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Interprocedural analysis can be used to speed up the cost of dynamic ar-
ray bounds checks. For example, suppose we are interested only in catching
buffer overflows involving user-input strings, we can use static analysis to de-
termine which variables may hold contents provided by the user. Like SQL
injection, being able to track an input as it is copied across procedures is useful
in eliminating unnecessary bounds checks.

12.3 A Logical Representation of Data Flow

To this point, our representation of data-flow problems and solutions can be
termed “set-theoretic.” That is, we represent information as sets and compute
results using operators like union and intersection. For instance, when we in-
troduced the reaching-definitions problem in Section 9.2.4, we computed IN[B]
and OUT[B] for a block B, and we described these as sets of definitions. We
represented the contents of the block B by its gen and kill sets.

To cope with the complexity of interprocedural analysis, we now introduce a
more general and succinct notation based on logic. Instead of saying something
like “definition D is in IN[B],” we shall use a notation like in(B, D) to mean
the same thing. Doing so allows us to express succinct “rules” about inferring
program facts. It also allows us to implement these rules efficiently, in a way
that generalizes the bit-vector approach to set-theoretic operations. Finally,
the logical approach allows us to combine what appear to be several indepen-
dent analyses into one, integrated algorithm. For example, in Section 9.5 we
described partial-redundancy elimination by a sequence of four data-flow anal-
yses and two other intermediate steps. In the logical notation, all these steps
could be combined into one collection of logical rules that are solved simulta-
neously.

12.3.1 Introduction to Datalog

Datalog is a language that uses a Prolog-like notation, but whose semantics is
far simpler than that of Prolog. To begin, the elements of Datalog are atoms
of the form p(Xi, Xs,...,X,). Here,

1. p is a predicate — a symbol that represents a type of statement such as
“g definition reaches the beginning of a block.”

2. X1,Xa,..., Xy are terms such as variables or constants. We shall also
allow simple expressions as arguments of a predicate.?

A ground atom is a predicate with only constants as arguments. Every
ground atom asserts a particular fact, and its value is either true or false. It

2Formally, such terms are built from function symbols and complicate the implementation
of Datalog considerably. However, we shall use only a few operators, such as addition or
subtraction of constants, in contexts that do not complicate matters.
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is often convenient to represent a predicate by a relation, or table of its true
ground atoms. Each ground atom is represented by a single row, or tuple, of
the relation. The columns of the relation are named by attributes, and each
tuple has a component for each attribute. The attributes correspond to the
components of the ground atoms represented by the relation. Any ground
atom in the relation is true, and ground atoms not in the relation are false.

Example 12.11: Let us suppose the predicate in(B, D) means “definition D
reaches the beginning of block B.” Then we might suppose that, for a particular
flow graph, in(b;,d;) is true, as are in(bs,d1) and in(bs,dz). We might also
suppose that for this flow graph, all other in facts are false. Then the relation
in Fig. 12.12 represents the value of this predicate for this flow graph.

Figure 12.12: Representing the value of a predicate by a relation

The attributes of the relation are B and D. The three tuples of the relation
are (bl,dl), (bg,dl), and (bz,dg). a

We shall also see at times an atom that is really a comparison between
variables and constants. An example would be X # Y or"X = 10. In these
examples, the predicate is really the comparison operator. That is, we can
think of X = 10 as if it were written in predicate form: equals(X, 10). There is
an important difference between comparison predicates and others, however. A
comparison predicate has its standard interpretation, while an ordinary pred-
icate like in means only what it is defined to mean by a Datalog program
(described next).

A literal is either an atom or a negated atom. We indicate negation with
the word NOT in front of the atom. Thus, NOT in(B, D) is an assertion that
definition D does not reach the beginning of block B.

12.3.2 Datalog Rules

Rules are a way of expressing logical inferences. In Datalog, rules also serve to
suggest how a computation of the true facts should be carried out. The form
of a rule is

H Z-Bl&Bz&"- &Bn
The components are as follows:

e H and By, Bs,...,B, are literals — either atoms or negated atoms.
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Datalog Conventions
We shall use the following conventions for Datalog programs:

1. Variables begin with a capital letter.

2. All other elements begin with lowercase letters or other symbols such
as digits. These elements include predicates and constants that are
arguments of predicates.

e H is the head and By, Bs, ... , B, form the body of the rule.

e Each of the B,’s is sometimes called a subgoal of the rule.

We should read the :- symbol as “if.” The meaning of a rule is “the head
is true if the body is true.” More precisely, we apply a rule to a given set of
ground atoms as follows. Consider all possible substitutions of constants for
the variables of the rule. If this substitution makes every subgoal of the body
true (assuming that all and only the given ground atoms are true), then we can
infer that the head with this substitution of constants for variables is a true
fact. Substitutions that do not make all subgoals true give us no information;
the head may or may not be true.

A Datalog program is a collection of rules. This program is applied to “data,”
that is, to a set of ground atoms for some of the predicates. The result of the
program is the set of ground atoms inferred by applying the rules until no more
inferences can be made.

Example 12.12: A simple example of a Datalog program is the computation
of paths in a graph, given its (directed) edges. That is, there is one predicate
edge(X,Y) that means “there is an edge from node X to node Y.” Another
predicate path(X,Y’) means that there is a path from X to Y. The rules defining
paths are:

1) path(X,Y) :- edge(X,Y)
2) path(X,Y) :- path(X,Z) & path(Z,Y)

The first rule says that a single edge is a path. That is, whenever we replace
variable X by a constant a and variable Y by a constant b, and edge(a,b) is
true (i.e., there is an edge from node a to node b), then path(a,b) is also true
(i.e., there is a path from a to b). The second rule says that if there is a path
from some node X to some node Z, and there is also a path from Z to node Y,
then there is a path from X to Y. This rule expresses “transitive closure.” Note
that any path can be formed by taking the edges along the path and applying
the transitive closure rule repeatedly.
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For instance, suppose that the following facts (ground atoms) are true:
edge(1,2), edge(2,3), and edge(3,4). Then we can use the first rule with
three different substitutions to infer path(1,2), path(2,3), and path(3,4). As
an example, substituting X = 1 and ¥ = 2 instantiates the first rule to be
path(1,2) : — edge(1,2). Since edge(1,2) is true, we infer path(1,2).

