Lecture Notes on
Closures

15-814: Types and Programming Languages
Frank Pfenning

Lecture 17
November 1, 2018

1 Introduction

In the S machine, we still freely substitute into expressions, which goes
somewhat against the idea that expressions should be compiled. Also,
we directly store expressions in memory cells, even though their space
requirements are not clear and not small.

In this lecture we first review the S machine and then update it to avoid
substitution into expressions. Instead we construct environments to hold the
bindings for the variables in an expression and then closures to pair up an
environment with an expression as a closed value.

2 Semantic Objects in the S Machine

We briefly summarize the S machine from the previous lecture. At its core
are destinations d (also called addresses) to hold values in the store. The only
operation on them is to generate fresh ones. The state of the S machine
consists of the following objects:

eval e d. Evaluate expression e, storing the result in destination d.

Icell d c. Cell d has contents c. The exclamation mark ‘! indicates that cells
are persistent, which means the value of a cell can never change and
will be available during the whole remainder of the computation.

cont d k d’. Continuation k receives a value in destination in d and puts
result into d'.

LECTURE NOTES NOVEMBER 1, 2018

L17.2

Closures

First, a summary of the three types we have considered so far.

Expressions e = T (variables)
| d (destinations)
| Az.el|erer (—)
| () |casee{() =€} (1)
| (e1,e2) | case e {(x1,12) = €'} (®)
Continuations k == (_e2) | (d1_) (=)
; case _{()=¢€'} (1)

(e2) [{di,) | case _{(z1,72) = €'} (®)
Cell Contents ¢ == ()| (di,d2) | Az.e
From these examples we can readily extrapolate the rest of the S machine. We

just show the possible cell contents, organized by type, thereby describing
the possible shapes of memory.

Cell Contents ¢ == () (1)
| (di,d2) (®)
| 4-d (+)
| foldd (p)
| e e2) (&)
| Az.e (=)

We assign types to the store by typing each destination and then checking
for consistent usage. We use

Store Typing X = dy:71,...,dy 7Ty
where all the destinations d; are distinct. We type semantics objects as

YFd:Tt YFe:T
Y F (eval e d) obj

YFd:T YFcuT
Y F (Icell d ¢) obj

YFdi:mm YbFdo:m YHk+-m=m1
Y F (cont dy k d2) obj

LECTURE NOTES NOVEMBER 1, 2018

Closures L17.3

and the contents of cells with the following rules:

Skdi:n Shdo:m

—— (C-1) (C-®)

SE() 1 Yk (di,da) : 11 @ T2

YXFd:r (iel) Yhd:[pa.t/alT

: (C-+) (C-p)
Sthi-d:Yeep(l:m) Y Ffoldd: pa.t
YFei:m XhFer:m Yx:Tmibe:

Ln SRENTHS A (e,
Y F (e, e2) i & 1o YFM.enm =1

The dynamics is given with the following rules:

lcelld c,eval d d’ +— lcell d' ¢

eval () d — lcelld ()
eval (casee {() = ¢€'})d +— evaled,contd (case _{()=¢'})d (dfresh)
Icell d (),contd (case _{()=¢€'})d — evaled

eval (Az.e)d +— lcelld (\z.e)

eval (e1e2) d +— evalej dj,contd; (_eg)d (dy fresh)

Icell dy c1,contdy (_ez) d +— evales do,contdy (dy_) d (do fresh)
Icell di (Ax.¢€)),!cell dg ca,cont dy (di) d +— eval ([d2/z]€)) d

eval (e1,ea) d — evalej di,contd; (_,es)d (dy fresh)

Icell dy ¢1,cont dy (_,ea) d +— eval eg do,cont dy (dy,_) d (dg fresh)

Icell dy co, cont do <d1,_> d — lcelld <d1, d2>

eval (case e {(x1,29) = €'})d +— evaled,contd (case _ {(z1,22) = €'}) d’
(d fresh)

Icell d (dq,ds2),cont d (case _ {{x1,22) = €'})d +— eval ([di/x2,d2/x2)e") d

eval (fixxz.e)d — eval ([fixx.e/zle) d

3 Environments

For the eager constructs of the language, this representation of values in the
store is adequate, if perhaps consuming a bit too much space. For example,

LECTURE NOTES NOVEMBER 1, 2018

L17.4 Closures

the value 1 at destination dy would be

Icell dy (fold dy),
Icell dy (s - d2),
Icell do (fold ds),
Icell d3 (z - dy),
Icell dy ()

Up to a constant factor, this is what one might expect.

