
Lecture Notes on
Classical Computation

15-317: Constructive Logic
Ronald Garcia

Lecture 8
September 17, 2009

1 Introduction

In the last lecture, we talked about how to alter our system of logic to sup-
port classical reasoning. To do so, we introduced two new judgments: #
signifying contradiction, and A false. In this lecture, we explore a computa-
tional interpretation of this new system.

2 Proof Terms

We begin by associating proof terms with each of our new rules. The rule
of contradiction follows:

k : A false M : A true

throwJ k M : J
contra

Since contradiction can produce any judgment whatsoever, we annotate
the proof term constructor as throwJ so that it precisely captures the proof.
We will omit this annotation when it’s clear from the context.

The proof term assignment for proof by contradiction is as follows:

k : A false
k

...
E : #

Ck.E : A true
PBC k

LECTURE NOTES SEPTEMBER 17, 2009

L8.2 Classical Computation

As with proof terms for implication introduction, we annotate the proof
term variable as Ck:A.E to disambiguate the proof.

We will study these two rules and their associated proof terms to see
how classical logic corresponds to computation.

As you know from last time,A∨¬A, often called the law of the excluded
middle (LEM), is true in classical logic but not in intuitionistic logic. Here
is a proof of LEM annotated with terms:

k : A ∨ ¬A false
k

k : A ∨ ¬A false
k

v : A true
v

inl v : A ∨ ¬A true
∨I

throw k (inl v) : ⊥ true
contra

λv.throw k (inl v) : ¬A true
⊃ Iv

inr (λv.throw k (inl v)) : A ∨ ¬A true
∨I

throw k (inr (λv.throw k (inl v))) : #
contra

Ck.throw k (inr (λv.throw k (inl v))) : A ∨ ¬A true
PBC k

In this lecture ¬A is once again notation for A⊃⊥. Observe that v is a
proof of A true, while λv.throw k (inl v) is a proof of ¬A true. Notice as
well that throw is used to produce two separate judgments. Once it yields
⊥ true, which we need to produce a proof of ¬A true, and once it yields
a contradiction #, which is used in a proof by contradiction. Finally, notice
that here we’re using judgments as types not just propositions as types. Since
our proof terms represent more judgments than A true, it’s not sufficient to
simply give A as the type: we must capture whether A is true or false, or if
we have produced a contradiction.

Figure 1 proves that (A⊃B ∨ C)⊃(A⊃B) ∨ (A⊃C) using excluded
middle as a lemma:

LEM = Ck:A ∨ ¬A.throw# k (inrA (λv:A.throw⊥ k (inl¬A v)))

The proof term that corresponds to this proof is as follows:

λf.case LEM of
inl x⇒ case f x of

inl u⇒ inl (λ .u)
inr w ⇒ inr (λ .w)

inr y ⇒ inl (λz.abort(y z))

For a final example, consider Peirce’s Law, ((A⊃B)⊃A)⊃A.
In a previous class, we tried to write a function with this type, but found

LECTURE NOTES SEPTEMBER 17, 2009

Classical Computation L8.3

LEM : A ∨ ¬A

A⊃B ∨ C
f

A
x

B ∨ C
⊃E

B
u

A⊃B
⊃ I

(A⊃B) ∨ (A⊃C)
∨I

C
w

A⊃C
⊃ I

(A⊃B) ∨ (A⊃C)
∨I

(A⊃B) ∨ (A⊃C)
∨Eu,w

¬A
y

A
z

⊥
⊃E

B
⊥E

A⊃B
⊃ Iz

(A⊃B) ∨ (A⊃C)
∨I

(A⊃B) ∨ (A⊃C)
∨Ex,y

(A⊃B ∨ C)⊃(A⊃B) ∨ (A⊃C)
⊃ If

Figure 1: Classical proof using the law of the excluded middle.

that it was not possible because it’s not intuitionistically true. Now using
classical logic, we can both prove it and program it!