With these three path facts, we can use the second rule several times. If
we substitute X = 1, Z = 2, and ¥ = 3, we instantiate the rule to be
path(1,3) : — path(1,2) & path(2,3). Since both subgoals of the body have
been inferred, they are known to be true, so we may infer the head: path(1,3).
Then, the substitution X = 1, Z = 3, and Y = 4 lets us infer the head
path(1,4); that is, there is a path from node 1 to node 4. O

12.3.3 Intensional and Extensional Predicates

It is conventional in Datalog programs to distinguish predicates as follows:

1. EDB, or eztensional database, predicates are those that are defined a-
priori. That is, their true facts are either given in a relation or table, or
they are given by the meaning of the predicate (as would be the case for
a comparison predicate, e.g.).

2. IDB, or intensional database, predicates are defined only by the rules.

A predicate must be IDB or EDB, and it can be only one of these. As a result,
any predicate that appears in the head of one or more rtiles must be an IDB
predicate. Predicates appearing in the body can be either IDB or EDB. For
instance, in Example 12.12, edge is an EDB predicate and path is an IDB
predicate. Recall that we were given some edge facts, such as edge(1,2), but
the path facts were inferred by the rules.

When Datalog programs are used to express data-flow algorithms, the EDB
predicates are computed from the flow graph itself. IDB predicates are then
expressed by rules, and the data-flow problem is solved by inferring all possible
IDB facts from the rules and the given EDB facts.

Example 12.13: Let us consider how reaching definitions might be expressed
in Datalog. First, it makes sense to think on a statement level, rather than
a block level; that is, the construction of gen and kill sets from a basic block
will be integrated with the computation of the reaching definitions themselves.
Thus, the block b, suggested in Fig. 12.13 is typical. Notice that we identify
points within the block numbered 0,1, ... ,n, if n is the number of statements
in the block. The ith definition is “at” point i, and there is no definition at
point 0.

A point in the program must be represented by a pair (b,n), where b is a
block name and n is an integer between 0 and the number of statements in
block b. Our formulation requires two EDB predicates:
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0 x = y+z

by ' *p =1
2 x=v
3

Figure 12.13: A basic block with points between statements

1. def(B, N, X) is true if and only if the Nth statement in block B may define
variable X. For instance, in Fig. 12.13 def(b1, 1, ) is true, def(b1,3,z) is
true, and def(b1,2,Y) is true for every possible variable Y that p may
point to at that point. For the moment, we shall assume that Y can be
any variable of the type that p points to.

2. succ(B, N, C) is true if and only if block C is a successor of block B in
the flow graph, and B has N statements. That is, control can flow from
the point N of B to the point 0 of C. For instance, suppose that b is
a predecessor of block b, in Fig. 12.13, and b, has 5 statements. Then
succ(ba, 5, b1 ) is true.

There is one IDB predicate, rd(B,N,C, M, X). It is intended to be true if
and only if the definition of variable X at the Mth statement of block C reaches
the point N in block B. The rules defining predicate rd are in Fig. 12.14.

1) rd(B,N,B,N,X) :- def(B,N,X)

2) rd(B,N,C,M,X) :- rd(B,N-1,C,MX)&
def(B,N,Y) &
X#Y

3) rd(B,0,C,M,X)

rd(D,N,C,M,X) &
succ(D, N, B)

Figure 12.14: Rules for predicate rd

Rule (1) says that if the Nth statement of block B defines X, then that
definition of X reaches the ~Nih point of B (i.e., the peint immediately after
the statement). This rule corresponds to the concept of “gen” in our earlier,
set-theoretic formulation of reaching definitions.

Rule (2) represents the idea that a definition passes through a statement
unless it is “killed,” and the only way to kill a definition is to redefine its
variable with 100% certainty. In detail, rule (2) says that the definition of
variable X from the Mth statement of block C reaches the point N of block B
if

a) it reaches the previous point N —1 of B, and
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b) there is at least one variable Y, other than X, that may be defined at the
Nth statement of B.

Finally, rule (3) expresses the flow of control in the graph. It says that e
definition of X at the Mth statement of block C reaches the point 0 of /3 il
there is some block D with N statements, such that the definition of X reaclic:
the end of D, and B is a successor of D. O

The EDB predicate succ from Example 12.13 clearly can be read off the flown
graph. We can obtain def from the flow graph as well, if we are conservative and
assume a pointer can point anywhere. If we want to limit the range of a pointe:
to variables of the appropriate type, then we can obtain type information from
the symbol table, and use a smailer relation def. An option is to make dc/
an IDB predicate and define it by rules. These rules will use more primitive
EDB predicates, which can themselves be determined from the flow graph and
symbol table.

Example 12.14: Suppose we introduce two new EDB predicates:

1. assign(B, N, X) is true whenever the Nth statement of block B has .\
on the left. Note that X can be a variable or a simple expression with an
l-value, like *p.

2. type(X,T) is true if the type of X is T. Again, X Can be any expression
with an l-value, and T can be any expression for a legal type.

Then, we can write rules for def, making it an IDB predicate. Figure 12.15
is an expansion of Fig. 12.14, with two of the possible rules for def. Rule (4)
says that the Nth statement of block B defines X, if X is assigned by the Nth
statement. Rule (5) says that X can also be defined by the Nth statement of
block B if that statement assigns to *P, and X is any of the variables of the
type that P points to. Other kinds of assignments would need other rules for
def.