However, expressions such as the values Az. e and {e1, ez) are treated not
quite in the way we might envision in a lower-level semantics. Functions
should be compiled to efficient machine code, which is justified in part
by saying that we can not observe their internal forms. Moreover, in the
dynamics of the S machine we substitute destinations into expressions to
obtain new ones that we then evaluate. In a lower-level implementation,
such a substitution is unrealistic. Instead, we compile variables so they
reference the store, either on a stack or in the heap. While we don’t model
this distinction here, we would still like to model that code is essentially
immutable, and the values held in variables are stored in memory.

The first key idea is not to substitute into an expression, but instead
maintain an environment that maps variables to values. In the case of the K
machine, these values would be the same as we had in our original, high-
level semantics. In the case of the S machine, the values are simply store
addresses where the value is represented.

Environments n == di/z1,...,dy/zy

We require that all the variables x; are distinct so that the value of each
variable is uniquely determined. The destinations d; however do not need
to be distinct: it is perfectly possible that two different program variables
contain references to the same storage cell.

Previously we were careful to evaluate only closed expressions. Now
we evaluate expressions in an environment that substitutes destinations for
all of its free variables. Of course, the type of the destination must match
the type of the variables it substitutes for. To ensure this we use the typing
judgment X - 7 : I" defined by the two rules

YXkn:T' YXFd:T
SE(:() BF(dfa): [Tair)
Now evaluation depends on an environment
YFd:7 YXFn:T T'kFe:7
Y Feval e dobj

LECTURE NOTES NOVEMBER 1, 2018

Closures L17.5

Compared to the S machine in the previous lecture, expressions now no
longer contain destinations, so the typing judgments for expressions reverts
tobe pure, I' - e : 7.

4 Evaluation with Environments

Now we revisit the rules of the S machine in the presence of environments.
Let’s call this new machine the S, machine. Previously we had

lcelld c,eval dd s !celld ¢ (Smachine)

Now, this becomes a rule for variables which must be defined in the environ-
ment
lcell d c,evalnz d + lcelld ¢ (d/z €n)

For functions, we had

eval (Az.e)d +— lcelld (Azx.e) (S machine)

Now we have to pair up the environment with the A-abstraction in order to
form a closure. It is called a closure because it “closes up” the expression e
all of whose free variables are defined in 7.

evaln (Ax.e)d — lcelld (n,A\x.¢e)

For an application e; ea we have to evaluate e;, but we also have to remem-
ber the environment in which e; makes sense. In a another implementation,
this might be captured in an environment stack. Here, we just keep track of
the environment in the continuation, building a temporary closure (7, e2).
After evaluation of ¢; we continue the evaluation of es in the saved environ-
ment.

eval) (e1e2) d +— evalnep di,contd; (_(n,e2))d (d; fresh)
Icell dy ¢q1,cont dy (_(n,e2)) d +— evalneyda,contds (dy_)d (dofresh)

The most interesting rule is the one where we actually pass the argument to
the function. Previously, we just substituted the address of the argument
value; now we add it to the environment.

Icell dy (n, A\x. €}),!cell dg ca,cont dy (dy _) d + eval (n,ds/z) €] d

It is easy to see that this environment is the correct one. On the left-hand
side, given the store typing ¥, we have

YFn:T and Tk Az.e):7

LECTURE NOTES NOVEMBER 1, 2018

L17.6 Closures

for some I" and 7. By inversion, we also have
C,x:mbel:im
with 7 = 7 — 7. Also
YF(n,de/x): (T, : 19)

since X - dy : 79 — 11 and X dy : 79 from inversion on the continuation
typing.

There is nothing much interesting in the remaining rules, but we will
show those for lazy pairs because they also involve closures precisely be-
cause they are lazy.

eval n (ef) e d — lcelld (n, {ee)yer)
evaln(e-i)d — evalnedi,contd; (_-i)d (d; fresh)
Icell dy (1, {es)yep),contdy (_-i)d — evalne;d

At this point we might ask if we have actually satisfied our goal of
storing only data of fixed size. We imagine that in an implementation the
code is compiled, with variables becoming references into an environment.
Then the expression part of a closure is a pointer to code that in turn expect
to be passed the address of the environment. As such, it is only the size of
the environment which is of variable size. However, it can be predicted at
the time of compilation. In our simple model, it consists of bindings for all
variables that might occur free in e, that is, all variable in I' if e was checked
with I' - e : 7. We can slightly improve on this, keeping only the variables
of I that actually occur free in e. Thus, while the space for different closures
is of different size, we can calculate it at compile time, and it is proportional
to the number of free variables in e.