A false
k

(A⊃B)⊃A true
f

A false
k

A true
u

B
contra

A⊃B true
⊃ Iu

A true
⊃E

#
contra

A true PBC k

((A⊃B)⊃A)⊃A true
⊃ If

Observe the boxed B. The contradiction rule concludes B true out of thin
air and uses it to conclude thatA⊃B true thereby discharging our assump-
tion of A true. We can then use this A⊃B true to eliminate
((A⊃B)⊃A)⊃A true and conclude A without ever having a real proof of
A! Then we use proof by contradiction to discharge our assumption that
A false. The proof term for Pierce’s law is:

λf.Ck.throw k (f (λu.throw k u))

Notice that it throws k twice: once to produce a type that we need out of
thin air, (via contradiction) and once to judge # so that the variable k can be
bound using C. The proof of LEM does the same thing. This is a common
pattern for proofs (and programs) that depend on classical logic.

LECTURE NOTES SEPTEMBER 17, 2009

L8.4 Classical Computation

3 Reduction

Adding proof by contradiction to our logic changes the meaning of all of
our connectives because there are now new ways to introduce each of them:
the introduction rules are no longer the sole means.

Having changed our system, it’s now necessary to check that local sound-
ness and local completeness still hold for each connective. Local complete-
ness still holds exactly the same way: given a proof of say A ∧ B, one can
still use the original elimination and introduction rules to perform a local
expansion.

On the other hand, local soundness must be shown to apply for ev-
ery combination of introduction and elimination rules. In our new system,
proof by contradiction can be used to introduce every propositional con-
nective, so we must show that proof-by-contradiction followed by an elim-
ination can be reduced.

Looking at the rules of the system, it’s not necessarily obvious how one
could reduce a proposition introduced by contradiction. Let’s demonstrate
how using implication as an example:

A⊃B false
k D

A⊃B true

#
contra

A⊃B true PBC
k E

A true
B true

⊃E
=⇒R

B false
k′

D
A⊃B true

E
A true

B true
⊃E

#
contra

B true PBC
k′

Observe how the local reduction behaves. The PBC rule introduced an
implication A⊃B true, which was immediately eliminated. To reduce this
rule, the elimination rule is pushed up to the point in the proof where the
contra rule is applied to the assumption A⊃B false which was labeled k.
Furthermore, the contra rule is now applied to an assumptionB false which
is now labeled with k′, and the PBC rule now discharges this new assump-
tion (the variable name doesn’t have to change, but it can; from here on we
often keep it the same).

LECTURE NOTES SEPTEMBER 17, 2009

Classical Computation L8.5

Referring to the corresponding proof terms, the reduction looks like the
following:

(Ck.throw k M) N =⇒R Ck.throw k (M N)

Here, M is the proof term for D and N is the proof term for E .
Local reduction operates similarly in the case of conjunction:

snd (Ck.throw k M) =⇒R Ck.throw k (snd M)

In this case, M is a proof term for A ∧B true, and the entire term is a proof
of B true.

The two examples above can be generalized to describe how local re-
ductions involving Ck.E behave. Each elimination rule is associated with
some operation: fst and snd for conjunction, case for disjunction, and abort
for false. Whenever one of these operations is applied to a proof by con-
tradiction, the reduction rule “steals” the operation and copies it to every
location where the abstracted variable k is thrown in its body. For example:

snd (Ck.E) =⇒R Ck′.[k′ (snd �)/k]E

The syntax [k′ (snd �)/k]E stands for a new kind of substitution, structural
substitution into the body of E. Roughly speaking, in the body of E, every
instance of throw k M is replaced with throw k′ (snd M). The box �
stands for the “hole” where the old argument to throw, M , gets placed.
The label k′ corresponds to the proposition proved by the elimination rule.

The full set of rules are as follows:

(Ck.throw k M) N =⇒R Ck.throw k (M N)
fst (Ck.E) =⇒R Ck′.[k′ (fst �)/k]E
snd (Ck.E) =⇒R Ck′.[k′ (snd �)/k]E
case (Ck.E) of

inl u => M
inr v => N

=⇒R Ck′.

case � of
inl u => M
inr v => N

/
k

E
abort (Ck.E) =⇒R Ck′.[k′ (abort �)/k]E

Not only can proof-by-contradiction introduce any logical connective,
but plain ole’ contradiction, which we associate with the throw operator,
can as well! As we saw earlier, this was critical in proving Peirce’s law and
the law of the excluded middle. It turns out that a contradiction followed
by an elimination can also be reduced. Here is an example using implica-