As an example of how we would make inferences using the rules of Fig. 12.15.
let us re-examine the block b; of Fig. 12.13. The first stalement assigns a
value to variable z, so the fact assign (b1, 1,z) would be in the EDB. The third
statement also assigns to , so assign(bi,3, ) is another EDB fact. The secon
statement assigns indirectly through p, so a third EDB fact is assign(b1, 2, *p).
Rule (4) then allows us to infer def(bi,1,z) and def(b1,3, x).

Suppose that p is of type pointer-to-integer (*int), and z and y are integers.
Then we may use rule (5), with B=b,, N =2, P=p, T =int, and X equal to
either z or y, to infer def(b1,2,z) and def(b),2,y). Similarly, we can infer the
same about any other variable whose type is integer or coerceable to an integer.
a
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1) rd(B,N,B,N,X)

def(B, N, X)

2) rd(B,N,C,M,X)

rd(B,N —1,C,M,X) &
def(B,N,Y) &
X#Y

3)  rd(B,0,C,M,X) rd(D,N,C, M, X) &

suce(D, N, B)

4) def(B,N, X) assign(B, N, X)

5) def(B, N, X)

assign(B, N,*P) &
type(X,T) &
type(P, «T)

Figure 12.15: Rules for predicates rd and def

12.3.4 Execution of Datalog Programs

Every set of Datalog rules defines relations for its IDB predicates, as a function
of the relations that are given for its EDB predicates. Start with the assumption
that the IDB relations are empty (i.e., the IDB predicates are false for all
possible arguments). Then, repeatedly apply the rules, inferring new facts
whenever the rules require us to do so. When the process converges, we are
done, and the resulting IDB relations form the output of the program. This
process is formalized in the next algorithm, which is similar to the iterative
algorithms discussed in Chapter 9.

Algorithm 12.15: Simple evaluation of Datalog programs.
INPUT: A Datalog program and sets of facts for each EDB predicate.
OUTPUT: Sets of facts for each IDB predicate.

METHOD: For each predicate p in the program, let R, be the relation of facts
that are true for that predicate. If p is an EDB predicate, then R, is the set of
facts given for that predicate. If p is an IDB predicate, we shall compute K,.
Execute the algorithm in Fig. 12.16. 0O

Example 12.16: The program in Example 12.12 computes paths in a graph.
To apply Algorithm 12.15, we start with EDB predicate edge holding all the
edges of the graph and with the relation for path empty. On the first round,
rule (2) yields nothing, since there are no path facts. But rule (1) causes all the
edge facts to become path facts as well. That is, after the first round, we know
path(a,b) if and only if there is an edge from a to b.
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for (each IDB predicate p)
R, =0
while (changes to any R, occur) {
consider all possible substitutions of constants for
variables in all the rules;
determine, for each substitution, whether all the
subgoals of the body are true, using the current
Rp’s to determine truth of EDB and IDB predicates;
if (a substitution makes the body of a rule true)
add the head to R, if ¢ is the head predicate;

Figure 12.16: Evaluation of Datalog programs

On the second round, rule (1) yields no new paths facts, because the EDB
relation edge never changes. However, now rule (2) lets us put together two
paths of length 1 to make paths of length 2. That is, after the second round.
path(a,b) is true if and only if there is a path of length 1 or 2 from a to b.
Similarly, on the third round, we can combine paths of length 2 or less to
discover all paths of length 4 or less. On the fourth round, we discover paths of
length up to to 8, and in general, after the ith round, path(a,b) is true if and
only if there is a path from a to b of length 21 orless. O

12.3.5 Incremental Evaluation of Datalog Programs

There is an efficiency enhancement of Algorithm 12.15 possible. Observe that «
new IDB fact can only be discovered on round i if it is the result of substituting,
constants in a rule, such that at least one of the subgoals becomes a fact that
was just discovered on round ¢ — 1. The proof of that claim is that if all the facts
among the subgoals were known at round i — 2, then the “new” fact would have
been discovered when we made the same substitution of constants on roun
i—1.

To take advantage of this observation, introduce for each IDB predicate p
a predicate newP that will hold only the newly discovered p-facts from the
previous round. Each rule that has one or more IDB predicates among it~
subgoals is replaced by a collection of rules. Each rule in the collection i~
formed by replacing exactly one occurrence of some IDB predicate ¢ in the
body by newQ. Finally, for all rules, we replace the head predicate h by newH .
The resulting rules are said to be in incremental form.

The relations for each IDB predicate p accumulates all the p-facts, as iu
Algorithm 12.15. In one round, we

1. Apply the rules to evaluate the newP predicates.
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Incremental Evaluation of Sets

It is also possible to solve set-theoretic data-flow problems incrementally.
For example, in reaching definitions, a definition can only be newly dis-
covered to be in IN[B] on the ith round if it was just discovered to be
in OUT[P] for some predecessor P of B. The reason we do not generally
try to solve such data-flow problems incrementally is that the bit-vector
implementation of sets is so efficient. It is generally easier to fly through
the complete vectors than to decide whether a fact is new or not.

2. Then, subtract p from newP, to make sure the facts in newP are truly
new.

3. Add the facts in newP to p.

4. Set all the newX relations to @ for the next round.

These ideas will be formalized in Algorithm 12.18. However, first, we shall give
an example.

Example 12.17: Consider the Datalog program in Example 12.12 again. The
incremental form of the rules is given in Fig. 12.17. Rule (1) does not change,
except in the head because it has no IDB subgoals in the body. However,
rule (2), with two IDB subgoals, becomes two different rules. In each rule, one
of the occurrences of path in the body is replaced by newPath. Together, these
rules enforce the idea that at least one of the two paths concatenated by the
rule must have been discovered on the previous round. O

1) mnewPath(X,Y)

edge(X,Y)

2a) newPath(X,Y) path(X,Z) &

newPath(Z,Y)

2b) newPath(X,Y) :- newPath(X,Z)%&
path(Z,Y)

Figure 12.17: Incremental rules for the path Datalog program

Algorithm 12.18: Incremental evaluation of Datalog programs.
INPUT: A Datalog program and sets of facts for each EDB predicate.

