
Lecture Notes on
General Recursion & Recursive Types

15-814: Types and Programming Languages
Ryan Kavanagh

Lecture 8
Thursday, September 27, 2018

1 Introduction

To date, our programming examples have been limited to types with no
self-referential structure: functions, sums, and products. Yet many useful
types are self-referential, such as natural numbers, lists, streams, etc. Not
only have our types not exhibited any form of self-reference, but neither
have our programs. Today, we will see how to capture recursion in a typed
setting, before then expanding our type system with recursive types. Before
doing so, we make a brief digression to generalize binary sums (Lecture 6)
to finite sums. Though we could encode finite sums as iterated or nested
binary sums, the generalization is straightforward and it will allow us to
use more descriptive labels for our injections than left “l” and right “r”.

2 Finite sums

We generalize the definition of binary sums to finite sums indexed by some
finite set I . We begin by extending our syntax as follows:

τ ::= · · ·

|
∑
I

(i : τi) sum of types τi tagged with i for i ∈ I

e ::= · · ·
| i · e inject e with tag i
| case e {i · xi ⇒ ei}i∈I elimination form for finite sums

LECTURE NOTES THURSDAY, SEPTEMBER 27, 2018



L8.2 General Recursion & Recursive Types

We can use this syntax to give a more suggestive definition of the bool type:

bool = (t : 1) + (f : 1)

true = t · 〈 〉
false = f · 〈 〉

if e then et else ef = case e {t · ⇒ et | f · ⇒ ef}.

The statics and the dynamics generalize from the binary case in the obvious
manner; the reader is referred to [Har16, § 11.2] for details.

3 General recursion

Let us think back to how we implemented recursion in the simply-typed
λ-calculus. We wanted to define a recursive function

F = · · ·F · · · ,

but found that we could not directly do so because of the circular or self-
referential nature of the definition. To get around this, we abstracted out the
F on the right hand side

F = (λf. · · · f · · · )F

and observed that we could define F as the fixed point of ζ = λf. · · · f · · · .
We constructed this fixed point using the fixed point combinator Y, getting

F = Yζ = ζ(Yζ) = · · ·Yζ · · · = · · ·F · · ·

as desired. Though we cannot encode the fixed point combinator in our
typed setting, we can introduce a new term former and imbue it with the
appropriate semantics. To this end, we introduce a new fixed point construct
fix(x.e), with the intention that, as was the case with Y, we get

fix(f. · · · f · · · ) = · · ·fix(f. · · · f · · · ) · · · .

Its statics are captured by the rule

Γ, x : τ ` e : τ

Γ ` fix(x.e) : τ
(FIX)

LECTURE NOTES THURSDAY, SEPTEMBER 27, 2018



General Recursion & Recursive Types L8.3

The intention is that x stand for any self-referential use of e in e. The
operational behaviour is captured by the rule

fix(x.e) 7→ [fix(x.e)/x]e
(FIX-STEP)

With this construction, we can easily implement a divergent term:

loop = fix(x.x).

Then loop 7→ [fix(x.x)/x]x = loop.
This isn’t a very interesting example, so let us consider recursive func-

tions on the natural numbers. Define the type of natural numbers to be

nat “=” (z : 1) + (s : nat).

This definition is dubious because we are defining nat in terms of itself:
the type nat appears on both sides of the equation and it is unclear that a
unique solution exists. We will give a correct definition in section 4, but
let us assume the above definition for the sake of illustrating fix(x.e). We
define numerals as follows:

0 = z · 〈 〉,
n+ 1 = s · n.

We can now implement various functions on natural numbers:

pred = λn.case n {z · ⇒ 0 | s · n′ ⇒ n′}
add = fix(f.λn.λm.case n {z · ⇒ m | s · n′ ⇒ s · (fn′m)})
mult = fix(f.λn.λm.case n {z · ⇒ m | s · n′ ⇒ add(m)(fn′m)})
fact = fix(f.λn.case n {z · ⇒ 1 | s · n′ ⇒ mult(n)(fn′)})

To illustrate the typing rule for the fix(x.e) construct, we show that

· ` add : nat→ nat→ nat.

Let Γ = f : nat→ nat→ nat, n : nat,m : nat. Then:

Γ ` n : (z : 1) + (s : nat)
(VAR)

Γ, : 1 ` m : nat
(VAR)

D

Γ ` case n {z · ⇒ m | s · n′ ⇒ s · (fn′m)}
(E-+)

f : nat→ nat→ nat, n : nat ` λm.case n {· · · } : nat→ nat
(LAM)

f : nat→ nat→ nat ` λn.λm.case n {· · · } : nat→ nat→ nat
(LAM)

· ` fix(f.λn.λm.case n {· · · }) : nat→ nat→ nat
(FIX)

LECTURE NOTES THURSDAY, SEPTEMBER 27, 2018



L8.4 General Recursion & Recursive Types

where Tf = nat→ nat→ nat and D is the derivation:

Γ, n′ : nat ` f : Tf

(VAR)
Γ, n′ : nat ` m : nat

(VAR)

Γ, n′ : nat ` fn′ : nat→ nat
(APP)

Γ, n′ : nat ` n′ : nat
(VAR)

Γ, n′ : nat ` fn′m : nat
(APP)

Γ, n′ : nat ` s · (fn′m) : nat
(I-+)

We can also define the type of lists of elements of type τ :

τ list “=” (nil : 1) + (cons : τ ⊗ (τ list)).