LECTURE NOTES SEPTEMBER 17, 2009

L8.6 Classical Computation

tion:

C false
k D

Ctrue

A⊃B true
contra E

A true
B true

⊃E
=⇒R

C false
k D

Ctrue

B true
contra

In this case, the local reduction annihilates the elimination rule, and now the
contra rule simply concludes what the elimination rule used to. Here is the
reduction written using proof terms:

(throwA⊃B k M) N =⇒R (throwB k M)

Just like for C, this reduction generalizes to the other elimination rules:

fst (throwA∧B k M) =⇒R throwA k M

snd (throwA∧B k M) =⇒R throwB k M

case (throwA∨B k M) of
inl u => M
inr v => N

=⇒R throwC k M

abortC (throw⊥ k M) =⇒R throwC k M

In each case, throw eats any attempt to eliminate it, and like a chameleon,
dresses itself up to look like what it should have been eliminated into! In
the case of disjunction elimination, C is the proposition that is proved by
both M and N .

To see these reductions in action, let’s revisit our proof that
(A⊃B∨C)⊃(A⊃B)∨(A⊃C). To keep things somewhat manageable, we
will only consider reductions on its proof term which is:

λf.case LEM of
inl x⇒ case f x of

inl u⇒ inl (λ .u)
inr w ⇒ inr (λ .w)

inr y ⇒ inl (λz.abort(y z))

where
LEM = (Ck.throw k (inr (λv.throw k (inl v)))

LECTURE NOTES SEPTEMBER 17, 2009

Classical Computation L8.7

We can perform local reductions wherever a rule applies. We’ll try to be
systematic, working our way from the outside in. First, the case operator is
eliminating the C inside of LEM , which introduces A ∨ ¬A, so we can use
our “steal and copy” reduction rule:

=⇒R λf.Ck.throw k (case (inr (λv.throw k (case (inl v) of
inl x⇒ case f x of

inl u⇒ inl (λ .u)
inr w ⇒ inr (λ .w)

inr y ⇒ inl (λz.abort(y z)))
of

inl x⇒ case f x of
inl u⇒ inl (λ .u)
inr w ⇒ inr (λ .w)

inr y ⇒ inl (λz.abort(y z))

The case operation has been absorbed into the C operator, and wrapped
around the second argument to both throw expressions.

Now, the second argument to the first throw is a case applied to an inr.
Recall that before this case was “stolen”, it was eliminating the law of the
excluded middle, A ∨ ¬A, and here it finds out that our evidence is really
(wink wink) a proof of ¬A, since it’s wrapped in an inr. We can reduce
this disjunction introduction (inr) and elimination (case) by substituting
the content of the inr into the corresponding branch of the case expression:

=⇒R λf.Ck.throw k
inl (λz.abort((λv.throw k (case (inl v) of

inl x⇒ case f x of
inl u⇒ inl (λ .u)
inr w ⇒ inr (λ .w)

inr y ⇒ inl (λz.abort(y z)))) z))

Next, in the argument to abort, λv... is applied to z so we can substitute
z for v:

=⇒R λf.Ck.throw k
inl (λz.abort(throw k (case (inl z) of

inl x⇒ case f x of
inl u⇒ inl (λ .u)
inr w ⇒ inr (λ .w)

inr y ⇒ inl (λz.abort(y z)))))

LECTURE NOTES SEPTEMBER 17, 2009

L8.8 Classical Computation

Now there is an abort applied to a throw. According to our new local
reductions, throw can eat abort (how tragic!):

=⇒R λf.Ck.throw k
inl (λz.throw k (case (inl z) of

inl x⇒ case f x of
inl u⇒ inl (λ .u)
inr w ⇒ inr (λ .w)

inr y ⇒ inl (λz.abort(y z))))

Now we’re back at the same case statement that we started with! It
seems like we’ve gone back in time and have to resolve this case all over
again, but this time the case expression is eliminating an inl, i.e. a proof of
A! We can reduce it using the same strategy, but substituting into the other
branch of the case statement:

=⇒R λf.Ck.throw k
inl (λz.throw k case f z of

inl u⇒ inl (λ .u)
inr w ⇒ inr (λ .w)

At this point, we’ve performed all of the local reductions that we can.
What are we left with? Figure 2 is the proof tree corresponding to this term.
It’s a proof of the same theorem, (A⊃B ∨ C)⊃(A⊃B) ∨ (A⊃C) true, but
this one uses proof by contradiction directly instead of assuming the law of
the excluded middle.