OUTPUT: Sets of facts for each IDB predicate.
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METHOD: For each predicate p in the program, let R, be the relation of facts
that are true for that predicate. If p is an EDB predicate, then Ry is the set of
facts given for that predicate. If p is an IDB predicate, we shall compute R,.
In addition, for each IDB predicate p, let R,..op be a relation of “new” facts
for predicate p.

1. Modify the rules into the incremental form described above.

2. Execute the algorithm in Fig. 12.18.
O

for (each IDB predicate p) {

R, = 0;
Rpewp = 0;
}
repeat {

consider all possible substitutions of constants for
variables in all the rules;
determine, for each substitution, whether all the
subgoals of the body are true, using the current
Ry’s and Rpewp’s to determine truth of EDB
and IDB predicates;
if (a substitution makes the body of a rule true)
add the head to0 Rpewr, where h is the head
predicate; -
for (each predicate p) {
Ropewp = Rpewp — Rp;
Rp = Rp U Rnewp;

} until (all Ryeyp’s are empty);

Figure 12.18: Evaluation of Datalog programs

12.3.6 Problematic Datalog Rules

There are certain Datalog rules or programs that technically have no meaning
and should not be used. The two most important risks are

1. Unsafe rules: those that have a variable in the head that does not appear
in the body in a way that constrains that variable to take on only values
that appear in the EDB.

2. Unstratified programs: sets of rules that have a recursion involving a nega-
tion.

We shall elaborate on each of these risks.
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Rule Safety

Any variable that appears in the head of a rule must also appear in the body.
Moreover, that appearance must be in a subgoal that is an ordinary IDB or
EDB atom. It is not acceptable if the variable appears only in a negated atom,
or only in a comparison operator. The reason for this policy is to avoid rules
that let us infer an infinite number of facts.

Example 12.19: The rule
p(X,Y) :-q(Z) e NOTr(X) & X #Y

is unsafe for two reasons. Variable X appears only in the negated subgoal
7(X) and the comparison X # Y. Y appears only in the comparison. The
consequence is that p is true for an infinite number of pairs (X,Y’), as long as
7(X) is false and Y is anything other than X. O

Stratified Datalog

In order for a program to make sense, recursion and negation must be separated.
The formal requirement is as follows. We must be able to divide the IDB
predicates into strata, so that if there is a rule with head predicate p and a
subgoal of the form NOT g(---), then ¢ is either EDB or an IDB predicate in
a lower stratum than p. As long as this rule is satisfied, we can evaluate the
strata, lowest first, by Algorithm 12.15 or 12.18, and then treat the relations
for the IDB predicates of that strata as if they were EDB for the computation
of higher strata. However, if we violate this rule, then the iterative algorithm
may fail to converge, as the next example shows.

Example 12.20: Consider the Datalog program consisting of the one rule:
p(X) :- e(X) & NOT p(X)

Suppose e is an EDB predicate, and only e(1) is true. Is p(1) true?

This program is not stratified. Whatever stratum we put p in, its rule has
a subgoal that is negated and has an IDB predicate (namely p itself) that is
surely not in a lower stratum than p.

If we apply the iterative algorithm, we start with R, = #, so initially, the
answer is “no; p(1) is not true.” However, the first iteration lets us infer p(1),
since both e(1) and NOT p(1) are true. But then the second iteration tells us
p(1) is false. That is, substituting 1 for X in the rule does not allow us to infer
p(1), since subgoal NOT p(1) is false. Similarly, the third iteration says p(1) is
true, the fourth says it is false, and so on. We conclude that this unstratified
program is meaningless, and do not consider it a valid program. O
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12.3.7 Exercises for Section 12.3

Exercise 12.3.1: In this problem, we shall consider a reaching-definition~
data-flow analysis that is simpler than that in Example 12.13. Assume that each
statement by itself is a block, and initially assume that each statement defincs
exactly one variable. The EDB predicate pred(I,J) means that statement / i~
a predecessor of statement J. The EDB predicate defines(I, X) means that the
variable defined by statement I is X. We shall use IDB predicates in(I, D) and
out(I, D) to mean that definition D reaches the beginning or end of statement
I, respectively. Note that a definition is really a statement number. Fig. 12.19
is a datalog program that expresses the usual algorithm for computing reachiny
definitions.

1) killI,D) :- defines(I,X) & defines(D,X)
2)  out(I,I) :- defines(I,X)

3) out(I,D) :- in(I,D)& NOT kill(I,D)

4) in(I,D) :- out(J,D) & pred(J,I)

Figure 12.19: Datalog program for a simple reaching-definitions analysis

Notice that rule (1) says that a statement kills itself, but rule (2) assurcs
that a statement is in its own “out set” anyway. Rule (3) is the normal transfci
function, and rule (4) allows confluence, since I can have several predecessors.

Your problem is to modify the rules to handle the common case where &
definition is ambiguous, e.g., an assignment through a pointer. In this situation.
defines(I, X) may be true for several different X’s and one I. A definition i~
best represented by a pair (D, X), where D is a statement, and X is onc ol
the variables that may be defined at D. As a result, in and out become three
argument predicates; e.g., in(I, D, X) means that the (possible) definition of .\
at statement D reaches the beginning of statement I.

Exercise 12.3.2: Write a Datalog program analogous to Fig. 12.19 to com
pute available expressions. In addition to predicate defines, use a predicate
eval(I, X,0,Y) that says statement I causes expression XOY to be evaluated.
Here, O is the operator in the expression, e.g., +.

Exercise 12.3.3: Write a Datalog program analogous to Fig. 12.19 to compute
live variables. In addition to predicate defines, assume a predicate use(l, \)
that says statement I uses variable X.

