Non-Interference in Constructive Authorization Logic

Deepak Gargand Frank Pfennirig

Carnegie Mellon University
E-mail: {dg,fp }@cs.cmu.edu

Abstract keep evidence contained in proofs as direct as possible. For
example, Abadi [2] remarks that in a classical logic where
We present a constructive authorization logic where the principals K affirm all true propositions, we have that if
meanings of connectives are defined by their associated in-K affirms A (written K says A), then eitherA is true or
ference rules. This ensures that the logical reading of ac- K affirms the truth of every other propositidd (written
cess control policies expressed in the logic and their im- K says A D (A V (K says B))). However, it is in
plementation coincide. We study the proof-theoretic con- general impossible to come up with a proofeither A or
sequences of our design including cut-elimination and two K says B given a proof ofK says A. In our logic this
non-interference properties that allow administrators to ex- classical reasoning does not hold.
plore the correctness of their policies by establishing that  The second fact that distinguishes our logic from other
for a given policy, assertions made by certain principals gythorization logics is that we define the meanings of con-
will not affect the truth of assertions made by others. nectives only by the inference rules that introduce them,
without relying on any other semantics. This ensures that
the intended reading of logical propositions coincides with
1. Introduction the available formal proofs. Finally, we want our logic to
remain open to extensions with new connectives. This re-
An authorization logicis a logic for access control in ~ quires that the meanings of connectives be independent of
distributed Systems_ An access control po“cy is presentedeaCh other. Forma”y this is documented in the form of a cut
as a logical theory in an authorization logic, and a principal €limination theorem and the subformula property for our
is granted access to a resource if therefimal proof that logic. To our knowledge, this is the first time that an access
he or she is authorized to do so according to the presemcontrol logic has been developed constructively, and that the
access control policy. structure of proofs has been delineated precisely through a
The study of authorization from a logical perspective Cut elimination theorem.
was initiated by Abadi et al. [4]. A number of different pro- Even with a good understanding of the authorization
posals for authorization logics and supporting distributed logic it is possible for complex policies to have unintended
architectures have been made since then [2]. We are particueonsequences. We therefore would like to give users and
larly interested iproof-carrying authorizatiofPCA) [5, 6] administrators the ability to explore their policies. We pro-
where a resource is presented with a formally checkablepose the use ofon-interference propertiefor this pur-
proof object for authorization, expressed in a logical frame- pose. In this context, non-interference properties character-
work. This is combined with a separate mechanisnafor ize classes of propositions whose presence or absence can
thenticationusing cryptographic techniques such as digi- have no effect on the existence of proofs of certain other
tal signatures. In combination, these provide a powerful, propositions. For example, without explicit links between
flexible, and extensible foundation for access control in dis- principals K and L, no assertions made b (including
tributed systems [8]. even contradictory statements) can influence the truth of as-
In this paper we propose a particular authorization logic sertions made by;. We formalize and prove two such prop-
and study it with proof-theoretic means. The following fea- erties for our authorization logic. As far as we know this is
tures distinguish our logic from previous proposals along the first time that explicit non-interference properties for au-
similar lines. First, the logic is constructive, as opposed to thorization logics have been formulated and proved.

most previous proposals that are classical. This is done to |, summary, our paper makes two major conceptual con-
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explicit evidence, in contrast with the prevalent axiomatic principal access to every resource. We will isolate some
approach. We believe that our approach makes it much easeesirable properties, design an authorization logic around
ier to be confident in the correct interpretation and proper them, and then verify that these properties do indeed hold.
enforcement of complex policies. Second, it introduces the In fact, most of the properties have been formally verified
concepts of affirmation flow and non-interference for ac- using the Twelf meta-logical framework [22] and are avail-
cess control policies and relates them to the proof-theoreticable on-line ahttp://www.cs.cmu.edu/"self/

property of strengthening. These take a quite different form

than the standard non-interference properties used to charg 1, Judgments and Verifications

acterize information flow.

The paper also makes two significant technical contri-
butions, namely a fully formalized proof of cut elimination
for an authorization logic, and a decidable approximation o
affirmation flow for automatic policy analysis. If we are to
generalize access control policies to admit complex logical
specification, then tools to analyze policy specifications to
uncover possibly unintended consequences will be a critical
component of future security infrastructures.

The remainder of this paper is organized as follows. In
section 2 we develop a sequent calculus for our authoriza-
tion logic and present its meta-theoretic properties. Sec-
tion 3 describes non-interference properties for reasoning
with policies written in our logic. Section 4 discusses re-
lated work and section 5 concludes with some directions
for future work.

