
Lectures 9 and 10: Classical Logic

15-317: Constructive Logic
Dan Licata

September 23-25, 2008

In these two lectures, we will discuss classical logic—which is what peo-
ple were talking about when they taught you about (unqualified) “logic”
in other classes—and its relationship to constructive logic—which is what
we’ve covered so far this semester. We use intuitionistic logic as a synonym
for “constructive logic”; this is helpful so we can use the abbreviations IL
(intuitionistic) and CL (classical). We will answer three questions:

• What is classical logic?

• What is the relationship with intuitionistic logic?

• What is the computational meaning of classical proofs?

1 What is classical logic?

Classical logic differs from intuitionistic logic in that classical logic admits
the law of the excluded middle (LEM), which says that every proposition is
either true or false. The simplest way to describe classical logic is to take
the natural deduction rules we have seen so far and add LEM:

(A ∨ ¬A) true
LEM

Equivalently, we could instead add double-negation elimination, which
says that ¬¬A implies A:

¬¬A true
A true

DNE

Note that double-negation introduction (A ⊃ ¬¬A) is intuitionistically true.

1

It’s easy to see that these are equivalent, by taking IL + LEM and deriv-
ing DNE and vice versa. For example, to derive DNE, assume ¬¬A. Next,
we use LEM on A to get A∨¬A, and therefore have two cases in which we
have to showA. In the first, it’s true by assumption. In the second, we have
¬A and ¬¬A, a contradiction, so we get A by ⊥-elimination.
In the other direction, here is an annotated Tutch-style proof usingDNE:

[u : ˜(A | ˜A)
[v : A

inl v : A | ˜A
u (inl v) : F]

fn v => u (inl v) : ˜A
inr (fn v => u (inl v)) : A | ˜A
u (inr (fn v => u (inl v))) F]

fn u => u (inr (fn v => u (inl v))) : ˜˜(A | ˜A)
DNE (fn u => u (inr (fn v => u (inl v)))) : (A | ˜A)

A couple of things to note:

• Everything before the last line is a perfectly good constructive proof
of ˜˜(A | ˜A) .

• The proof termDNE (fn u => u (inr (fn v => u (inl v)))) .
Doesn’t tell youwhich ofAor ˜A is true. Instead, it assumes u : ˜(A | ˜A)
and proves a contradiction. It does this by calling u with a proof of
˜A . How does this proof work? When given an A, it calls u again, this
time with that very proof that it was given! To anthropomorphize a
little: the first time we call u, we bluff that the answer is ˜A . If u ever
calls our bluff, it must do so by giving us an A and requesting a proof
of F. In that case, we say “dang, you caught me! forget about what I
said before—it was A after all!”. We will talk more about this “time
travel” interpretation of classical proofs below.

1.1 A Better Proof Theory

Hopefully you had a bad feeling about the rules LEM and DNE above:
they violate some of our principles for what inference rules should look
like. In particular, they mention more than one connective, and they are
neither intro nor elim rules. Violating these principles can invalidate lo-
cal soundness and completeness (and their global versions, cut elimination
and identity). In this section, we give a cleaner presentation of classical

2

logic by accounting for DNE at the level of judgments, rather than propo-
sitions.

1.1.1 New judgments

To do so, we need two new judgments:

• # (contradiction)

• A false

The judgment #is a judgmental analogue of ⊥, the false proposition,
whereas A false is a judgmental analogue of A ⊃ ⊥. The rules for these
judgements are as follows:

#

J
#E

A true
u

...
#

A false
fIu A false A true

#
fE

The first says that from a contradiction, you can conclude any judgment
J . The second says thatA is false if assuming it’s true gives a contradiction.
The third says that A being both true and false is contradictory.
A small technical matter: because we now havemultiple judgments, we

need to change the rules we had before that conclude an arbitrary proposi-
tion C true (⊥-elimination, ∨-elimination) to instead conclude an arbitrary
judgment J . I.e.

