
Lecture Notes on
The Lambda Calculus

15-814: Types and Programming Languages
Frank Pfenning

Lecture 1
Tuesday, September 4, 2018

1 Introduction

This course is about the principles of programming language design, many
of which derive from the notion of type. Nevertheless, we will start by
studying an exceedingly pure notion of computation based only on the
notion of function, that is, Church’s λ-calculus [CR36]. There are several
reasons to do so.

• We will see a number of important concepts in their simplest possi-
ble form, which means we can discuss them in full detail. We will
then reuse these notions frequently throughout the course without
the same level of detail.

• The λ-calculus is of great historical and foundational significance.
The independent and nearly simultaneous development of Turing
Machines [Tur36] and the λ-Calculus [CR36] as universal computa-
tional mechanisms led to the Church-Turing Thesis, which states that
the effectively computable (partial) functions are exactly those that
can be implemented by Turing Machines or, equivalently, in the λ-
calculus.

• The notion of function is the most basic abstraction present in nearly
all programming languages. If we are to study programming lan-
guages, we therefore must strive to understand the notion of func-
tion.

• It’s cool!

LECTURE NOTES TUESDAY, SEPTEMBER 4, 2018

L1.2 The Lambda Calculus

2 The λ-Calculus

In ordinary mathematical practice, functions are ubiquitous. For example,
we might define

f(x) = x+ 5
g(y) = 2 ∗ y + 7

Oddly, we never state what f or g actually are, we only state what happens
when we apply them to arbitrary arguments such as x or y. The λ-calculus
starts with the simple idea that we should have notation for the function
itself, the so-called λ-abstraction.

f = λx. x+ 5
g = λy. 2 ∗ y + 7

In general, λx. e for some arbitrary expression e stands for the function
which, when applied to some e′ becomes [e′/x]e, that is, the result of sub-
stituting or plugging in e′ for occurrences of the variable x in e. For now, we
will use this notion of substitution informally—in the next lecture we will
define it formally.

We can already see that in a pure calculus of functions we will need
at least three different kinds of expressions: λ-abstractions λx. e to form
function, application e1 e2 to apply a function e1 to an argument e2, and
variables x, y, z, etc. We summarize this in the following form

Variables x
Expressions e ::= λx. e | e1 e2 | x

This is not the definition of the concrete syntax of a programming language,
but a slightly more abstract form called abstract syntax. When we write
down concrete expressions there are additional conventions and notations
such as parentheses to avoid ambiguity.

1. Juxtaposition (which expresses application) is left-associative so that
x y z is read as (x y) z

2. λx. is a prefix whose scope extends as far as possible while remain-
ing consistent with the parentheses that are present. For example,
λx. (λy. x y z)x is read as λx. ((λy. (x y) z)x).

We say λx. e binds the variable x with scope e. Variables that occur in
e but are not bound are called free variables, and we say that a variable x
may occur free in an expression e. For example, y is free in λx. x y but

LECTURE NOTES TUESDAY, SEPTEMBER 4, 2018

The Lambda Calculus L1.3

not x. Bound variables can be renamed consistently in a term So λx.x +
5 = λy.y + 5 = λwhatever .whatever + 5. Generally, we rename variables
silently because we identify terms that differ only in the names of λ-bound
variables. But, if we want to make the step explicit, we call it α-conversion.

λx. e =α λy.[y/x]e provided y not free in e

The proviso is necessary, for example, because λx.x y 6= λy.y y.
We capture the rule for function application with

(λx. e2) e1 =β [e1/x]e2

and call it β-conversion. Some care has to be taken for the substitution to be
carried our correctly—we will return to this point later.

If we think beyond mere equality at computation, we see that β-conversion
has a definitive direction: we apply is from left to right. We call this β-
reduction and it is the engine of computation in the λ-calculus.

(λx. e2) e1 −→β [e1/x]e2

3 Function Composition

One the most fundamental operation on functions in mathematics is to
compose them. We might write

(f ◦ g)(x) = f(g(x))

Having λ-notation we can first explicitly denote the result of composition
(with some redundant parentheses)

f ◦ g = λx. f(g(x))

As a second step, we realize that ◦ itself is a function, taking two functions
as arguments and returning another function. Ignoring the fact that it is
usually written in infix notation, we define

◦ = λf. λg. λx. f(g(x))

Now we can calculate, for example, the composition of the two functions
we had at the beginning of the lecture. We note the steps where we apply

LECTURE NOTES TUESDAY, SEPTEMBER 4, 2018

L1.4 The Lambda Calculus

β-conversion.