In authorization logic, access to a resource is granted
f precisely when presented with a proof that it should be. To
understand the meaning of a proposition in authorization
logic therefore requires us to understand its proofs. The
idea that the meaning of logical connectives is determined
by their proofs goes back to Gentzen [15]. Later, Martin-
Lof [18] introduced a distinction between judgments and
propositions which is crucial in our setting. We can give
here only a very brief sketch as it impacts our development;
the interested reader is referred to [21] for further justifi-
cations and discussions of the general approach in modal
logic. A judgmentmay beevidentby virtue of aproof.
Judgments are therefore the subjects of inference rules. The
most basic judgment is the truth of a propositidnwritten
A true. The meaning of a propositiofiis determined by its
verificationswhich are the proofs ofl true that proceed en-
2. Constructive Authorization Logic tirely by analysis ofd. The cut elimination theorem tells us
how to construct a verification of given an arbitrary proof
Access control in a distributed system decomposes intoand thereby shows that the meaning of the connectives has
two distinct, but necessarily interconnected tasiksthen- ~ been properly defined.
tication and authorization Authentication requires us to In this paper, we will concentrate on the cut-free sequent
determine reliablywho is requesting access to a resource. calculus, which is a calculus aferifications that is, each
Authorization must answer the questiwhetherand, more  proof only analyzes the structure of the given propositions.
generally,why access should be granted. In this paper we In other words, it obeys theubformula propertyWe write
are concerned with authorization; we refer to other papersasequent
regarding authentication and the surrounding protocols and

infrastructure currently being deployed at Carnegie Mellon A true, ..., Ay true = C'true
University in the Grey project [8].
From the problem statement itself it should be immedi- to express tnder the hypotheses that, ..., A, are all

ately clear that authorization is a questiorafic since we ~ true, C'is true’. We will often omit the explicit judgment
are try|ng toreason aboutvhether a principa| should have true for the sake of breVity. We will abbreviate a collec-
access to a resource. But which logic should we use? Therdion of hypotheses als and writeI' = C true. We freely
have been several proposals in the literature (see [2] for apermit reordering of hypotheses.

recent survey), but we are not aware of a systematic devel- The first principle ofidentity pertains to the nature of
opment and meta-theoretic analysis of authorization logic hypothetical reasoning: if we have a hypothesigue we
from first principles. Such an analysis is necessary if we areshould be able to concludé true. We assume this for
to properly understand the meaning of statements in an au-atomic propositiong” as an explicit rule; we have to prove
thorization logic and the access control policies expressedit for compound propositiond (see theorem 2, part 2).

in it. Moreover, if access control decisions in an imple-

mented system are based on an authorization logic, then the

security of whole system rests critically on properties of this T', Ptrue = P true
logic. For example, if a principal makes contradictory state-

ments (which is quite plausible), we do not want the whole  The second principle afut states that if we can prove
logic to become inconsistent because this would give everythat A is true, we are justified in assuming it as a hypothesis:
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If I' = A true andTI', Atrue = C true then When should we be able to conclude tlataffirms A?
I' = C true. The first rule states that i true thenK affirms A.

We have to prove this (see theorem 2, part 4); if it were I = A true
i i ; AFF
formu_lgted_ as an inference rule it wquld violate the nature T K affirms A
of verifications because the propositidndoes not appear

in the conclusion judgment = C true. How do we use the knowledge that affirms A? We can-
The first logical connective we introduce is implication. not simply assume that is true because by using the rule
Each connective is characterized byight rulesthat show  apove, any principal would then affirs. However, if we
how to verify Ao B true, andleft rulesthat show howto use  are trying to prove that the same princigdlaffirms some
the hypothesisio B true. Here we have one each, hopefully ¢ then it is perfectly legitimate to assume thats true,

self-explanatory. They are most easily understood whenpecause we are currently insié&s mind, so to speak.
read bottom-up.

T', Atrue = K affirms C
I', K affirms A = K affirms C'

T', Atrue = B true
I' = A D B true

The restriction of this rule to the same princigélis cru-
cial and the basis of non-interference properties. It turns
I';AD Btrue = C true out to be convenient to limit ourselves to hypotheses of the

We use the convention that the principal proposition of the form Atrue. We can achieve this by only always eliminat-

left rule (A D> B in the second rule) is still available in ing K affirms A immediately when such an assumption is

. o - . introduced. ThesaysL rule below is an example of this
all premises, even though it is not explicitly written down kind
again in order to save space and draw attention to the more™ . . o
The new judgment entails a new cut principle that relates

essential features of the rule. the t | bove:
We can also add the propositiéadse(_L). It has no right € two rules above.