⊥ true
J

⊥E
A ∨ B true

A true
u

...
J

A true
u

...
J

J
∨Eu,v

1.1.2 Negation

Using these judgments, we can give a primitive account of negation, rather
than treating ¬A as a notational definition for A ⊃ ⊥:

A false
¬A true

¬I
¬A true

A false
k

...
J

J ¬Ek

3

We wrote the rule ¬Ek in the style of ∨-elim, but we could equivalently
have given a rule that looks like ∧-elim: from ¬A true conclude A false.
These two rules are equivalent in our setting here (though keep this dis-
tinction in mind when we talk about focusing in a couple of weeks).

1.1.3 Classical logic

Thus far, all of our new judgments are OK constructively. One way to see
this to prove that the new judgements can be eliminated, treating # as a
notational definition for ⊥ true and A false as A ⊃ ⊥ true, and checking that
all the new rules are derivable. This shows that we have not fundamentally
changed the meaning of truth: the truth of ¬A, a new proposition, depends
on contradiction and falsehood, but the truth of existing propositions such
as A ∨ B is unchanged.
To get classical logic, we add the judgmental version of DNE:

A false
k

...
#

A true DNEk

This rule does change the meaning of truth for existing propositions, be-
cause the A in the conclusion might be, e.g., a disjunction. Note the sym-
metry between DNE and fI : classical logic is more symmetric than in-
tuitionistic logic, where truth means something stronger than merely not
being false.

Exercise. Give a derivation of (¬(A∧B)) ⊃ ¬A∨¬B true. In Homework 2,
you saw that this De Morgan principle was not intuitionistically true, but
it is classically true.
Here’s a Tutch-like proof to guide you along:

[˜(A & B) true
[A & B false

[˜A | ˜B false
[A true

[B true
A & B true
#]

B false
˜B true

4

˜A | ˜B true
#]

A false
˜A true
˜A | ˜B true
#]

˜A | ˜B true]
˜A | ˜B true]

˜(A & B) => ˜A | ˜B true

2 What is the relationship with intuitionistic logic?

Let’s write Γ ⊢c A true for classical truth and Γ ⊢i A true for intuitionistic
truth, where we put a context Γ of hypotheses in the judgement form rather
than using the two-dimensional notation for hypotheses.
It’s easy to prove that:

If Γ ⊢i A true then Γ ⊢c A true.

This says that if an intuitionist asserts A, a classicist will believe him, in-
terpreting A classically. Informally, the move from intuitionistic to classical
logic consisted of adding new inference rules, so whatever is true intuition-
istically must be true classically. This can be formalized as a proof by rule
induction on Γ ⊢i A true.
Of course, the opposite entailment does not hold (takeA to be the law of

the excludedmiddle, or double-negation elimination). However, it is possi-
ble to translate propositions in such a way that, if a proposition is classically
true, then its translation is intuitionistically true. That is, the intuitionist
does not believe what the classicist says at face value, but he can figure out
what the classicist really meant to say, by means of a double-negation transla-
tion. The translation inserts enough double-negations into the proposition
A that the classical uses of the DNE rule are intuitionistically permissible.
We will use the “Gödel-Gentzen negative translation”, which is defined

by a function A∗ = A′ from classical propositions to intuitionistic proposi-
tions. On the intuitionistic side, we use the usual notational definition of

5

¬A = (A ⊃ ⊥).

(⊤)∗ = ⊤

(⊥)∗ = ⊥

(A ∧ B)∗ = A∗
∧ B∗

(A ∨ B)∗ = ¬¬(A∗
∨ B∗)

(A ⊃ B)∗ = (A∗
⊃ B∗)