(◦ (λx. x+ 5)) (λy. 2 ∗ y + 7)
= ((λf. λg. λx. f(g(x)))(λx. x+ 5)) (λy. 2 ∗ y + 7)
=β (λg. λx. (λx. x+ 5)(g(x))) (λy. 2 ∗ y + 7)
=β λx. (λx. x+ 5) ((λy. 2 ∗ y + 7)(x))
=β λx. (λx. x+ 5) (2 ∗ x+ 7)
=β λx. (2 ∗ x+ 7) + 5
= λx. 2 ∗ x+ 12

While this appears to go beyond the pure λ-calculus, we will see in Sec-
tion 7 that we can actually encode natural numbers, addition, and mul-
tiplication. We can see that ◦ as an operator is not commutative because,
in general, ◦ f g 6= ◦ g f . You may test your understanding by calculating
(◦ (λy. 2 ∗ y + 7)) (λx. x+ 5) and observing that it is different.

4 Identity

The simplest function is the identity function

I = λx. x

We would expect that in general, ◦ I f = f = ◦ f I . Let’s calculate one of
these:

◦ I f
= ((λf. λg. λx. f(g(x))) (λx. x)) f
=β (λg. λx. (λx. x)(g(x))) f
=β λx. ((λx. x)(f(x)))
=β λx. f(x)

We see ◦ I f = λx. f x but it does not appear to be equal to f . However,
λx. f x and f would seem to be equal in the following sense: if we apply
both sides to an arbitray expression ewe get (λx. f x) e = f e on the left and
f e on the right. In other words, the two functions appear to be extensionally
equal. We capture this by adding another rule to the calculus call η.

e =η λx. e x provided x not free in e

The proviso is necessary—can you find a counterexample to the equality if
it is violated?

LECTURE NOTES TUESDAY, SEPTEMBER 4, 2018

The Lambda Calculus L1.5

5 Summary of λ-Calculus

λ-Expressions.

Variables x
Expressions e ::= λx. e | e1 e2 | x

λx. e binds x with scope e, which is as large as possible while remaining
consistent with the given parentheses. Juxtaposition e1 e2 is left-associative.

Equality.

Substitution [e1/x]e2 (capture-avoiding, see Lecture 2)
α-conversion λx. e =α λy.[y/x]e provided y not free in e
β-conversion (λx. e2) e1 =β [e1/x]e2
η-conversion λx. e x =η e provided x not free in e

We generally apply α-conversion silently, identifying terms that differ only
in the names of the bound variables. When we write e = e′ we allow αβη-
equality and the usual mathematical operations such as expanding a defi-
nition.

Reduction.

β-reduction (λx. e2) e1 −→β [e1/x]e2

6 Representing Booleans

Before we can claim the λ-calculus as a universal language for computation,
we need to be able to represent data. The simplest nontrivial data type
are the Booleans, a type with two elements: true and false. The general
technique is to represent the values of a given type by normal forms, that
is, expressions that cannot be reduced. Furthermore, they should be closed,
that is, not contain any free variables. We need to be able to distinguish
between two values, and in a closed expression that suggest introducing
two bound variables. We then define rather arbitrarily one to be true and
the other to be false

true = λx. λy. x
false = λx. λy. y

LECTURE NOTES TUESDAY, SEPTEMBER 4, 2018

L1.6 The Lambda Calculus

The next step will be to define functions on values of the type. Let’s start
with negation: we are trying to define a λ-expression not such that

not true = false
not false = true

We start with the obvious:
not = λb. . . .

Now there are two possibilities: we could either try to apply b to some
arguments, or we could build some λ-abstractions. In lecture, we followed
the first path—you may want try the second as an exercise.

not = λb. b (. . .) (. . .)

We suggest two arguments to b, because b stands for a Boolean, and Booleans
true and false both take two arguments. true = λx. λy. x will pick out the
first of these two arguments and discard the second, so since we specified
not true = false, the first argument to b should be false!

not = λb. b false (. . .)

Since false = λx. λy. y picks out the second argument and not false = true,
the second argument to b should be true.

not = λb. b false true

Now it is a simple matter to calculate that the computation of not applied
to true or false completes in three steps and obtain the correct result.

not true −→3
β false

not false −→3
β true

We write −→n
β for reduction in n steps, and −→∗β for reduction in an ar-

bitrary number of steps, including zero steps. In other words, −→∗β is the
reflexive and transitive closure of −→β .

