
Chapter 3

Proofs as Programs

In this chapter we investigate a computational interpretation of constructive
proofs and relate it to functional programming. On the propositional fragment
of logic this is referred to as the Curry-Howard isomorphism [How80]. From the
very outset of the development of constructive logic and mathematics, a central
idea has been that proofs ought to represent constructions. The Curry-Howard
isomorphism is only a particularly poignant and beautiful realization of this
idea. In a highly influential subsequent paper, Martin-Löf [ML80] developed it
further into a more expressive calculus called type theory.

3.1 Propositions as Types

In order to illustrate the relationship between proofs and programs we introduce
a new judgment:

M : A M is a proof term for proposition A
We presuppose that A is a proposition when we write this judgment. We will

also interpret M : A as “M is a program of type A”. These dual interpretations
of the same judgment is the core of the Curry-Howard isomorphism. We either
think of M as a term that represents the proof of A true, or we think of A as the
type of the program M . As we discuss each connective, we give both readings
of the rules to emphasize the analogy.

We intend that if M : A then A true. Conversely, if A true then M : A.
But we want something more: every deduction of M : A should correspond to a
deduction of A true with an identical structure and vice versa. In other words
we annotate the inference rules of natural deduction with proof terms. The
property above should then be obvious.

Conjunction. Constructively, we think of a proof of A ∧ B true as a pair of
proofs: one for A true and one for B true.

M : A N : B

〈M,N〉 : A ∧B
∧I

Draft of September 11, 2008



24 Proofs as Programs

The elimination rules correspond to the projections from a pair to its first
and second elements.

M : A ∧B

fstM : A
∧EL

M : A ∧B

sndM : B
∧ER

Hence conjunction A ∧B corresponds to the product type A×B.

Truth. Constructively, we think of a proof of > true as a unit element that
carries now information.

〈 〉 : >
>I

Hence > corresponds to the unit type 1 with one element. There is no elimina-
tion rule and hence no further proof term constructs for truth.

Implication. Constructively, we think of a proof of A⊃B true as a function
which transforms a proof of A true into a proof of B true.

In mathematics and many programming languages, we define a function f
of a variable x by writing f(x) = . . . where the right-hand side “. . .” depends on
x. For example, we might write f(x) = x2 + x− 1. In functional programming,
we can instead write f = λx. x2 + x− 1, that is, we explicitly form a functional
object by λ-abstraction of a variable (x, in the example).

We now use the notation of λ-abstraction to annotate the rule of implication
introduction with proof terms. In the official syntax, we label the abstraction
with a proposition (writing λu:A) in order to specify the domain of a function
unambiguously. In practice we will often omit the label to make expressions
shorter—usually (but not always!) it can be determined from the context.

u : A
u

...
M : B

λu:A. M : A⊃B
⊃Iu

The hypothesis label u acts as a variable, and any use of the hypothesis labeled
u in the proof of B corresponds to an occurrence of u in M .

As a concrete example, consider the (trivial) proof of A⊃A true:

A true
u

A⊃A true
⊃Iu

If we annotate the deduction with proof terms, we obtain

u : A
u

(λu:A. u) : A⊃A
⊃Iu

Draft of September 11, 2008



3.1 Propositions as Types 25

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with id(u) = u or id = (λu:A. u).

The rule for implication elimination corresponds to function application.
Following the convention in functional programming, we write M N for the
application of the function M to argument N , rather than the more verbose
M(N).

M : A⊃B N : A

M N : B
⊃E

What is the meaning of A⊃B as a type? From the discussion above it should
be clear that it can be interpreted as a function type A→B. The introduction
and elimination rules for implication can also be viewed as formation rules for
functional abstraction λu:A. M and application M N .

Note that we obtain the usual introduction and elimination rules for impli-
cation if we erase the proof terms. This will continue to be true for all rules
in the remainder of this section and is immediate evidence for the soundness of
the proof term calculus, that is, if M : A then A true.

As a second example we consider a proof of (A ∧B)⊃(B ∧A) true.

A ∧B true
u

B true
∧ER

A ∧B true
u

A true
∧EL

B ∧A true
∧I

(A ∧B)⊃(B ∧A) true
⊃Iu

When we annotate this derivation with proof terms, we obtain a function which
takes a pair 〈M,N〉 and returns the reverse pair 〈N,M〉.

u : A ∧B
u

sndu : B
∧ER

u : A ∧B
u

fstu : A
∧EL

〈sndu, fstu〉 : B ∧A
∧I

(λu. 〈sndu, fstu〉) : (A ∧B)⊃(B ∧A)
⊃Iu

Disjunction. Constructively, we think of a proof of A ∨ B true as either a
proof of A true or B true. Disjunction therefore corresponds to a disjoint sum
type A +B, and the two introduction rules correspond to the left and right
injection into a sum type.

M : A

inlB M : A ∨B
∨IL

N : B

inrA N : A ∨B
∨IR

In the official syntax, we have annotated the injections inl and inr with propo-
sitions B and A, again so that a (valid) proof term has an unambiguous type. In
writing actual programs we usually omit this annotation. The elimination rule

Draft of September 11, 2008



26 Proofs as Programs

corresponds to a case construct which discriminates between a left and right
injection into a sum types.

M : A ∨B

u : A
u

...
N : C

w : B
w

...
O : C

caseM of inlu ⇒ N | inrw ⇒ O : C
∨Eu,w

Recall that the hypothesis labeled u is available only in the proof of the second
premise and the hypothesis labeled w only in the proof of the third premise.
This means that the scope of the variable u is N , while the scope of the variable
w is O.

Falsehood. There is no introduction rule for falsehood (⊥). We can therefore
view it as the empty type 0. The corresponding elimination rule allows a term of
⊥ to stand for an expression of any type when wrapped with abort. However,
there is no computation rule for it, which means during computation of a valid
program we will never try to evaluate a term of the form abortM .

M : ⊥

abortC M : C
⊥E

As before, the annotation C which disambiguates the type of abortM will often
be omitted.

This completes our assignment of proof terms to the logical inference rules.
Now we can interpret the interaction laws we introduced early as programming
exercises. Consider the following distributivity law:

(L11a) (A⊃(B ∧ C))⊃(A⊃B) ∧ (A⊃C) true

Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs of
type B ∧C, returns two functions: one which maps A to B and one
which maps A to C.

This is satisfied by the following function:

λu. 〈(λw. fst (u w)), (λv. snd (u v))〉

Draft of September 11, 2008



3.1 Propositions as Types 27

The following deduction provides the evidence:

u : A⊃(B ∧ C)
u

w : A
w

u w : B ∧ C
⊃E

fst (u w) : B
∧EL

λw. fst (u w) : A⊃B
⊃Iw

u : A⊃(B ∧ C)
u

v : A
v

u v : B ∧ C
⊃E

snd (u v) : C
∧ER

λv. snd (u v) : A⊃C
⊃Iv

〈(λw. fst (u w)), (λv. snd (u v))〉 : (A⊃B) ∧ (A⊃C)
∧I

λu. 〈(λw. fst (u w)), (λv. snd (u v))〉 : (A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C))
⊃Iu

Programs in constructive propositional logic are somewhat uninteresting in
that they do not manipulate basic data types such as natural numbers, integers,
lists, trees, etc. We introduce such data types in Section ??, following the same
method we have used in the development of logic.

To close this section we recall the guiding principles behind the assignment
of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction of
M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms M and deductions of A true is
a bijection.

Draft of September 11, 2008



28 Proofs as Programs

Draft of September 11, 2008


