
Constructive Logic (15-317), Fall 2017
Assignment 7: Practising Prolog Programming

Ryan Kavanagh∗

Due Thursday, November 2, 2017

This assignment is due at the beginning of class on the above date and must
be submitted electronically via Autolab. Submit your homework as a tar archive
containing the files: g4ip.pl, coloring.pl, and hw7.pdf.

After submitting via Autolab, please check the submission’s contents to
ensure it contains what you expect. No points can be given to a submission
that isn’t there.

1 Implementing a theorem prover (one more time)

Now that you are experts in implementing G4ip in Standard ML, it is time to try
doing so in Prolog.

Task 1 (15 points). Implement a theorem prover for G4ip in Prolog. You must
define the predicate predicate prove/1 for proving a formula, and use the prede-
fined logical operators (see accompanying g4ip.pl file). This means that, given
a valid ground formula a, the query prove(a) should succeed (with true or yes).

For your convenience, we have provided you with a shell script to test your
implementation. You can invoke it by going

$ ./test_g4ip.sh

2 Colouring maps

Graph colouring is an interesting problem in graph theory. A graph colouring
is an assignment of colours to each vertex such that no two adjacent vertices
have the same colour. Of particular interest is a colouring using a minimum
number of colours; this number is called the chromatic number of the graph. The

∗Based on an assignment by Giselle Reis.

1



four-colour theorem states that any planar graph1 can be coloured using at most
four colours. The theorem was proved in 1976 using a computer program, and
has caused much controversy (is a computer proof really a proof?). It has since
been formally verified using the Coq theorem prover in 2005.

As a consequence of this theorem, any map can be coloured with at most
four colours such that no adjacent regions have the same colour. This is because
every map can be represented by a planar graph, with one vertex for each region,
and an edge between two vertices if and only if their corresponding regions are
adjacent.

Figure 1: Australia (more colourful than necessary)

Consider, for example, Australia’s map in Figure 1. Observe that this map
uses more colours than necessary, although this might make it more visually
appealing.

Task 2 (15 points). Implement a predicate color graph(nodes, edges, colours)
that associates with the graph (nodes, edges) all of the valid 4-colourings of the
graph. Submit your implementation in a file named coloring.pl.

The predicate color graph should find all valid colourings via backtracking.
For efficiency reasons, you may prefer to find all valid colourings without repeti-
tion, but we will not be checking this. Once all valid solutions have been found
via backtracking, the predicate should fail. You may assume the graph is finite
and planar, and your implementation should satisfy the following requirements:

1. You should define a color/1 predicate with four colours.

2. Assume there are functions node/1 and edge/2.

3. In color graph/3, the first parameter is a list of node/1 terms, the second

1A graph that can be drawn on the plane with no crossing edges.

2



parameter is a list of edge/2 terms, and the third parameter is a list of pairs
(a,c), where a is a node and c is a colour.

4. In the terminology of Task 3, the predicate color graph should be multi-
solution for the mode color graph(+nodes,+edges,−colouring). (Indeed,
the four-colour theorem tells us that we will always be able to find a 4-
colouring for a planar graph, and the graph’s finiteness guarantees there
are only finitely many such colourings.)

To clarify the terminology, consider the predicate childOf(P ,Q), which we claim
is multisolution for the mode childOf(+person,−person):

person(alice).

person(bob).

person(eve).

person(mallory).

childOf(eve, alice).

childOf(eve, bob).

childOf(alice, eve). % Yes, this family tree has a cycle...

childOf(bob, eve).

childOf(mallory, alice).

childOf(mallory, bob).

% Repeated for the sake of contrasting findall and setof below.

childOf(mallory, bob).

We can ask Prolog to backtrack and find additional solutions by entering ”;”
when prompted:

| ?- childOf(eve, Parent).

Parent = alice ? ;

Parent = bob

yes

Observe that childOf(+person,−person) is multisolution because it will always
terminate with at least one solution. In contrast, childOf(−person,+person) is
not multisolution, because for no term P does childOf(P ,mallory) hold.

The built-in Prolog predicates findall/3 and setof/3 may be useful in
debugging your implementation. You can use the findall/3 predicate to return
a list of all solutions (including repetitions):

| ?- findall(P, childOf(mallory, P), Parents).

3



Parents = [alice,bob,bob]

yes

We can also ask Prolog to return a set of all solutions (in list form) using the
setof/3 predicate:

| ?- setof(P, childOf(mallory, P), Parents).