LECTURE NOTES SEPTEMBER 17, 2009

C
lassicalC

om
putation

L8.9

(A⊃B) ∨ (A⊃C) false
k

(A⊃B) ∨ (A⊃C) false
k

A⊃B ∨ C true
f
A true

z

B ∨ C true
⊃E

B true
u

(A⊃B) true
⊃ I

(A⊃B) ∨ (A⊃C) true
∨I

C true
w

(A⊃C) true
⊃ I

(A⊃B) ∨ (A⊃C) true
∨I

(A⊃B) ∨ (A⊃C) true
∨Eu,w

B true
contra

A⊃B true
⊃ Iz

(A⊃B) ∨ (A⊃C) true
∨I

#
contra

(A⊃B) ∨ (A⊃C) true
PBCk

(A⊃B ∨ C)⊃(A⊃B) ∨ (A⊃C) true
⊃ If

Figure 2: Direct proof of (A⊃B ∨ C)⊃(A⊃B) ∨ (A⊃C) true

L
E

C
T

U
R

E
N

O
T

E
S

S
E

P
T

E
M

B
E

R
17,2009

L8.10 Classical Computation

Looking at how we arrived at this proof, you can see how the classical
operators:

1. lie about what they are proofs of;

2. steal any attempt to apply elimination rules to them; and

3. send you through time warps so you can repeat the same work but
make different choices each time.

4 Relating Classical Logic to Intuitionistic Logic

Let’s write Γ `c A true for classical truth and Γ `i A true for intuitionistic
truth, where we put a context Γ of hypotheses in the judgment form rather
than using the two-dimensional notation for hypotheses.

It’s easy to prove that:

If Γ `i A true then Γ `c A true.

This says that if an intuitionist asserts A, a classicist will believe him, in-
terpreting A classically. Informally, the move from intuitionistic to classical
logic consisted of adding new inference rules, so whatever is true intuition-
istically must be true classically. This can be formalized as a proof by rule
induction on Γ `i A true.

Of course, the opposite entailment does not hold (takeA to be the law of
the excluded middle, or double-negation elimination). However, it is possi-
ble to translate propositions in such a way that, if a proposition is classically
true, then its translation is intuitionistically true. That is, the intuitionist
does not believe what the classicist says at face value, but he can figure out
what the classicist really meant to say, by means of a double-negation transla-
tion. The translation inserts enough double-negations into the proposition
A that the classical uses of the DNE rule are intuitionistically permissible.

We will use the “Gödel-Gentzen negative translation”, which is defined
by a function A∗ = A′ from classical propositions to intuitionistic proposi-
tions. On the intuitionistic side, we use the usual notational definition of
¬A = (A ⊃ ⊥).

(>)∗ = >
(⊥)∗ = ⊥

(A ∧B)∗ = A∗ ∧B∗

(A ∨B)∗ = ¬¬(A∗ ∨B∗)

LECTURE NOTES SEPTEMBER 17, 2009

Classical Computation L8.11

(A ⊃ B)∗ = (A∗ ⊃ B∗)
(¬A)∗ = ¬A∗

(P)∗ = ¬¬P

That is, the classicist and the intuitionistic agree about the meaning of
all of the connectives except ∨ and atomic propositions P . From an in-
tuitionistic point of view, when a classicist says A ∨ B, he really means
¬¬(A∗ ∨ B∗), an intuitionistically weaker statement. Thus, intuitionistic
logic is more precise, because you can say A ∨ B, if that’s the case, or
¬¬(A ∨B) if you need classical reasoning to do the proof. There is no way
to express intuitionistic disjunction in classical logic. If an intuitionist says
A to a classicist, and then the classicist repeats it back to him, it will come
back as a weaker statement A∗.

On the other hand, the translation has the property that A and A∗ are
classically equivalent. If a classicist says something to an intuitionist, and
then the intuitionist repeats it back to him, the classicist won’t know the
difference: intuitionistic logic makes finer distinctions.