I' = A true I', Btrue = C true

rule, because there should be no verification_afnless the [f T — K affirms A and
hypotheses are contradictory, and a left rule that allows us I. Atrue — K affirms C then
to infer anything. r’:> K affirms C.
, 1L Note the accordance of the principdlsin the two given
no L right rule I', L true = C true deductions.
Even though we have included as a connective, we K affirms C'is a judgment, not a proposition. We there-

do not advocate its use in access control policies becausdr® cannot use it inside propositions, for example, in an
we believe it is a security risk_L can be used to define &rgument to implication. Thus we need to internalize the
negation as-A = A S L, which expresses the fact that Jgdgment as a new form of proposition wnh proper left an_d
does not hold. This can be very difficult to verify as it may r_|ght rules to define when it is true. We write this proposi-
require looking at all facts in the system, including those on 0N ask says A.

remote sites. If access to a resource dependsAwe run ,
the risk of inadvertently granting access simply because we I'= K affirms A
failed to discoverd on some site in the system. I' = (K says A) true

saysR

2.2. Affirmation I', Atrue = K affirms C
T, (K says A)true = K affirms C °

ayslL

Gentzen and Martin-&f were mainly concerned with

truth of propositions because of its central role in mathe- Note that the premises of the left and right rule match up
matics. However, in authorization logic the principals have exactly in the way predicted by the second cut principle.
to expressntentor policy. So in addition to the truth of a  This ensures that the proof of cut elimination goes through
proposition (which is independent of any particular princi- in this case and justifies these rules.

pal), we have a new judgment fori affirms A, stating The introduction of a new judgment also requires us to
that principal K affirms propositionA. Note that the logic ~ generalize the previously introduced left rules to allow a
does not make any particular commitment to a set or lan-conclusion of thek affirms C'. We writey for a judgment
guage of principals because the logical reasoning does nobf the formC' true or K affirms C'. The resulting collection
depend on it. of rules is summarized in Figure 1 at the end of this section.



We can now state and prove some simple theorems in acthe variabler.
cess control logic. Perhaps equally important are properties

that cannot be proved parametrically.in B, K, K; and %, e85 = Alc) true

K>. We use the convention that theys operator binds 5T = (Vaus. A(x)) true

more tightly than other logical operators, although some-

times we make parentheses explicit for the sake of clarity. Ehtis NI A(Y) true =y L
We write- A for - = A true andt/ A if - = A true is 5T, (Vais. A(x)) true = v

not derivable in the given generality. _
For X, c:s to be well-formed in thé&/R rule,c must be new

- AD (K says A) which is therefore an implicit side condition.

F (K says (A D B)) D (K says A) D (K says B)

F (K says (K says A)) D (K says A) 2.4. Meta-Theory

¥ (K says A)D A . : .

¥ (K says 1) D L _ The meta—theo_ry o_f_the_loglc is relatively straightforward
¥/ (K says A) D (K, says A) given the careful justification of the rules. We assume here

weakening as well as a substitution property for solts:
Ykt:sandX, s bEt' s thenX - [t/c]¢ : s, where

The fourth proposition( K A) D Ais an example - .
prop (K says A) P [t/c]t’ denotes the result of substitutindor cin ¢'.

of something not true in general where particular instances

may either be true (for example, the one right above) or false thaorem 2

(for example, the one just below).

Itis very easy to show that the last three propositions are 1. (Weakening) I&;I' — y thenX:;T', Atrue = v

not provable: try to construct a sequent derivation using the andX, c:s;I' = 7.

given rules and the proof attempt will fail after one or two . (Identity)S: T, A true —> A true for any proposition

steps. This demonstrates, for example, that even contradic- A T

tory statements by a princip&l do not imply inconsistency '

of the logic. 3. (Substitution) I2 F ¢ : s and X, c:s; ' = + then
L[t/ = [t/cy

2.3. Quantification 4. (Cut) If5;T' = A trueandX; T, Atrue — ~ then
X' = 1.
First-order quantification can now be added in a stan- 5 (Affirmation Cut) IfS;I’ = K affirms A and
dard and straightforward way. We introduce sostthe Y[, Atrue = K affirms C then ;' =
extent of which is open-ended, except that we explicitly K affirms C.

