
Lecture Notes on
Sum Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 6
September 21, 2018

1 Introduction

So far in this course we have introduced only basic constructs that exist in
pretty much any programming language: functions and Booleans. There
may be details of syntax and maybe some small semantics differences such
as call-by-value vs. call-by-name, but any such differences can be easily
explained and debated within the framework set out so far.

At this point we have a choice between several different directions in
which we can extend our inquiry into the nature of programming language.

Precision of Types. We can make types more or less precise in what they
say about the program. For example, we might have type containing
just true and another containing just false. At the end of this spectrum
would be dependent types so precise that they can completely specify
a function.

Expressiveness of Types. We can analyze which programs can not be typed
and make the type system accept more programs, as long as it re-
mains sound.

Computational Mechanisms. So far computation in our language is value-
oriented in that evaluating an expression returns a value, but it cannot
have any effect such as mutating a store, performing input or output,
raising an exception, or execute concurrently.

Level of Dynamics. The rules for computation are at a very high level of
abstraction and do not talk about, for example, where data might be

LECTURE NOTES SEPTEMBER 21, 2018

L6.2 Sum Types

allocated in memory, or how functions are compiled. A language ad-
mits a range of different operational specifications at different levels
of abstraction.

Equality and Reasoning. We have introduced typing rules, but no infor-
mal or formal system for reasoning about programs. This might in-
clude various definitions when we might consider programs to be
equal, and rules for establishing equality. Or it might include a lan-
guage for specifying programs and rules for establishing that they
satisfy their specifications. Under this general heading we might also
consider translations between different languages and showing their
correctness.

All of these are interesting and the subject of ongoing research in program-
ming languages. At the moment, we do not yet have enough infrastructure
to make most of these questions rich and interesting. So in the next few
lectures we will introduce additional types and corresponding expressions
to make the language expressive enough to recover partial recursive func-
tions over interesting forms of data such as natural numbers, lists, trees,
etc.

2 Disjoint Sums

Type theory is an open-ended enterprise: we are always looking to capture
types of data, modes of computation, properties of programs, etc. One
important building block are type constructors that build more complicated
types out of simpler ones. The function type constructor τ1 → τ2 is one
example. Today we see another one: disjoint sums τ1 + τ2. A value of this
type either a value of type τ1 or a value of type τ2 tagged with the information
about which side of the sum it is. This last part is critical and distinguishes it
from the union type which is not tagged and much more difficult to integrate
soundly into a programming language. We use l and r as tags or labels and
write l · e1 for the expression of type τ1 + τ2 if e1 : τ1 and, analogously, r · e2
if e2 : τ2.

Γ ` e1 : τ1

Γ ` l · e1 : τ1 + τ2

Γ ` e2 : τ2

Γ ` r · e2 : τ1 + τ2

These two forms of expressions allow us to form element of the disjoint
sum. To destruct such a sum we need a case construct that discriminates

LECTURE NOTES SEPTEMBER 21, 2018

Sum Types L6.3

based on whether element of the sum is injected on the left or on the right.

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case e {l · x1 ⇒ e1 | r · x2 ⇒ e2} : τ

Let’s talk through this rule. The subject of the case should have type τ1 + τ2
since this is what we are discriminating. If the value of this type is l · v1
then by the typing rule for the left injection, v1 must have type τ1. Since the
variable x1 stands for v1 is should have type τ1 in the first branch. Similarly,
x2 should have type τ2 in the seond branch. Since we cannot tell until the
program executes which branch will be taken, just like the conditional in
the last lecture, we require that both branches have the same type τ , which
is also the type of the whole case.

From this, we can also deduce the value and stepping judgments for the
new constructs.

e val
l · e val

val/l
e val
r · e val

val/r

e 7→ e′

l · e 7→ l · e′
7→/l e 7→ e′

r · e 7→ r · e′
7→/r

e 7→ e′

case e {. . .} 7→ case e′ {. . .}
7→/case1

v1 val

case (l · v1) {l · x1 ⇒ e1 | . . .} 7→ [v1/x1]e1
7→/case/l

v2 val

case (r · v2) {. . . | r · x2 ⇒ e2} 7→ [v2/x2]e2
7→/case/r

We have carefully constructed our rules so that the new cases in the
preservation and progress theorems should be straightforward.