As an aside, there are several other ways of translating classical logic
into intuitionistic logic, which make different choices about where to in-
sert double-negations. Different translations do different things to proofs,
which turns out to have interesting consequences for programming.

The following statement captures what we mean when we say that this
translation “does the right thing”.

Γ `c J iff Γ∗ `i J
∗.

5 Programming with Classical Logic: Continuations

Earlier we showed the proof term for Peirce’s Law:

λf.Ck.throw k (f (λu.throw k u))

This proof of ((A⊃B)⊃A)⊃A corresponds to a powerful programming
language construct. Peirce’s law is the type of “call with current continua-
tion” or callcc, a powerful operator that appears in the Scheme program-
ming language and in Standard ML of New Jersey. Thinking operationally,
callcc gives you a copy of the current call stack of a program that you
can hold on to. Then later, after the program has done some more work

LECTURE NOTES SEPTEMBER 17, 2009

L8.12 Classical Computation

and the stack has changed, you can replace the current stack with your old
stack, in a sense turning back the sands of time to an old program state.

The callcc operator has an immediately-binding variant called letcc:

letcc(k.M) ≡ Ck.throw k M

With callcc in Scheme, the throw operation is wrapped up inside of a
function (λu.throw k u), so you can just call the continuation like any other
function. The letcc operator requires you to explicitly throw the continu-
ation k, just like with the C operator. Notice that both callcc and letcc
immediately throw the continuation that they capture.

As an example of programming with continuations, consider a function
that multiples all the integers in a list. In writing this code, we’ll assume
that intlist and int are propositions, like they would be in ML, and that
we can write pattern-matching functions over them. Here’s a first version:

mult’ : intlist => int
mult’ [] = 1
mult’ (x :: xs) = x * mult’ xs

The multiplication of the empty list is 1, and the multiplication of x :: xs
is the head times the multiplication of the tail.

What happens when we call mult’ [1,2,3,0,4,5,....]where the
... is 700 billion1 more numbers? It does a lot more work than necessary
to figure out that the answer is 0. Here’s a better version:

mult’ : intlist => int
mult’ [] = 1
mult’ (0 :: xs) = 0
mult’ (x :: xs) = x * mult’ xs

This version checks for 0, and returns 0 immediately, and therefore does
better on the list [1,2,3,0,4,5,....].

But what about the reverse list [...,5,4,0,1,2,3]? This version
still does all 700 billion multiplications on the way up the call chain, which
could also be skipped.

We can do this using continuations:

mult xs = letcc k in
let

1this week’s trendy really-large number to pull out of thin air

LECTURE NOTES SEPTEMBER 17, 2009

Classical Computation L8.13

mult’ : intlist => int
mult’ [] = 1
mult’ (0 :: xs) = throw k 0
mult’ (x :: xs) = x * (mult’ xs)

in throw k (mult’ xs)

The idea is that we grab a continuation k standing for the evaluation
context in which mult is called. Whenever we find a 0, we immediately
jump back to this context, with no further multiplications. If we make it
through the list without finding a zero, we throw the result of mult’ to
this continuation, returning it from mult. Note that we could have just
returned this value since letcc k has a throw k built-in.

In this program, continuations have been used simply to jump to the
top of a computation. Other more interesting programs use continuations
to jump out and then back in to a computation, resuming where you left
off.

6 Continuation-Passing Style: double-negation trans-
lation for Programs

Continuations are a powerful programming language feature for classical
functional programs, but what if you only have an intuitionistic functional
programming language? Well, recall that there are several kinds of double-
negation transformations which can embed classical logic propositions into
intuitionistic logic. It turns out that this same strategy can be applied to
programs: we can translate classical programs into intuitionistic programs.
The process is called a continuation-passing style transformation, or CPS for
short, and just as there are several different double-negation translations,
there are several different CPS’s.

For the moment, let’s limit ourselves to a logic with only implication ⊃
and falsehood ⊥. Another translation A? is defined as follows:

P ? = P
(A⊃B)? = ¬(A?⊃¬B?)

and has the property that A holds classically iff ¬¬A? intuitionistically.
A corresponding program translation M takes a program of type A to a

LECTURE NOTES SEPTEMBER 17, 2009

L8.14 Classical Computation

program of type (A?⊃⊥)⊃⊥:

x = λk.k x

λx.M = λk.k (λx.M)
M N = λk.M(λf.N(λx.f x k)
letcc k0.M = (λk.M k)[(λa.λk.k a)/k0]
throw k0 M = k0 M

So CPS will turn a program of type intlist -> int into a program
of type (intlist -> (int -> ’o) -> ’o) -> ’o -> ’o where ’o
is some type that plays the role of ⊥. As it turns out, ’o ends up being the
type of the whole program.