Exercise 12.3.4: In Section 9.5, we defined a data-flow calculation that in
volved six concepts: anticipated, available, earliest, postponable, latest, and
used. Suppose we had written a Datalog program to define each of these in
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terms of EDB concepts derivable from the program (e.g., gen and kill infor-
mation) and others of these six concepts. Which of the six depend on which
others? Which of these dependences are negated? Would the resulting Datalog
program be stratified?

Exercise 12.3.5: Suppose that the EDB predicate edge(X,Y) consists of the
following facts:

edge(1,2) edge(2,3) edge(3,4)
edge(4,1) edge(4,5) edge(5,6)

a) Simulate the Datalog program of Example 12.12 on this data, using the
simple evaluation strategy of Algorithm 12.15. Show the path facts dis-
covered at each round.

b) Simulate the Datalog program of Fig. 12.17 on this data, as part of the
incremental evaluation strategy of Algorithm 12.18. Show the path facts
discovered at each round.

Exercise 12.3.6: The following rule
p(X,Y) :-q(X,2) & r(Z,W) & NOT p(W,Y)
is part of a larger Datalog program P. ,
a) Identify the head, body, and subgoals of this rule.
b) Which predicates are certainly IDB predicates of program P?
! ¢) Which predicates are certainly EDB predicates of P?
d

) Is the rule safe?
e) Is P stratified?

Exercise 12.3.7: Convert the rules of Fig. 12.14 to incremental form.

12.4 A Simple Pointer-Analysis Algorithm

In this section, we begin the discussion of a very simple flow-insensitive pointer-
alias analysis assuming that there are no procedure calls. We shall show in
subsequent sections how to handle procedures first context insensitively, then
context sensitively. Flow sensitivity adds a lot of complexity, and is less im-
portant to context sensitivity for languages like Java where methods tend to be
small.

The fundamental question that we wish to ask in pointer-alias analysis is
whether a given pair of pointers may be aliased. One way to answer this question
is to compute for each pointer the answer to the question “what objects can
this pointer point to?” If two pointers can point to the same object, then the
pointers may be aliased.
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12.4.1 Why is Pointer Analysis Difficult

Pointer-alias analysis for C programs is particularly difficult, because C pro-
grams can perform arbitrary computations on pointers. In fact, one can read in
an integer and assign it to a pointer, which would render this pointer a potential
alias of all other pointer variables in the program. Pointers in Java, known as
references, are much simpler. No arithmetic is allowed, and pointers can only
point to the beginning of an object.

Pointer-alias analysis must be interprocedural. Without interprocedural
analysis, one must assume that any method called can change the contents of
all accessible pointer variables, thus rendering any intraprocedural pointer-alias
analysis ineffective.

Languages allowing indirect function calls present an additional challenge
for pointer-alias analysis. In C, one can call a function indirectly by calling «
dereferenced function pointer. We need to know what the function pointer can
point to before we can analyze the function called. And clearly, after analyzing
the function called, one may discover more functions that the function pointer
can point to, and therefore the process needs to be iterated.

While most functions are called directly in C, virtual methods in Java causc
many invocations to be indirect. Given an invocation x.m() in a Java program.
there may be many classes to which object £ might belong and that have a
method named m. The more precise our knowledge of the actual type of z, the
more precise our call graph is. Ideally, we can determine at compile time the
exact class of z and thus know exactly which method m refers to.

-~
Example 12.21: Consider the following sequence of Java statements:

Object o;
o = new String();
n = o.length();

Here o is declared to be an Object. Without analyzing what o refers to, all
possible methods called “length” declared for all classes must be considered as
possible targets. Knowing that o points to a String will narrow interprocedural
analysis to precisely the method declared for String. O

It is possible to apply approximations to reduce the number of targets. For
example, statically we can determine what are all the types of objects created,
and we can limit the analysis to thusc. But we can be more accurate if we cau
discover the call graph on the fly, based on the points-to analysis obtained at
the same time. More accurate call graphs lead not only to more precise results
but also can reduce greatly the analysis time otherwise needed.

Points-to analysis is complicated. It is not one of those “easy” data flow
problems where we only need to simulate the effect of going around a loop of
statements once. Rather, as we discover new targets for a pointer, all statements
assigning the contents of that pointer to another pointer need to be re-analyzed.
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For simplicity, we shall focus mainly on Java. We shall start with flow-
insensitive and context-insensitive analysis, assuming for now that no methods
are called in the program. Then, we describe how we can discover the call graph
on the fly as the points-to results are computed. Finally, we describe one way
of handling context sensitivity.

12.4.2 A Model for Pointers and References

Let us suppose that our language has the following ways to represent and ma-
nipulate references:

1. Certain program variables are of type “pointer to T” or “reference to T',”
where T is a type. These variables are either static or live on the run-time
stack. We call them simply variables.

2. There is a heap of objects. All variables point to heap objects, not to
other variables. These objects will be referred to as heap objects.

3. A heap object can have fields, and the value of a field can be a reference
to a heap object (but not to a variable).

Java is modeled well by this structure, and we shall use Java syntax in examples.
Note that C is modeled less well, since pointer variables can point to other
pointer variables in C, and in principle, any C value can be coerced into a
pointer.

Since we are performing an insensitive analysis, we only need to assert that
a given variable v can point to a given heap object h; we do not have to address
the issue of where in the program v can point to h, or in what contexts v can
point to h. Note, however, that variables can be named by their full name. In
Java, this name can incorporate the module, class, method, and block within
a method, as well as the variable name itself. Thus, we can distinguish many
variables that have the same identifier.

Heap objects do not have names. Approximation often is used to name the
objects, because an unbounded number of objects may be created dynamically.
One convention is to refer to objects by the statement at which they are created.
As a statement can be executed many times and create a new object each time,
an assertion like “v can point to hA” really means “v can point to one or more
of the objects created at the statement labeled h.”