We can then write an append function, that concatenates two lists:

append = fix(a.λl.λr.case l {nil · ⇒ r

| cons · p⇒ case p {〈h, t〉 ⇒ cons · 〈h, atr〉}})

In assignment 2, you are asked to explore lazy products τ & σ. It is interesting
to reflect on what would have happened had we used lazy products instead
of eager products in the definition of τ list. That is, what values inhabit the
following type:

τ mystery “=” (nil : 1) + (cons : τ & (τ mystery))?

4 Recursive types

We have so far played fast and loose with our definitions of recursive types.
We defined recursive types as solutions to type equations, where the type we
were defining appeared on both sides of the equation. It is unclear whether
a solution to such an equation exists, let alone if it is unique.

To put recursive types on surer footing, we begin by extending our
syntax of types and terms:

τ ::= · · ·
| ρ(α.τ) recursive type

e ::= · · ·
| fold(e) fold e into a recursive type
| unfold(e) unfold e out of a recursive type

LECTURE NOTES THURSDAY, SEPTEMBER 27, 2018



General Recursion & Recursive Types L8.5

We remark that α may appear bound in τ , i.e., that τ may depend on α.
Indeed, the intention is that the bound occurrences of α in τ stand in for any
self-reference in τ .

The intention is that we “fold” an expression e of type [ρ(α.τ)/α]τ into
the recursive type ρ(α.τ):

Γ ` e : [ρ(α.τ)/α]τ

Γ ` fold(e) : ρ(α.τ)
(FOLD)

Symmetrically, given an expression e of type ρ(α.τ), we can “unfold” its
type to get an expression of type [ρ(α.τ)/α]τ :

Γ ` e : ρ(α.τ)

Γ ` unfold(e) : [ρ(α.τ)/α]τ
(FOLD)

To illustrate these concepts, we revisit the type nat. We define

nat = ρ(α.(z : 1) + (s : α)).

We then define

0 = fold(z · 〈 〉),
n+ 1 = fold(s · n).

These definitions type-check:

· ` 〈 〉 : 1
(I-1)

· ` z · 〈 〉 : (z : 1) + (s : ρ(α.(z : 1) + (s : α)))
(I-+)

· ` fold(z · 〈 〉) : ρ(α.(z : 1) + (s : α))
(FOLD)

and
· ` n : ρ(α.(z : 1) + (s : α))

· ` s · n : (z : 1) + (s : ρ(α.(z : 1) + (s : α)))
(I-+)

· ` fold(s · n) : ρ(α.(z : 1) + (s : α))
(FOLD)

We can recover our examples from Section 3 by introducing fold(·) and
unfold(·) in the appropriate places:

pred = λn.case (unfold(n)) {z · ⇒ 0 | s · n′ ⇒ n′}
add = fix(f.λn.λm.case (unfold(n)) {z · ⇒ m | s · p⇒ fold(s · (fpm))})
mult = fix(f.λn.λm.case (unfold(n)) {z · ⇒ m | s · n′ ⇒ add(m)(fn′m)})
fact = fix(f.λn.case (unfold(n)) {z · ⇒ 1 | s · n′ ⇒ mult(n)(fn′)})

LECTURE NOTES THURSDAY, SEPTEMBER 27, 2018



L8.6 General Recursion & Recursive Types

We give terms inhabiting recursive types an eager dynamics:

e val
fold(e) val

e 7→ e′

fold(e) 7→ fold(e′)

e 7→ e′

unfold(e) 7→ unfold(e′)

fold(e) val

unfold(fold(e)) 7→ e

These definitions satisfy the usual progress and preservation properties.
We illustrate our dynamics by considering the following example over

the natural numbers, recalling that 1 ≡ fold(s · 0):

add 1 2

≡ fix(f.λn.λm.case (unfold(n)) {z · ⇒ m | s · p⇒ fold(s · (fpm))})1 2

7→ (λn.λm.case (unfold(n)) {z · ⇒ m | s · p⇒ fold(s · (add pm))})1 2

7→ (λm.case (unfold(1)) {z · ⇒ m | s · p⇒ fold(s · (add pm))})2
7→ case unfold(fold(s · 0)) {z · ⇒ 2 | s · p⇒ fold(s · (add p 2))}
7→ fold(s · add 0 2)

7→∗ fold(s · 2)

≡ 3

References

[Har16] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, 2nd edition, 2016.

LECTURE NOTES THURSDAY, SEPTEMBER 27, 2018


	Introduction
	Finite sums
	General recursion
	Recursive types

