
Static Single Assignment

15-411 Compiler Design

September 23, 2008

SSA form

In this lecture we introduce Static
 Single Assignment (SSA) form

This is a way of structuring the
 intermediate representation so that
 every variable is assigned exactly once

This is formally equivalent to
 continuation-passing style (CPS) IR

Developed at IBM by Cytron, Ferrante,
 Rosen, Wegman, and Zadeck

Why use SSA form?

Why do compiler writers use SSA?
• SSA form makes use-def chains explicit in the

 IR, which in turn helps to simplify some
 optimizations

Before getting into the details of SSA form,
 let’s look at redundancy elimination as a
 motivating example

• Redundancy elimination optimizations attempt
 to remove redundant computations

Warning

SSA form is seductive
• The optimization benefits are real but

 not significant in simple compilers (like
 yours)

•  It looks easy but it isn’t

My suggestion:
• Think about it but probably not wise to

 attempt it

Redundancy elimination

Common redundancy elimination
 optimizations are

• value numbering

• conditional constant propagation

• common-subexpression elimination
 (CSE)

• partial-redundancy elimination

What they do

read(i);
j = i + 1;
k = i;
l = k + 1;

i = 2;
j = i * 2;
k = i + 2;

 read(i);
 l = 2 * i + i;
 if (i>0) goto L1;
 i = i + 1;
 goto L2;
L1: k = 2 * i * l;
L2:

value
 numbering
 determines
 that j==l

constant
 propagation
 determines
 that j==k

CSE
 determines
 that 2nd “2*i”
 is redundant

Value numbering

Basic idea:
• associate a symbolic value to each

 computation, in a way that any two
 computations with the same symbolic
 value always compute the same value

Congruence of expressions

We define a notion of congruence of
 expressions

•  x ⊕ y is congruent to a ⊗ b if ⊕ and ⊗ are the
 same operator, and x is congruent to a and y is
 congruent to b

•  Typically, will also take commutativity into
 account

Value numbering

Suppose we have
•  t1 = t2 + 1

Look up the key “t2+1” in a hash table
•  Use a hash function that assigns the same hash

 value (ie, the same value number) to
 expressions e1 and e2 if they are congruent

If key “t2+1” is not in the table, then put it
 in with value “t1”

•  the next time we hit on “t2+1”, can replace it in
 the IR with “t1”

Example

read(i);
j = i + 1;
k = i;
l = k + 1;

i = v1

j = v2

k = v1

Therefore l = j

Hash(v1 + 1) → j

Hash(v1 + 1) → j

Global value numbering

Local (ie, within a basic block) value
 numbering is easy enough

But what about global (ie, within a
 procedure) value numbering?

read(i);
j = i + 1;
k = i;

l = k + 1;

k = …;

Importance of use-def info

Of course, in the global case we must
 watch out for multiple assignments

We could do a dataflow analysis to extend
 value numbering to the global case

read(i);
j = i + 1;
k = i;

l = k + 1;

k = …;

use-def analysis

Embedding use-def into the IR

Use-def information is central to
 several important optimizations

The point of static single assignment
 form (SSA form) is to represent
 use-def information explicitly

read(i);
j = i + 1;
k2 = i;

l = ϕ(k1,k2) + 1;

k1 = …;

SSA Form

SSA form

Static single-assignment form arranges for
 every value computed by a program to have
 a unique assignment (aka, “definition”)

A procedure is in SSA form if every variable
 has (statically) exactly one definition

SSA form simplifies several important
 optimizations, including various forms of
 redundancy elimination

Example

entry

z > 1

x := 1
z > 2

x := 2

y := x + 1 z := x - 3
x := 4

z := x + 7

exit

entry

z1 > 1

x1 := 1
z1 > 2

x2 := 2

y1 := x1 + 1 x3 := Φ(x1,x2)
z2 := x3 - 3
x4 := 4

z3 := x4 + 7

exit

Value numbering in SSA

In SSA form, if x and a are variables,
 they are congruent only if they are
 both live and they are the same
 variable

Or if they are provably the same value
 (by constant or copy propagation)

SSA and chordal graphs

Note also that the interference graph for
 an SSA form IR is always chordal
 (can you see why?)