Theorem 1 (Preservation)
If · ` e : τ and e 7→ e′ then · ` e′ : τ

Proof: Before we dive into the new case, a remark on the rule. You can
see that the type of an expression l · e1 is inherently ambiguous, even if we
know that e1 : τ1. In fact, it will have the type τ1 + τ2 for every type τ2. This
is acceptable because we either use bidirectional type checking, in which

LECTURE NOTES SEPTEMBER 21, 2018

L6.4 Sum Types

case both τ1 + τ2 and l · e1 are given to use, or we use some form of type
inference that will determine the most general type for an expression.

In any case, these considerations do not affect type preservation. There,
we just need to show that any type τ that e possesses will also be a type of
e′ if e 7→ e′. Now, it is completely possible that e′ will have more types than
e, but that doesn’t contradict the theorem.1

The proof of preservation proceeds as usual, by rule on induction on the
step e 7→ e′, applying inversion of the typing of e. We show only the new
cases, because the cases for all other constructs remain exactly as before.
We assume that the substitution property carries over.

Case:

e1 7→ e′1

l · e1 7→ l · e′1
7→/l

where e = l · e1 and e′ = l · e′1

· ` l · e1 : τ1 + τ2 Assumption
· ` e1 : τ1 By inversion
· ` e′1 : τ1 By ind.hyp.
· ` l · e′1 : τ1 + τ2 By rule

Case: Rule 7→/r: analogous to 7→/l.

Case: Rule 7→/case1: similar to the previous two cases.

Case:

v1 val

case (l · v1) {l · x1 ⇒ e1 | . . .} 7→ [v1/x1]e1
7→/case/l

where e = case (l · v1) {l · x1 ⇒ e1 | . . .} and e′ = [v1/x1]e1.

· ` case (l · v1) {l · x1 ⇒ e1 | r · x2 ⇒ e2} : τ Assumption
· ` l · v1 : τ1 + τ2
and x1 : τ1 ` e1 : τ and x2 : τ2 ` e2 : τ for some τ1 and τ2 By inversion
· ` v1 : τ1 By inversion
[v1/x1]e1 : τ By the substitution property

1It is an instructive exercise to construct a well-typed closed term e with e 7→ e′ such that
e′ has more types than e.

LECTURE NOTES SEPTEMBER 21, 2018

Sum Types L6.5

Case: Rule 7→/case/r: analogous to 7→/r.

�

The progress theorem proceeds by induction on the typing derivation,
as usual, analyzing the possible cases. Before we do that, it is always help-
ful to call out the canonical forms theorem that characterizew well-typed
values. New here is part (iii).

Lemma 2 (Canonical Forms)

(i) If · ` v : τ1→ τ2 and v val then v = λx1. e2 for some x1 and e2.

(ii) If · ` v : bool and v val then v = true or v = false.

(iii) If · ` v : τ1 + τ2 and v val then v = l · v1 for some v1 val or v = r · v2 for
some v2 val.

Proof sketch: For each part, analyzing all the possible cases for the value
and typing judgments. �

Theorem 3 (Progress)
If · ` e : τ then either e 7→ e′ for some e′ or e val.

Proof: By rule induction on the given typing derivation.

Cases: For constructs pertaining to types τ1→τ2 or bool, just as before since
we did not change their rules.

Case:

· ` e1 : τ1

· ` l · e1 : τ1 + τ2

where e = l · e1.

Either e1 7→ e′1 for some e′1 or e1 val By ind.hyp.

e1 7→ e′1 Subcase
l · e1 7→ l · e′1 By rule 7→/l

e1 val Subcase
l · e1 val By rule val/l

LECTURE NOTES SEPTEMBER 21, 2018

L6.6 Sum Types

Case: Typing of r · e2: analogous to previous case.