The goal of the analysis is to determine what each variable and each field
of each heap object can point to. We refer to this as a points-to analysis;
two pointers are aliased if their points-to sets intersect. We describe here an
inclusion-based analysis; that is, a statement such as v = w causes variable v to
point to all the objects w points to, but not vice versa. While this approach may
seem obvious, there are other alternatives to how we define points-to analysis.
For example, we can define an equivalence-based analysis such that a statement
like v = w would turn variables v and w into one equivalence class, pointing
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to all the variables that each can point to. While this formulation does not
approximate aliases well, it provides a quick, and often good, answer to the
question of which variables point to the same kind of objects.

12.4.3 Flow Insensitivity

We start by showing a very simple example to illustrate the effect of ignoring
control flow in points-to analysis.

Example 12.22: In Fig. 12.20, three objects, h, i, and j, are created and
assigned to variables a, b, and ¢, respectively. Thus, surely a points to h, b
points to i, and ¢ points to j by the end of line (3).

1) h: a = new Object();
2) i: b = new Object();
3) j: ¢ = new Object();
4) a = b;
5) b = c;
6) c = a;

Figure 12.20: Java code for Example 12.22

If you follow the statements (4) through (6), you dlscover that after line (4)
a points only to i. After line (5), b points only to j, and after line (6), ¢ points
only toi. O

The above analysis is flow sensitive because we follow the control flow and
compute what each variable can point to after each statement. In other words,
in addition to considering what points-to information each statement “gener-
ates,” we also account for what points-to information each statement “kills.”
For instance, the statement b = c; kills the previous fact “b points to j” and
generates the new relationship “b points to what ¢ points to.”

A flow-insensitive analysis ignores the control flow, which essentially assumes
that every statement in the program can be executed in any order. It computes
only one global points-to map indicating what each variable can possibly point
to at any point of the program execution. If a variable can point to two different.
objects after two different statements in a program, we simply record that it can
point to both objects. In other words, in flow-insensitive analysis, an assignment
does not “kill” any points-to relations but can only “generate” more points-to
relations. To compute the flow-insensitive results, we repeatedly add the points-
to effects of each statement on the points-to relationships until no new relations
are found. Clearly, lack of flow sensitivity weakens the analysis results greatly.
but it tends to reduce the size of the representation of the results and make the
algorithm converge faster.
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Example 12.23: Returning to Example 12.22, lines (1) through (3) again tell
us a can point to h; b can point to i, and ¢ can point to j. With lines (4)
and (5), a can point to both h and i, and b can point to both ¢ and j. With
line (6), ¢ can point to h,i, and j. This information affects line (5), which in
turn affects line (4), In the end, we are left with the useless conclusion that
anything can point to anything. O

12.4.4 The Formulation in Datalog

Let us now formalize a flow-insensitive pointer-alias analysis based on the dis-
cussion above. We shall ignore procedure calls for now and concentrate on the
four kinds of statements that can affect pointers:

1. Object creation. h: T v = new T(); This statement creates a new heap
object, and variable v can point to it.

2. Copy statement. v = w; Here, v and w are variables. The statement
makes v point to whatever heap object w currently points to; i.e., w is
copied into v.

3. Field store. v.f = w; The type of object that v points to must have a
field f, and this field must be of some reference type. Let v point to heap
object h, and let w point to g. This statement makes the field f, in h
now point to g. Note that the variable v is unchanged.

4. Field load. v = w.f; Here, w is a variable pointing to some heap object
that has a field f, and f points to some heap object h. The statement
makes variable v point to h.

Note that compound field accesses in the source code such as v = w.f.g
will be broken down into two primitive field-load statements:

vl = w.f;
v =vl.g;

Let us now express the analysis formally in Datalog rules. First, there are
only two IDB predicates we need to compute:

1. pts(V, H) means that variable V can point to heap object H.

2. hpts(H,F,G) means that field # of heap object H can point to heap
object G.

The EDB relations are constructed from the program itself. Since the
location of statements in a program is irrelevant when the analysis is flow-
insensitive, we only have to assert in the EDB the existence of statements that
have certain forms. In what follows, we shall make a convenient simplification.
Instead of defining EDB relations to hold the information garnered from the
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program, we shall use a quoted statement form to suggest the EDB relation
or relations that represent the existence of such a statement. For example.
“H: TV =new T” is an EDB fact asserting that at statement H there i~
an assignment that makes variable V point to a new object of type T. We as-
sume that in practice, there would be a corresponding EDB relation that would
be populated with ground atoms, one for each statement of this form in the
program.

With this convention, all we need to write the Datalog program is one rulc
for each of the four types of statements. The program is shown in Fig. 12.21.
Rule (1) says that variable V can point to heap object H if statement H is an
assignment of a new object to V. Rule (2) says that if there is a copy statement
V = W, and W can point to H, then V can point to H.

1) pts(V,H) :- “H: TV =newT”

2) pts(V,H) :- “V=W"4&
pts(W, H)

3) hpts(H,F,G) :- “VF=W"&
pts(W,G) &
pts(V, H)

4) pts(V,H) :- “V=WF"&
pts(W,G) &

hpts(G,F,H) ~

Figure 12.21: Datalog program for flow-insensitive pointer analysis

Rule (3) says that if there is a statement of the form V.F = W, W can poin!
to G, and V can point to H, then the F field of H can point to G. Finally.
rule (4) says that if there is a statement of the form V = W.F, W can point to
G, and the F field of G can point to H, then V can point to H. Notice that pts
and hpts are mutually recursive, but this Datalog program can be evaluated by
either of the iterative algorithms discussed in Section 12.3.4.