(¬A)∗ = ¬A∗

(P)∗ = ¬¬P

That is, the classicist and the intuitionistic agree about the meaning of
all of the connectives except ∨ and atomic propositions P . From an in-
tuitionistic point of view, when a classicist says A ∨ B, he really means
¬¬(A∗ ∨ B∗), an intuitionistically weaker statement. Thus, intuitionistic
logic is more precise, because you can say A ∨ B, if that’s the case, or
¬¬(A ∨ B) if you need classical reasoning to do the proof. There is no way
to express intuitionistic disjunction in classical logic. If an intuitionist says
A to a classicist, and then the classicist repeats it back to him, it will come
back as a weaker statement A∗.
On the other hand, the translation has the property that A and A∗ are

classically equivalent. If a classicist says something to an intuitionist, and
then the intuitionist repeats it back to him, the classicist won’t know the
difference: intuitionistic logic makes finer distinctions.
As an aside, there are several other ways of translating classical logic

into intuitionistic logic, which make different choices about where to in-
sert double-negations. Different translations do different things to proofs,
which turns out to have interesting consequences for programming.
How do we verify that this translation does the right thing? First, we

need to lift the translation to judgments as follows:

(A true)∗ = A∗ true

(A false)∗ = (A ⊃ ⊥) true

(#)∗ = ⊥ true

and to contexts Γ by translating each assumption in the context. Then we
can prove:

6

Theorem 1. Γ ⊢c J iff Γ∗ ⊢i J∗.

Proof. The “only if” direction is a consequence of two lemmas mentioned
above:

1. If Γ ⊢i J then Γ ⊢c J

2. For all A, Γ, Γ ⊢c (A ⊃ A∗) ∧ (A∗ ⊃ A) true.

The first is proved by rule induction on Γ ⊢i J , the second by induction on
A.
The “if” direction is proved by induction on Γ ⊢c J . The hard case is

eliminating uses of the DNE rule:

Γ, A false ⊢c #

Γ ⊢ A true
DNE

The inductive hypothesis is

(Γ, A false)∗ ⊢c (#)∗

Expanding the definition of the translation gives:

Γ∗, (A∗
⊃ ⊥) true ⊢c ⊥ true

By implication introduction, this gives

Γ∗
⊢i ¬¬A∗

On the other hand, translating the conclusion of the rule, we need to
show that

Γ∗
⊢i A∗

.
Uh-oh! This is an instance of double-negation elimination, which we

don’t have intuitionistically! So why does the translation work?
The key is that we only need double-negation elimination for the target

of the translation. That is, we need the translation to have the property that
¬¬(A∗) ⊃ A∗. This lemma is true for the translation defined above (you can
prove it by induction onA). But if, for example, we forgot to double-negate
disjunction or atoms, the property would not be true. The lemma that

¬¬(A∗) ⊃ A∗

is how we tell that we’ve added enough double-negations to allow all the
classical reasoning that we need.

7

3 Intermezzo: Truth tables

Once upon a time, someone told you that to check whether a proposition is
(classically) true, you build a truth table. What are the reasoning principles
behind truth tables?

1. To proveP prop ⊢ A true, it suffices to prove [⊤/P]A true and [⊥/P]A true.

2. You compute the truth value of a connective from the truth values of
its components, using equations like

⊤ ⊃ ⊤ ≡ ⊤

⊤ ⊃ ⊥ ≡ ⊥

⊥ ⊃ ⊤ ≡ ⊤

⊥ ⊃ ⊥ ≡ ⊥

The equations in (2) are true, constructively and classically, if you inter-
pret A ≡ B as (A ⊃ B) ∧ (B ⊃ A).
But what about (1), the idea that to prove a proposition A, you can dis-

tinguish cases on the truth of an atomic proposition P appearing in A?. As
you might expect, this reasoning is valid classically but not constructively.
By the law of the excluded middle, we can case-analyze P ∨ ¬P :

P ∨ ¬P
LEM

P true
u

...
J

¬P true
v

P false
k

...
J
J ¬Ek

J
J

∨Eu,v

Thus, to show J , it suffices to show P true ⊢ J and P false ⊢ J .
So, to justify the truth-table reasoning, we just need the following lemma:

Lemma 2.