As a next exercise we try conjuction. We want to define a λ-expression
and such that

and true true = true
and true false = false
and false true = false
and false false = false

LECTURE NOTES TUESDAY, SEPTEMBER 4, 2018

The Lambda Calculus L1.7

Learning from the negation, we start by guessing

and = λb. λc. b (. . .) (. . .)

where we arbitrarily put b first. If b is true, this will return the first argu-
ment. Looking at the equations we see that this should always be equal to
the second argument.

and = λb. λc. b c (. . .)

If b is false the result is always false, no matter what c is, so the second
argument to b is just false.

and = λb. λc. b c false

Again, it is now a simple matter to verify the desired equations and that, in
fact, the right-hand side of these equations is obtained by reduction.

We know we can represent all functions on Booleans returning Booleans
once we have negation and conjunction. But we can also represent the more
general conditional if with the requirements

if true u w = u
if false u w = w

Note here that the variable u and w stand for arbitrary λ-expressions and
not just Booleans. From what we have seen before, the conditional is now
easy to define:

if = λb. λu. λw. b uw

Looking at the innermost abstraction, we have λw. (b u)w which is actually
η-convertible to b u! Taking another step we arrive at

if = λb. λu. λw. b uw
=η λb. λu. b u
=η λb. b
= I

In other words, the conditional is just the identity function!

7 Representing Natural Numbers

Finite types such as Booleans are not particularly interesting. When we
think about the computational power of a calculus we generally consider

LECTURE NOTES TUESDAY, SEPTEMBER 4, 2018

L1.8 The Lambda Calculus

the natural numbers 0, 1, 2, We would like a representation n such that
they are all distinct. We obtain this by thinking of the natural numbers
are generated from zero by repeated application of the successor function.
Since we want our representations to be closed we start with two abstrac-
tions: one (z) that stands for zero, and one (s) that stands for the successor
function.

0 = λz. λs. z
1 = λz. λs. s z
2 = λz. λs. s (s z)
3 = λz. λs. s (s (s z))
. . .
n = λz. λs. s (. . . (s︸ ︷︷ ︸

n times

z))

In other words, the representation n iterates its second argument n times
over its first argument

nx f = fn(x)

where fn(x) = f(. . . (f︸ ︷︷ ︸
n times

(x)))

The first order of business now is to define a successor function that
satisfies succ n = n+ 1. As usual, there is more than one way to define it,
here is one (throwing in the definition of zero for uniformity):

zero = 0 = λz. λs. z
succ = λn. n+ 1 = λn. λz. λs. s (n z s)

We cannot carry out the correctness proof in closed form as we did for the
Booleans since there would be infinitely many cases to consider. Instead
we calculate generically (using mathmetical notation and properties)

succ n
= λz. λs. s (n z s)
= λz. λs. s (sn(z))
= λz. λs. sn+1(z)
= n+ 1

A more formal argument might use mathematical induction over n.
Using the iteration property we can now define other mathematical

functions over the natural numbers. For example, addition of n and k iter-
ates the successor function n times on k.

plus = λn. λk. n k succ

LECTURE NOTES TUESDAY, SEPTEMBER 4, 2018

The Lambda Calculus L1.9

You are invited to verify the correctness of this definition by calculation.
Similarly:

times = λn. λk. n (plus k) zero
exp = λb. λe. e (times b) (succ zero)

Everything appears to be going swimmingly until we hit the predecessor
function defined by

pred 0 = 0
pred n+ 1 = n

You may try for a while to see if you can define the predecessor function,
but it is very difficult. The problem seems to be that it is easy to define
functions f using the schema of iteration

f 0 = c
f (n+ 1) = g (f n)

(namely: f = λn. n c g), but not the so-called schema of primitive recursion

f 0 = c
f (n+ 1) = g n (f n)

because it is difficult to get access to n.
More about this and other properties and examples of the λ-calculus in

Lecture 2.

References

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion.
Transactions of the American Mathematical Society, 39(3):472–482,
May 1936.

[Tur36] Alan Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical So-
ciety, 42:230–265, 1936. Published 1937.

LECTURE NOTES TUESDAY, SEPTEMBER 4, 2018

	Introduction
	The -Calculus
	Function Composition
	Identity
	Summary of -Calculus
	Representing Booleans
	Representing Natural Numbers