12.4.5 Using Type Information

Because Java is type safe, variables can only point to types that are compat-
ible to the declared types. For example, assigning an object belonging to a
superclass of the declared type of a variable would raise a run-time exception.
Consider the simple example in Fig. 12.22, where S is a subclass of T. This
program will generate a run-time exception if p is true, because a cannot be
assigned an object of class T. Thus, statically we can conclude that because of
the type restriction, a can only point to h and not g.
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S a;
T b;
if (p) {

g: b = new T();
} else

h: b = new SQ);
}
a =b;

Figure 12.22: Java program with a type error

Thus, we introduce to our analysis three EDB predicates that reflect impor-
tant type information in the code being analyzed. We shall use the following:

1. vType(V,T) says that variable V is declared to have type T.

2. hType(H,T) says that heap object H is allocated with type T'. The type
of a created object may not be known precisely if, for example, the object
is returned by a native method. Such types are modeled conservatively
as all possible types.

3. assignable(T,S) means that an object of type S can be assigned to a
variable with the type T. This information is generally gathered from the
declaration of subtypes in the program, but also incorporates information
about the predefined classes of the language. assignable(T,T) is always
true.

We can modify the rules from Fig. 12.21 to allow inferences only if the
variable assigned gets a heap object of an assignable type. The rules are shown
in Fig. 12.23.

The first modification is to rule (2). The last three subgoals say that we can
only conclude that V can point to H if there are types T' and S that variable V
and heap object H may respectively have, such that objects of type S can be
assigned to variables that are references to type T. A similar additional restric-
tion has been added to rule (4). Notice that there is no additional restriction
in rule (3) because all stores must go through variables. Any type restriction
would only catch one extra case, when the base object is a null constant.

12.4.6 Exercises for Section 12.4

Exercise 12.4.1: In Fig. 12.24, h and g are labels used to represent newly
created objects, and are not part of the code. You may assume that objects of
type T have a field f. Use the Datalog rules of this section to infer all possible
pts and hpts facts.
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1) pts(V,H) :- “H: TV =newT”

2) pts(V,H) :- “V=W"4&
pts(W,H) &
vType(V,T) &

hType(H,S) &
assignable(T, S)

“WFEF=W"&
pts(W,G) &
pts(V, H)

3) hpts(H,F,G)

“W=WF &
pts(W,G) &
hpts(G,F,H) &
vType(V,T) &
hType(H,S) &
assignable(T, S)

4) pts(V, H)

Figure 12.23: Adding type restrictions to flow-insensitive pointer analysis

h: T a = new T();
g: Tb =new TO;
T c= a; -
a.f = b;
b.f = c;
Tads=c.f;

Figure 12.24: Code for Exercise 12.4.1

! Exercise 12.4.2: Applying the algorithm of this section to the code

h: T a = new TQ;
g: b =new TO;
Tc=a;

would infer that both a and b can point to h and g. Had the code been written

h: T a = new T();
g: b = new TQ);
T c =b;

we would infer accurately that a can point to h, and b and c can point to
g. Suggest an intraprocedural data-flow analysis that can avoid this kind of
inaccuracy.
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t p(t x) {
h: T a = new T;
a.f = x;
return a;
}
void main() {
g: Tb=new T;
b = p(b);
b =b.1f;

Figure 12.25: Example code for pointer analysis

! Exercise 12.4.3: We can extend the analysis of this section to be interproce-
dural if we simulate call and return as if they were copy operations, as in rule (2)
of Fig. 12.21. That is, a call copies the actuals to their corresponding formals,
and the return copies the variable that holds the return value to the variable
that is assigned the result of the call. Consider the program of Fig. 12.25.

a) Perform an insensitive analysis on this code.

b) Some of the inferences made in (a) are actually “bogus,” in the sense that
they do not represent any event that can occur at run-time. The problem
can be traced to the multiple assignments to variable b. Rewrite the code
of Fig. 12.25 so that no variable is assigned more than once. Rerun the
analysis and show that each inferred pts and hpts fact can occur at run
time.

12.5 Context-Insensitive Interprocedural
Analysis

We now consider method invocations. We first explain how points-to analysis
can be used to compute a precise call graph, which is useful in computing precise
points-to results. We then formalize on-the-fly call-graph discovery and show
how Datalog can be used to describe the analysis succinctly.

12.5.1 Effects of a Method Invocation

The effects of a method call such as x = y.n(z) in Java on the points-to rela-
tions can be computed as follows:

1. Determine the type of the receiver object, which is the object that y points
to. Suppose its type is t. Let m be the method named n in the narrowest
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superclass of ¢t that has a method named n. Note that, in general, which
method is invoked can only be determined dynamically.

2. The formal parameters of m are assigned the objects pointed to by the ac
tual parameters. The actual parameters include not just the parameters
passed in directly, but also the receiver object itself. Every method invo
cation assigns the receiver object to the this variable.> We refer to the
this variables as the Oth formal parameters of methods. In x = y.n(z).
there are two formal parameters: the object pointed to by y is assigned
to variable this, and the object pointed to by z is assigned to the firsi
declared formal parameter of m.

3. The returned object of m is assigned to the left-hand-side variable of the
assignment statement.

In context-insensitive analysis, parameters and returned values are modeled
by copy statements. The interesting question that remains is how to determine
the type of the receiver object. We can conservatively determine the type ac-
cording to the declaration of the variable; for example, if the declared variablc
has type ¢, then only methods named n in subtypes of ¢t can be invoked. Unfor-
tunately, if the declared variable has type Object, then all methods with name
n are all potential targets. In real-life programs that use object hierarchies ex-
tensively and include many large libraries, such an approach can result in many
spurious call targets, making the analysis both slow and imprecise.

We need to know what the variables can point to in drder to compute the
call targets; but unless we know the call targets, we cannot find out what all the
variables can point to. This recursive relationship requires that we discover the
call targets on the fly as we compute the points-to set. The analysis continucs
until no new call targets and no new points-to relations are found.

Example 12.24: In the code in Fig. 12.26, r is a subtype of s, which itself is a
subtype of t. Using only the declared type information, a.n() may invoke any
of the three declared methods with name n since s and r are both subtypes of
a’s declared type, t. Furthermore, it appears that a may point to objects g, .
and 1 after line (5).