5 Fixed Points

Fixed points are interesting. The rule of the S machine
eval (fixx.e)d ~— eval ([fixxz.e/x]e) d

(and also the corresponding rule of the K machine) substitutes an expression
for a variable, while all other rules in our call-by-value language just sub-
stitute either values (K machine) or destinations (S machine). Since one of
our goals is to eliminate substitution into expressions, we should change

LECTURE NOTES NOVEMBER 1, 2018

Closures L17.7

this rule somehow. First idea might be to just add the expression to the
environment, but a rule such as

evaln (fixz.e)d — eval (n,(fixz.e)/z)ed 2?7

would add expressions to the environment, upsetting our carefully con-
structed system. In particular, looking up a variable doesn’t necessarily
result in a destination. Perhaps even worse, the expression fix z. e is not
closed, so at the very least we’d have to construct another closure.

eval) (fixz.e)d — eval (n,(n,fixz.e)/x)ed ?2?

We pursue here a different approach, namely evaluating the body of the
tixed point as if d already held a value!

eval n (fixz.e)d — eval (n,d/z)ed

This upsets another invariant of our semantics so far, namely that any desti-
nation in the environment is defined in the store. This new rule speculates
that d will contain a value by the time e might reference the variable z.
This is not a trivial matter. Consider the expression fix . z in the empty
environment (-).

eval (-) (fixz.x) dy — eval (do/z) z dp
At this point the rule for variables
lcelld c,evalnxd +— lcelld ¢ (d/z €n)

cannot be applied because destination dy does yet hold a value. In other
words, the progress property fails!

This situation can indeed arise in Haskell where it is called a black hole.
It is actually detected at runtime and a “black hole” is reported during
execution. For example,

blackHole :: Int
blackHole = blackHole

main = print blackHole
compiles, but running it reports

black_hole: <<loop>>

LECTURE NOTES NOVEMBER 1, 2018

L17.8 Closures

We can imagine how this may be done: when the fixed point is executed
we actually allocate a destination for its value and initialize it with a recog-
nizable value indicating it has not yet been written. We may then modify
the progress theorem to account for a black hole as a third form of outcome
of the computation, besides a value or divergence.

In a call-by-value language there is a different solution: we can restrict
the body of the fixed point expression to be a value, where the fixed point
variable x does not count as a value. We believe! that this guarantees that
the destination of the fixed point will always be defined before the fixed
point variable x is encountered. The revised rule then reads

eval n (fixz.v)d +— eval (n,d/x)vd

where we have to be careful not to count = as a value. Evaluating the
expression v will construct its representation in the store.
As an example, consider the following definition of natural number
streams:
nat (z: 1)+ (s: nat)
zero = fold (z- ())

12

stream ~ nat & stream

Zeros . stream
zeros = fixz.fold (zero, z)

The stream zeros corresponds to a potentially unbounded number of zeros,
computed lazily. We see that fold (zero, z) is a value even if x is not, since
any lazy pair is a value. Starting with the empty environment and initial
destination dy, we evaluate zeros as follows:

eval (+) (fix . fold (zero, z)) dy

eval (dy/z) (fold (zero, z)) dy

eval (do/x) (zero, x| dy,cont d; (fold _) dy (dy fresh)
Icell dy ((do/x), {zero, z)), cont d; (fold _) dy

Icell dy <(d0/x), 4287’0, .%'D>, Icell d() (fOld dl)

11117

At this point we have constructed a store with a circular chain of references:
cell dy contains a reference to di, and d; contains a reference to dj in the

'but have not proven

LECTURE NOTES NOVEMBER 1, 2018

Closures L17.9

environment stored with the closure. If we define

hd : stream — stream
hd = Ms.(unfolds) -1
tl . stream — stream
tI = MAs.(unfolds)-r

we should be able to check that hd zeros returns (a representation of) zero,
while tail zeros returns (a representation of) zeros.

It is a good exercise to check that the ascending function below behaves
as expected, where ascending "n' computes an ascending stream of natural
numbers starting at "n .

succ : nat — nat

succ = An.fold (s n)

ascending : nat — stream

ascending = An.fold (n,ascending (succ n))

LECTURE NOTES NOVEMBER 1, 2018

	Introduction
	Semantic Objects in the S Machine
	Environments
	Evaluation with Environments
	Fixed Points