To give some flavor for this translation, let’s look at our mult function
after CPS:

mult-k : intlist -> (int -> ’o) -> ’o
mult-k xs k0 =

let k = k0 in
let
mult-k’ : intlist -> (int -> int) -> int
mult-k’ [] k1 = k1 1
mult-k’ (0 :: xs) k1 = k 0
mult-k’ (x :: xs) k1 = (mult-k’ xs (fn v => k1 (x * v)))

in (mult-k’ xs k)

mult-cps : (intlist -> (int -> ’o) -> ’o) -> ’o -> ’o
mult-cps = fn k => k mult

The functions above are a simplified version of the output of CPS, so there
are not as many fn k =>... functions as would come out of the literal
translation. The function mult-cps is the CPS counterpart of the original
mult function.

To simplify matters, we’ll work directly with mult-k. In contrast to
the original mult function, this one takes an extra argument, k0 of type
int -> ’o. This is a function-based representation of the current contin-
uation, all of the work that’s left to be done. The first line in the function
stores a copy of this continuation in a variable k. This is the counterpart to
letcc from the classical program.

Now instead of throwing k, we can simply call the function k and pass
it a value. Notice how everywhere in mult-k’ that used to simply return
a value, it now passes that value to the current continuation. Also, where it

LECTURE NOTES SEPTEMBER 17, 2009

Classical Computation L8.15

used to say x * (mult’ xs) now calls the function mult-k’ and passes
it a bigger continuation that accepts a value v, the result of mult-k’ xs,
multiplies that value by x, then calls the continuation k1. This is how the
stack grows. Any time there used to be more work to do after a function
call returns, it has now been rolled into the continuation that is passed to
that function.

Finally notice that the 0 case of mult-k’ ignores its current continua-
tion k1 and instead calls the continuation that was captured at the top of
mult-k. So how do we get a value back from this program? Well, we can
pass it a continuation that simply returns whatever it gets:

id : int -> int
id x = x

mult-k big-list id

Now we’ve substituted the type int for the indeterminate type ’o, and
when the computation is completed, it will call this initial continuation id
which returns the answer.

The CPS transformation is not simply an academic exercise. Some com-
pilers use CPS internally while translating programs into executables. This
makes it really easy to provide support for language features like letcc and
similar operators.

[FW08, FHK84, Wan99, AHS07, Dyb09]

References

[AHS07] Zena M. Ariola, Hugo Herbelin, and Amr Sabry. A proof-
theoretic foundation of abortive continuations. Higher-Order and
Symbolic Computation, 20(4):403–429, December 2007.

[Dyb09] R. Kent Dybvig. The Scheme Programming Language, chap-
ter 3.3-3.4. Prentice-Hall, Englewood Cliffs, New Jer-
sey, fourth edition, 2009. Available electronically at
http://www.scheme.com/tspl4.

[FHK84] D. P. Friedman, C. T. Haynes, and E. Kohlbecker. Programming
with continuations. In P. Pepper, editor, Program Transformation
and Programming Environments, NATO ASI Series F V8, pages
263–274. Springer Verlag, 1984.

LECTURE NOTES SEPTEMBER 17, 2009

L8.16 Classical Computation

[FW08] Daniel P. Friedman and Mitchell Wand. Essentials of Programming
Languages, chapter 6: Continuation-Passing Style. MIT Press,
Cambridge, MA, third edition, 2008.

[Wan99] Mitchell Wand. Continuation-based multiprocessing. Higher-
Order and Symbolic Computation, 12(3):285–299, October 1999.

LECTURE NOTES SEPTEMBER 17, 2009

	Introduction
	Proof Terms
	Reduction
	Relating Classical Logic to Intuitionistic Logic
	Programming with Classical Logic: Continuations
	Continuation-Passing Style: double-negation translation for Programs

