++) {

$four = succ($four);
}
ctr $c = counter($four); /* counter, initialized with 1004 */
for (int i = 0; i < 2000; i++) {

$c.inc;
}
$c.val;
print_bin($c); /* 3004 */
return 0;

}

8 Lists and Stacks

As a final example, we program lists of binary numbers and stacks, where a
stack is like an object holding a list. This example demostrates the passing
of channels.

list = ⊕{nil : 1, cons : bin⊗ list}

stack = & {push : bin(stack, pop : response}
response = ⊕{none : 1, some : bin⊗ stack}

We say “list”, but it is not represented in memory but a protocol by which
individual elements are sent across a channel. Note that type stack and
response are mutually recursive. In Concurrent C0:

LECTURE NOTES NOVEMBER 27, 2018

Session Types L22.9

choice list {
< > nil;
<!bin ; !choice list> cons;

};

typedef <!choice list> list;

choice stack {
<?bin ; ?choice stack> push;
<!choice response> pop;

};
choice response {

< > none;
<!bin ; ?choice stack> some;

};
typedef <?choice stack> stack;

Then we have processes Nil and Cons, somewhat similar to zero and
succ.

list $n Nil() {
$n.nil; close($n);

}

list $k Cons(bin $x, list $l) {
$k.cons; send($k,$x); $k = $l;

}

Finally, the process implementing a stack. It is the sole client of the list
$l, which acts as a “local” storage.

stack $s stack_proc(list $l) {
switch ($s) {

case push: {
bin $x = recv($s);
list $k = Cons($x,$l);
$s = stack_proc($k);

}
case pop: {

switch ($l) {
case nil: {

wait($l);
$s.none; close($s);

}
case cons: {

LECTURE NOTES NOVEMBER 27, 2018

L22.10 Session Types

bin $x = recv($l);
$s.some; send($s, $x);
$s = stack_proc($l);

}
}

}
}

}

In the updated main function we just push one element onto the stack,
pop it off, and print it. We should now actually call pop again and wait for
the stack process to terminate, but we ran out of time during lecture so we
just raise an error. With this particular code we cannot reach the end of the
main function, so we have to comment out the return since Concurrent C0
detects and flags unreachable code.

int main() {
bin $z = zero();
bin $one = succ($z);
bin $two = succ($one);
bin $three = succ($two);
bin $four = succ($three);
for (int i = 0; i < 1000; i++) {

$four = succ($four);
}
ctr $c = counter($four);
for (int i = 0; i < 2000; i++) {

$c.inc;
}
$c.val;
// print_bin($c); /* 3004 */
list $n = Nil();
stack $s = stack_proc($n);
$s.push; send($s, $c);
$s.pop;
switch ($s) {

case none: {
error("impossible");

}
case some: {

bin $d = recv($s);
print_bin($d);
error("out of time");

}

LECTURE NOTES NOVEMBER 27, 2018

Session Types L22.11

}
// return 0;

}

References

[BP17] Stephanie Balzer and Frank Pfenning. Manifest sharing with
session types. In International Conference on Functional Programming
(ICFP), pages 37:1–37:29. ACM, September 2017.

[Hon93] Kohei Honda. Types for dyadic interaction. In 4th International
Conference on Concurrency Theory, CONCUR’93, pages 509–523.
Springer LNCS 715, 1993.

[WPP16] Max Willsey, Rokhini Prabhu, and Frank Pfenning. Design and
implementation of Concurrent C0. In Fourth International Workshop
on Linearity, pages 73–82. EPTCS 238, June 2016.

LECTURE NOTES NOVEMBER 27, 2018

	Introduction
	Passing Channels
	Session Types in Concurrent C0
	Channels and Process Definitions
	Functions Using Channels
	Functions Using Channels
	Implementing a Counter Process
	Lists and Stacks