1. For all J , if [⊤/P]J then (P prop, P true ⊢ J)

2. For all J , if [⊥/P]J then (P prop, P false ⊢ J)

8

Here’s an intuition for why this is true: For the first part, everywhere
the ⊤I rule was used, we can instead use the assumption of P true. For
the second, everywhere the derivation uses ⊥E from a proof of ⊥ true, we
instead have a proof of Ptrue, which can be used with fE and #E to con-
clude anything.

4 What is the computationalmeaning of classical proofs?

4.1 Proof Terms

Let’s annotate the above rules with proof terms:

M : #

abort M : J

u : A true
...

M : #

cont u.M : A false
M : A false N : A true

throw M N : #

M : A false
not M : ¬A true

M : ¬A true

k : A false
...

N : J
notcase(M, k.N) : J

k : A false
...

M : #

letcc(k.M) : A true

4.2 Programming with continuations

As you know, when you give a proof term assignment to some logical rules,
the operator names (abort, throw, letcc, . . .) are arbitrary. However, the
names we’ve chosen here are fairly standard for the programming feature
distinguishes classical proofs from constructive ones: continuations.
The term letcc(k.M) is short for “let the current continuation be k in

M”. What is the “current continuation”? It’s all the work that’s left to do
in the rest of the program. In implementation terms, letcc gives the pro-
gram access to its own control stack. In letcc, the current control stack gets
packed up as value bound to k. Continuations are used by throwing them

9

a value, which forgets about the current execution context and runs a stack
that you previously saved on that value. Continuations can be thrown to
multiple times, which makes the control flow in a program with continu-
ations very different than the traditional push/pop behavior that you get
from function calls in intuitionistic logic. You might save a stack, run it
on a value, go off and do something else for a while, and then come back
to that stack again with a different value. Unlike languages without letcc,
control stacks must be implemented as persistent data structures, not just
as an ephemeral piece of mutable memory. Continuations are a very gen-
eral mechanism, and can be used to implement other control forms, such
as exceptions, coroutines, and threads.
As an example of programming with continuations, consider a function

that multiples all the integers in a list. In writing this code, we’ll assume
that intlist and int are propositions, like they would be in ML, and that
we can write pattern-matching functions over them. Here’s a first version:

mult’ : intlist => int
mult’ [] = 1
mult’ (x :: xs) = x * mult’ xs

I.e., the multiplication of the empty list is 1, and the multiplication of
x :: xs is the head times the multiplication of the tail.
What happenswhenwe callmult’ [1,2,3,0,4,5,....] where the

... is 700 billion1 more numbers? It does a lot more work than necessary
to figure out that the answer is 0. Here’s a better version:

mult’ : intlist => int
mult’ [] = 1
mult’ (0 :: xs) = 0
mult’ (x :: xs) = x * mult’ xs

This version checks for 0, and returns 0 immediately, and therefore does
better on the list [1,2,3,0,4,5,....] .
But what about the reverse list [...,5,4,0,1,2,3] ? This version

still does all 700 billion multiplications on the way up the call chain, which
could also be skipped.
We can do this using continuations:

mult xs = letcc k : int false in
let
1this week’s trendy really-large number to pull out of thin air

10

mult’ : intlist => int
mult’ [] = 1
mult’ (0 :: xs) = abort(throw k 0)
mult’ (x :: xs) = x * (mult’ xs)

in throw k (mult’ xs)

The idea is that we grab a continuation k standing for the evaluation
context in which mult is called. Whenever we find a 0, we immediately
jump back to this context, with no further multiplications. If we make it
through the list without finding a zero, we throw the result of mult’ to
this continuation, returning it frommult .
Let’s try to run (mult [0,1,2]) + 5 . It’s easiest to define evalua-

tion for proofs of #, so we’ll run this term against an initial continuation
variable halt : int false .

throw halt ((mult [0,1,2]) + 5)
⇒R throw halt

(letcc k in let ... in throw k (mult’ [0,1,2])) + 5)
⇒R (throw (cont u.throw halt (u + 5))

(([(cont u.throw halt (u + 5))/k]mult’) [0,1,2])
⇒R (throw (cont u.throw halt (u + 5))

(abort (throw (cont u.throw halt (u + 5)) 0)))
⇒R (throw halt (0 + 5))
⇒R (throw halt 5)

Some things to note:

• In the second reduction step, thewhole expression enclosing the letcc
is packed up as a cont and substituted for k .