Parents = [alice,bob]

yes

For your convenience, we have provided you with a shell script to test your
implementation. You can invoke it by going

$ ./test_coloring.sh

3 Mode and determinacy checking

A mode assignment for an n-ary predicate pred(arg1, . . . , argn) is a tuple of
pairs ((m1, τ1), ..., (mn, τn)), where each mi ∈ {+,−} and each τi is a type. We
usually write pred(m1τ1, . . . ,mnτn) to mean ((m1, τ1), . . . , (mn, τn)) is a mode
assignment for pred/n. For example, we wrote childOf(+person,−person) to
describe the mode ((+, person), (−, person)) for the predicate childOf/2 above.
We call the arg i such that mi is + “input arguments”, and the arg i such that mi

is − “output arguments”. Using a predicate according to a mode assignment
consists of instantiating all of its input arguments with terms of the right type,
and all output terms with unbound variables.

Recall that a solution to pred/n is an instantiation pred(t1, ..., tn) with terms
t1, . . . , tn such that pred(t1, . . . , tn) can be shown via backwards inference on the
rules defining pred.

A mode M for a predicate pred is valid if all solutions for all uses of pred
according to M satisfy the typing constraints given by M . The determinacy2 of
a valid mode M for pred tells us how many times we can succeed in finding
a solution before terminating for all possible uses pred according to M . If all
possible uses of pred according to M terminate and

• find a solution exactly once, then M is deterministic;

• find a solution at most once, then M is semideterministic;
2This definition is based on Section 6.1 of the Mercury Language Reference Manual.

4

https://www.mercurylang.org/information/doc-latest/mercury_ref/Determinism-categories.html


• find a solution at least once, then M is multisolution;

• find a solution at least zero times, then M is nondeterministic;

• always fail without producing any solutions, then M has the determinacy
failure.

Observe that determinacies are not mutually exclusive: all deterministic modes
are semideterministic, all semideterministic modes are nondeterministic, etc.

Task 3 (10 points). Consider the following predicates. First, we define the type
of binary integers in standard form:

std(e)

std(N )

std(b1(N ))

std(b0(N ))

std(b0(b0(N )))

std(b1(N ))

std(b0(b1(N )))

Recall the predicate for incrementing binary integers from class:

binc(e, b1(e)) binc(b0(b0(N )), b1(b0(N )))

binc(b0(b1(N )), b1(b1(N )))

binc(M ,N )

binc(b1(M ), b0(N ))

We define addition of binary integers:

bplus(e,N ,N ) bplus(b0(N ), e, b0(N ))

bplus(N ,M ,O)

bplus(b0(N ), b0(M ), b0(O))

bplus(N ,M ,O)

bplus(b0(N ), b1(M ), b1(O))

binc(M ,M ′) bplus(b0(N ),M ′,O)

bplus(b1(N ),M ,O)

Squaring of binary integers, based on the equations

(2m)2 = 4m2

(2m+ 1)2 = 4m2 + 4m+ 1

bsq(e, e) bsq(b1(e), b1(e))

bsq(M ,S )

bsq(b0(M ), b0(b0(S )))

M 6= e bsq(M ,S ) bplus(b0(b0(S )), b1(b0(M )),T )

bsq(b1(M ),T )

Taking the OR of binary integers:

bor(e,M ,M ) bor(M , e,M )

5



bor(M ,N ,O)

bor(b0(M ), b0(N ), b0(O))

bor(M ,N ,O)

bor(b0(M ), b1(N ), b1(O))

bor(M ,N ,O)

bor(b1(M ), b0(N ), b1(O))

bor(M ,N ,O)

bor(b1(M ), b1(N ), b1(O))

Taking the AND of binary integers:

band(e,M , e) band(M , e, e)

band(M ,N ,A)

band(b0(M ), b0(N ), b0(A))

band(M ,N ,A)

band(b0(M ), b1(N ), b0(A))

band(M ,N ,A)

band(b1(M ), b0(N ), b0(A))

band(M ,N ,A)

band(b1(M ), b1(N ), b1(A))

In this question, assume the types are binary integers in standard form, i.e.,
given by std. For each of the predicates listed below:

1. list all of the deterministic and semideterministic modes and state if each
of these mode is deterministic or only semideterministic;

2. if the predicate has no such modes, state this.

Additionally, if one of the predicates has a multisolution mode, give it (you only
need to give one such example); otherwise, state that none of the predicates have
a multisolution mode.

1. bplus(M ,N ,O)

2. bsq(M ,S )

3. bor(M ,N ,O)

4. band(M ,N ,A)

Can we use the predicates bplus(M ,N ,O) and bsq(M ,S ) to deterministically
implement subtraction and taking the square root of binary numbers in standard
form, respectively?

Submitting your assignment

Please generate a tarball containing your solution files by running

$ tar cf hw7.tar hw7.pdf coloring.pl g4ip.pl

and submit the resulting hw7.tar file to Autolab.

6


	Implementing a theorem prover (one more time)
	Colouring maps
	Mode and determinacy checking