Assuming no pre-colored registers, the
 register allocation algorithm you have
 implemented is provably optimal

Creating SSA form

To translate into SSA form:
•  Insert trivial Φ functions at join points for each

 live variable
•  Φ(t,t,…,t), where the number of t’s is the

 number of incoming flow edges

•  Globally analyze and rename definitions and uses
 of variables to establish SSA property

After we are done with our optimizations, we
 can throw away all of the statements
 involving Φ functions (ie, “unSSA”)

Example

entry

z > 1

x := 1
z > 2

x := 2

y := x + 1
x := Φ (x,x)
z := Φ (z,z)
z := x - 3
x := 4

z := x + 7

exit

entry

z1 > 1

x1 := 1
z1 > 2

x2 := 2

y1 := x1 + 1 x3 := Φ(x1,x2)
z2 := x3 - 3
x4 := 4

z3 := x4 + 7

exit

SSA form for general graphs

An SSA form with the minimum number of Φ
 functions can be created by using dominance
 frontiers

Definitions:
•  In a flowgraph, node a dominates node b (“a dom b”)

 if every possible execution path from entry to b
 includes a

•  If a and b are different nodes, we say that a strictly
 dominates b (“a sdom b”)

•  If a sdom b, and there is no c such that a sdom c and
 c sdom b, we say that a is the immediate dominator
 of b (“a idom b”)

Dominance frontier

For a node a, the dominance frontier
 of a, DF[a], is the set of all nodes b
 such that a strictly dominates an
 immediate precedessor of b but not b
 itself

More formally:
• DF[a] = {b | (∃c∈Pred(b) such that a

 dom c but not a sdom b}

Computing DF[a]

A naïve approach to computing DF[a] for all
 nodes a would require quadratic time

However, an approach that usually is linear
 time involves cutting into parts:

•  DFl[a] = {b ∈ Succ(a) | idom(b)≠a}
•  DFu[a,c] = {b ∈ DF[c] | idom(c)=a ∧ idom(b)≠a}

Then:

•  DF[a] = DFl[a] ∪ ∪ DFu[a,c]
c∈G (idom(c)=a)

DF computation, cont’d

What we want, in the end, is the set of
 nodes that need Φ functions, for each
 variable

So we define DF[S], for a set of
 flowgraph nodes S:

• DF[S] = ∪ DF[a] a∈S

Iterated DF

Then, the iterated dominance frontier is
 defined as follows:

•  DF+[S] = lim DFi[S]
•  where

•  DF1[S] = DF[S]
•  DFi+1[S] = DF[S ∪ DFi [S]]

If S is the set of nodes that assign to
 variable t, then DF+[S ∪ {entry}] is the set
 of nodes that need Φ functions for t

i→∞

Example

entry

k := false
i := 1
j := 2

i <= n

j := j * 2
k := true
i := i + 1

…k…

print j i := i + 1

exit

For k:

• DF1({entry,B1,B3}) = {B2}

• DF2({entry,B1,B3}) =
 DF({entry,B1,B2,B3}) = {B2}

B1

B2

B3 B4

B5 B6

Example

entry

k := false
i := 1
j := 2

i <= n

j := j * 2
k := true
i := i + 1

…k…

print j i := i + 1

exit

For i:

• DF1({entry,B1,B3,B6}) =
 {B2,exit}

• DF2({entry,B1,B3,B6}) =
 DF({entry,B1,B2,B3,B6,exit})
 = {B2,exit}

B1

B2

B3 B4

B5 B6

Example

For j:

• DF1({entry,B1,B3}) = {B2}

• DF2({entry,B1,B3}) =
 DF({entry,B1,B2,B3}) = {B2}

entry

k := false
i := 1
j := 2

i <= n

j := j * 2
k := true
i := i + 1

…k…

print j i := i + 1

exit

B1

B2

B3 B4

B5 B6

Example, cont’d

So, Φ nodes for i,
 j, and k are
 needed in B2, and
 i also needs one in
 exit

• exit Φ nodes are
 usually pruned

entry

k1 := false
i1 := 1
j1 := 2

k3 := Φ(k1,k2)
i3 := Φ(i1,i2)
j3 := Φ(j1,j2)
i <= n

j2 := j3 * 2
k2 := true
i2 := i3 + 1

…k3…

print j3 i4 := i3 + 1

i5 := Φ(i3,i4)
exit

B1

B2

B3
B4

B5 B6

Other ways to get SSA

Although computing iterated dominance
 frontiers will result in the minimal SSA form,
 there are easier ways that work well for
 simple languages

Without knowing the details of your project,
 I would guess that your translator always
 knows when it is creating a join point and
 can keep track of the immediate dominator

If so, it can also create the necessary Φ
 nodes during translation

Project advice

The bottom line for your project:
• You don’t need to generate SSA form for

 your project

• However, if you decide to do this, then it
 is advisable to simplify matters by
 generating SSA directly during
 translation

Summary

SSA form has had a huge impact on
 compiler design

Most modern production compilers use
 SSA form (including, for example,
 gcc, suif, llvm, hotspot, …)

Compiler frameworks (ie, toolkits for
 creating compilers) all use SSA
 form