By analyzing the points-to relationships, we first determine that a can point.
to 7, an object of type ¢. Thus, the method declared in line (1) is a call target.
Analyzing line (1), we determine that a also can point to g, an object of type
r. Thus, the method declared in line (3) may also be a call target, and a can
now also point to ¢, another object of type r. Since there are no more new
call targets, the analysis terminates without analyzing the method declared in
line (2) and without concluding that a can point to k. O

3Remember that variables are distinguished by the method to which they belong, so there
is not just one variable named this, but rather one such variable for each method in the
program.
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class t {

1) g: t n() { return new r(); }
}
class s extends t {

2) h: t n() { return new s(); }
}
class r extends s {

3) i: t n() { return new r(); }
}
main () {

4) j: t a = new t();

5) a = a.n();
}

Figure 12.26: A virtual method invocation

12.5.2 Call Graph Discovery in Datalog

To formulate the Datalog rules for context-insensitive interprocedural analysis,
we introduce three EDB predicates, each of which is obtainable easily from the
source code:

1. actual(S,1,V) says V is the Ith actual parameter used in call site S.

2. formal(M,1,V) says that V is Ith formal parameter declared in method
M.

3. cha(T, N, M) says that M is the method called when N is invoked on a
receiver object of type T. (cha stands for class hierarchy analysis).

Each edge of the call graph is represented by an IDB predicate invokes.
As we discover more call-graph edges, more points-to relations are credted as
the parameters are passed in and returned values are passed out. This effect is
summarized by the rules shown in Figure 12.27.

The first rule computes the call target of the call site. Thatis, “S: V.N ..y
says that there is a call site labeled .S that invokes method named N on the
receiver object pointed to by V. The subgoals say that if V can point to heap
object H, which is allocated as type T', and M is the method used when N is
invoked on objects of type T', then call site S may invoke method M.

The second rule says that if site S can call method M, then each formal
parameter of M can point to whatever the corresponding actual parameter of
the call can point to. The rule for handling returned values is left as an exercise.

Combining these two rules with those explained in Section 12.4 create a
context-insensitive points-to analysis that uses a call graph that is computed
on the fly. This analysis has the side effect of creating a call graph using a
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1) invokes(S,M) :~ “S: V.N(.)" &
pts(V,H) &
hType(H,T) &
cha(T, N, M)

2) pts(V,H) :- invokes(S,M)

&
formal(M,1,V) &
actual(S,I,W) &
pts(W, H)

Figure 12.27: Datalog program for call-graph discovery

context-insensitive and flow-insensitive points-to analysis. This call graph is
significantly more accurate than one computed based only on type declarations
and syntactic analysis.

12.5.3 Dynamic Loading and Reflection

Languages like Java allow dynamic loading of classes. It is impossible to an-
alyze all the possible code executed by a program, and hence impossible to
provide any conservative approximation of call graphs or pointer aliases stat-
ically. Static analysis can only provide an approximation based on the code
analyzed. Remember that all the analyses described here gan be applied at the
Java bytecode level, and thus it is not necessary to examine the source code.
This option is especially significant because Java programs tend to use many
libraries.

Even if we assume that all the code to be executed is analyzed, there is
one more complication that makes conservative analysis impossible: reflection.
Reflection allows a program to determine dynamically the types of objects to
be created, the names of methods invoked, as well as the names of the fields
accessed. The type, method, and field names can be computed or derived
from user input, so in general the only possible approximation is to assume the
universe.

Example 12.25: The code below shows a common use of reflection:

1) String className = ...;
2) Class ¢ = Class.forName(className);
3) Object o = c.newInstance();

4) Tt = (T) o;

The forName method in the Class library takes a string containing the class
name and returns the class. The method newInstance returns an instance of
that class. Instead of leaving the object o with type Object, this object is cast
to a superclass T of all the expected classes. O
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While many large Java applications use reflection, they tend to use common
idioms, such as the one shown in Example 12.25. As long as the application
does not redefine the class loader, we can tell the class of the object if we know
the value of className. If the value of className is defined in the program,
because strings are immutable in Java, knowing what className points to
will provide the name of the class. This technique is another use of points-to
analysis. If the value of className is based on user input, then the points-to
analysis can help locate where the value is entered, and the developer may be
able to limit the scope of its value.

Similarly, we can exploit the typecast statement, line (4) in Example 12.25,
to approximate the type of dynamically created objects. Assuming that the
typecast exception handler has not been redefined, the object must belong to a
subclass of the class T'.

12.5.4 Exercises for Section 12.5
Exercise 12.5.1: For the code of Fig. 12.26

a) Construct the EDB relations actual, formal, and cha.

b) Make all possible inferences of pts and hpts facts.

Exercise 12.5.2: How would you add to the EDB predicates and rules of
Section 12.5.2 additional predicates and rules to take into account the fact that
if a method call returns an object, then the variable to which the result of the
call is assigned can point to whatever the variable holding the return value can
point to?

12.6 Context-Sensitive Pointer Analysis

As discussed in Section 12.1.2, context sensitivity can improve greatly the pre-
cision of interprocedural analysis. We talked about two approaches to interpro-
cedural analysis, one based on cloning (Section 12.1.4) and one on summaries
(Section 12.1.5). Which one should we use?

There are several difficulties in computing the summaries of points-to infor-
mation. First, the summaries are large. Each method’s summary must include
the effect of all the updates that the function and all its callees can make, in
terms of the incoming parameters. That is, a method can change the points-to
sets of all data reachable through static variables, incoming parameters and all
objects created by the method and its callees. While complicated schemes have
been proposed, there is no known solution that can scale to large programs.
Even if the summaries can be computed in a bottom-up pass, computing the
points-to sets for all the exponentially many contexts in a typical top-down
pass presents an even greater problem. Such information is necessary for global
queries like finding all points in the code that touch a certain object.