Case:

· ` e0 : τ1 + τ2 ·, x1 : τ1 ` e1 : τ ·, x2 : τ2 ` e2 : τ

· ` case e0 {l · x1 ⇒ e1 | r · x2 ⇒ e2} : τ

where e = case e0 {l · x1 ⇒ e1 | r · x2 ⇒ e2}.

Either e0 7→ e′0 for some e′0 or e0 val By ind.hyp.

e0 7→ e′0 Subcase
e = case e0 {l · x1 ⇒ e1 | r · x2 ⇒ e2}
7→ case e′0 {l · x1 ⇒ e1 | r · x2 ⇒ e2} By rule 7→/case1

e0 val Subcase
e0 = l · e′0 for some e′0 val
or e0 = r · e′0 for some e′0 val By the canonical forms property (4)

e0 = l · e′0 and e′0 val Sub2case
e = case (l · e′0) {l · x1 ⇒ e1 | . . .} 7→ [e′0/x1]e1 By rule 7→/case/l

e0 = r · e′0 and e′0 val Sub2case
e = case (r · e′0) {. . . | r · x2 ⇒ e2} 7→ [e′0/x2]e2 By rule 7→/case/r

�

3 The Unit Type 1

In order to use sums, it is helpful to have a unit type, written 1, that has
exactly one element 〈 〉. If we had such a type, we could define bool = 1 + 1
and bool would no longer be primitive. 1 + 1 contains exactly two values,
namely l · 〈 〉 and r · 〈 〉.

We have one form “constructing” the unit value and a corresponding
case-like elimination, except that there is only on branch.

Γ ` 〈 〉 : 1

Γ ` e0 : 1 Γ ` e1 : τ

Γ ` case e0 {〈 〉 ⇒ e1} : τ

LECTURE NOTES SEPTEMBER 21, 2018

Sum Types L6.7

There is not much going on as far as the operational semantics is concerned.

〈 〉 val

e1 7→ e′1

case e1 {〈 〉 ⇒ e1} 7→ case e′1 {〈 〉 ⇒ e1} case 〈 〉 {〈 〉 ⇒ e1} 7→ e1

Preservation and progress continue to hold, and are proved following the
pattern of the previous cases. We just restate the canonical forms lemma.

Lemma 4 (Canonical Forms)

(i) If · ` v : τ1→ τ2 and v val then v = λx1. e2 for some x1 and e2.

(ii) If · ` v : bool and v val then v = true or v = false.

(iii) If · ` v : τ1 + τ2 and v val then v = l · v1 for some v1 val or v = r · v2 for
some v2 val.

(iv) If · ` v : 1 and v val then v = 〈 〉.

4 Using the Unit Type

As indicated in the previous section, we can now define the Boolean type
using sums and unit. We have:

bool = 1 + 1

true = l · 〈 〉
false = r · 〈 〉

if e0 e1 e2 = case e0 (l · x1 ⇒ e1 | r · x2 ⇒ e2)
(provided x1 6∈ fv(e1) and x2 6∈ fv(e2))

The provisos on the last definition are important because we don’t want
to accidentally capture a free variable in e1 or e2 during the translation.
Recommended question to think about: could we define a function ifτ :
(1 + 1)→ τ → τ → τ for arbitrary τ that implements the case construct?

Using 1 we can define other types. For example

τ option = τ + 1

LECTURE NOTES SEPTEMBER 21, 2018

L6.8 Sum Types

represents an optional value of type τ . Its values are l · v for v : τ (we have
a value) or r · 〈 〉, where r · 〈 〉 (we have no value).

A more interesting examples would be the natural numbers:

nat = 1 + (1 + (1 + · · ·))
0 = l · 〈 〉
1 = r · (l · 〈 〉)
2 = r · (r · (l · 〈 〉))
succ = λn. r · n

Unfortunately, “· · ·” is not really permitted in the definition of types. We
could define it recursively as

nat = 1 + nat

but supporting this style of recursive type definition is not straightforward.
We will probably use explicit recursive types to define

nat = ρα. 1 + α

So natural numbers, if we want to build them up from simpler components
rather than as a primitive, require a unit type, sums, and recursive types.