• In the third reduction, we evaluate a throw by evaluating the proof of
A true . Another choice would be to evaluate the proof of A false ;
these correspond to different evaluation orders for the programming
language.

• In the fourth reduction, we have a throw whose true expression is
fully evaluated, so we substitute this value into the continuation and
forget the enclosing context.

What is the continuation assumption halt ? This represents the initial
continuation of the program (in practice, this might print the final value out
to the user). We need this initial continuation assumption because there are
no closed contradictions in classical logic!

11

Exercise. Recast the code for mult as a proof of ∀x : intlist.∃y : int.⊤, so
intlist and int are treated as types of objects rather than as proposi-
tions.
As another example, returning to the proof of LEM above, we can now

write it as:

letcc k : ˜(A | ˜A) in
throw k (inr (not (cont v => k (inl v))))

Executing this code will resume the continuation k twice: first with
inr M , and then, if k ever uses M, with inl v where v is the value that
k supplies. The program “time travels” between different moments in its
execution.

Exercise. Give proof terms for the following:

• (A ⊃ B) ⊃ (¬B ⊃ ¬A)

• (¬B ⊃ ¬A) ⊃ (A ⊃ B)

4.3 Continuation-Passing Style

Classical logic is a functional-programming language with letcc, and intu-
itionistic logic is a functional programming language without it. So what
is the computational meaning of the double-negation translationA∗, which
transforms classical forms into intuitionistic proofs? It is a transformation
on programs that eliminates all uses of letcc, usually called a continuation-
passing style (CPS) translation.
For example:

(intlist ⊃ int)∗ = intlist∗ ⊃ int∗

= ¬¬intlist ⊃ ¬¬int

= ¬¬intlist ⊃ ¬int ⊃ ⊥

Here, a function that takes an intlist and returns an int is transformed into a
function that:

1. takes an extra argument of type ¬int, representing the current contin-
uation (hence, continuation-passing style)

2. never returns (because its result type is ⊥)

12

CPS translation is used in compilers for several reasons: First, it reduces
the problem of implementing a language with letcc to that of implement-
ing a language without it. Second, even if you’re compiling an intuition-
istic language, there are reasons to CPS convert it: (1) The control flow
that you have to implement is simpler, because functions call but never re-
turn. Consequently, there is no need for a control stack—or, more precisely,
the control stack is represented as heap objects, just like all other values in
the program. (2) CPS conversion makes certain optimizations, such as one
called tail-call optimization, easier to do.

4.4 Running a CPS program

The CPS conversion of a program likemult [1,2,3,4,5] has type¬int ⊃

⊥. So how do you actually see what number it produced? One option is to
extend the language with an initial continuation, as discussed above. An-
other is to revise the double-negation translation so use an arbitrary answer
type in place of ⊥. Let’s define ¬αA = A ⊃ α. Then the following double-
negation translation works:

(⊤)∗ = ⊤

(⊥)∗ = α

(A ∧ B)∗ = A∗
∧ B∗

(A ∨ B)∗ = ¬α¬α(A∗
∨ B∗)

(A ⊃ B)∗ = (A∗
⊃ B∗)

(¬A)∗ = ¬αA∗

(P)∗ = ¬α¬αP

The proof is similar to above, but requires the additional lemma that for
all A, α ⊃ A∗.
For α = ⊥, the translation is the same as above. But what if we take

α = int. Then

int∗ = ¬int¬intint

= (int ⊃ int) ⊃ int

Now we can supply the identity function fn x => x as the initial contin-
uation, and get back an actual number.

13

Logically, this says that a classical proof of a base type P (from no hy-
potheses) determines an intuitionistic proof of P itself—not just the double-
negation of P . The same device can be used to study other classes of propo-
sitions for which intuitionistic and classical logic agree.

14