5 The Empty Type 0

We have the singleton type 1, a type with two elements, 1 + 1, so can we
also have a type with no elements? Yes! We’ll call it 0 because it will satisfy
(in a way we do not make precise) that 0 + τ ' τ . There are no constructors
and no values of this type, so the e val judgment is not extended.

If we think ot 0 as a nullary sum, we expect there still to be a destructor.
But instead of two branches it has zero branches!

Γ ` e0 : 0

Γ ` case e0 { } : τ

Computation also makes some sense with a congruence rule reducing the
subject, but the case can never be reduced.

e0 7→ e′0

case e0 { } 7→ case e′0 { }

Progress and preservation extend somewhat easily, and the canonical forms
property is extended with

LECTURE NOTES SEPTEMBER 21, 2018

Sum Types L6.9

(v) If · ` v : 0 and v val then we have a contradiction.

The empty type has somewhat limited uses precisely because there is no
value of this type. However, there may still be expression e such that · ` e :
0 if we have explicitly nonterminating expressions. Such terms can appear
the subject of a case where they reduce forever by the only rule. We can also
ask, for example, what would be functions from 0→ 0. We find:

λx. x : 0→ 0
λx. case x { } : 0→ 0
λx. loop : 0→ 0

assume we can define a looping term and give it type 0.

6 Summary

We present a brief summary of the language of types and expressions we
have defined so far.

Types τ ::= α | τ1→ τ2 | τ1 + τ2 | 0 | 1
Expressions e ::= x | λx. e | e1 e2

| l · e | r · e | case e0 {l · x1 ⇒ e1 | r · x2 ⇒ e2}
| case e0 { }
| 〈 〉 | case e0 {〈 〉 ⇒ e1}

Functions.

Γ, x1 : τ2 ` e2 : τ2

Γ ` λx1. e2 : τ1→ τ2

x : τ ∈ Γ

Γ ` x : τ

Γ ` e1 : τ2→ τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

λx. e val

e1 7→ e′1

e1 e2 7→ e′1 e2

v1 val e2 7→ e′2

v1 e2 7→ v1 e
′
2

v2 val

(λx. e1) v2 7→ [v2/x]e1

LECTURE NOTES SEPTEMBER 21, 2018

L6.10 Sum Types

Disjoint Sums.

Γ ` e1 : τ1

Γ ` l · e1 : τ1 + τ2

Γ ` e2 : τ2

Γ ` r · e2 : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case e {l · x1 ⇒ e1 | r · x2 ⇒ e2} : τ

e val
l · e val

e val
r · e val

e 7→ e′

l · e 7→ l · e′
e 7→ e′

r · e 7→ r · e′

e 7→ e′

case e {. . .} 7→ case e′ {. . .}

v1 val

case (l · v1) {l · x1 ⇒ e1 | . . .} 7→ [v1/x1]e1

v2 val

case (r · v2) {. . . | r · x2 ⇒ e2} 7→ [v2/x2]e2

Unit Type.

Γ ` 〈 〉 : 1

Γ ` e0 : 1 Γ ` e1 : τ

Γ ` case e0 {〈 〉 ⇒ e1} : τ

〈 〉 val

e1 7→ e′1

case e1 {〈 〉 ⇒ e1} 7→ case e′1 {〈 〉 ⇒ e1} case 〈 〉 {〈 〉 ⇒ e1} 7→ e1

Empty Type.

Γ ` e0 : 0

Γ ` case e0 { } : τ

e0 7→ e′0

case e0 { } 7→ case e′0 { }

LECTURE NOTES SEPTEMBER 21, 2018

	Introduction
	Disjoint Sums
	The Unit Type 1
	Using the Unit Type
	The Empty Type 0
	Summary