postulate a sorprincipal of principals K. Quantification

over principals is necessary, for example, to model groupsProof. Weakening follows by induction on the structure of
and other, more complex, access control mechanisms. Wahe given derivation. Identity follows by induction on the
usec for parameters introduced in a derivation antbr structure of A. Substitution follows by induction on the
general terms. We track all constants and parameters thastructure of the second given derivation, using our assump-
may occur in a sequent in a signatatavhich has the form  tion about the substitution property for sorting as needed.
€1:81, - - -, Cn:Sy, and in which no constant may be declared Cut and affirmation cut follow simultaneously by nested
more than once. If necessary we choose names so as tmduction, first on the structure of the propositidnsecond
avoid re-declaration. We writ® + ¢ : s for the standard  on the structure of the two given derivations. O
judgment that term has sorts. We further assume that all

predicate and function symbols prescribe sorts for their ar-  The structure of the proof of the cut principles follows a
guments, and that their usage respects these declarationgrior proof by the second author [20] and has been formal-

We write A(z) to denote a propositiod with possible oc-  jzed in the Twelf meta-logical framework. The cut elimina-
currences of the variableand A(¢) for the result of replac-  tion theorem proper, namely that if we formulate cut as an
ing all occurrences of by ¢. inference rule it can be eliminated from any sequent deriva-

The main sequent now has the fobinl' = A true for tion, follows by a straightforward induction from part 4
a signatureX:, contextl’, and propositiond. ¥ is added above, as in [20]. The judgmental methodology entails a
to all prior rules, but never changes from conclusion to formulation where the definitions of the connectives are in-
premises. In addition, we have the following right and left dependent of one another and depend only on the underly-
rules for universal quantificatiovz:s. A(x), which binds ing judgments. This means it is straightforward to add other
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3", Ptrue = P true

;' = A true ¥ F K : principal AFE
;' = K affirms A

3; T, Atrue = B true
;"= A D B true

;T = A true E;F,Btrue:>fyD
3;T,A D Btrue =~

L

interpreted as K believesA” or “ K knows A”. We be-
lieve that this is not quite the right view. In authorization
logics, truth and intent are freely shared. There are no se-
crets. Instead, the logic serves to relate truth and the intents
of different principals. For examplel D (K says A) is

true in our authorization logic and expresses that everyone
is prepared to affirm true propositions. On the other hand,
in epistemic logics it imot the case thatl > Ox A: not
everyone knowsl just because it is true.

3. Non-Interference Properties

1L Non-interference properties, in our context, characterize
classes of propositions whose presence or absence has no
effect on proofs of certain other propositions. They can be
used by policy administrators and users to explore the con-
sequences and verify the correctness of policies expressed
in the logic. In this section, we develop and prove two
such properties. These are theorems of the following form:
;A = ~ifand only if ;" = ~, provided some
non-interference conditioholds on%,I", A and~.! The
R¢ two properties differ in the non-interference condition that
must hold. In general, there is a trade-off between the ex-
pressiveness of the property and the ease of verifying the
VL associated non-interference condition.

We use the termformula to mean a proposition or an
affirmation (K affirms A). Before we describe our non-
interference properties, we develop the notiorsighson
formulas. Given a formulad, we can associate a sign
g € {+,—} toit. This is written asAY. The notion of
subformula (denoted by) extends to signed subformulas
and affirmations by the inductive rules given below. We use
g,9',¢" to denote arbitrary signs angto denote the sign
complementary tg.

no L right rule 3T, Ltrue = v

;' = K affirms A
2, I = (K says A) true

saysR

;T Atrue = K affirms C'
;T (K says A) true = K affirms C

saysL

Y, es;T' = A(c) true
;T = (Va:s. A(z)) true

Yht:s 2T, A(t) true =~
5T, (Vas. A(z)) true => vy

Principal propositions of left rules implicitly remain available
in all premises:y stands forK affirms C or C' true

Figure 1. Rules for authorization logic

connectives, such as conjunction, disjunction, or existential
guantification while preserving theorem 2. We omit the de- / / "
tails. A7 < A9 — ,/*

g g
The logic itself is related to lax logic [14] in the formu- AlsC
lation of Pfenning and Davies [21], except that we use a se- A7 < (A B)? BY < (A> B
guent calculus here instead of natural deduction. For each N
principal K, the judgmentK affirms A is a judgment of A@t)” < (Vaus.Az))~ A(e)t < (Vms.A(z))+

lax truth, with no direct interaction between different prin-

cipals. Hence, eachX’ says ” forms a strong monad [19] (K affirms A)? < (K says A)? A9 < (K affirms A)?

as familiar from functional programming [24]. There, mon-

ads provide a means of isolating pure computations from We say thatA? is a signed subformula of a sequent
effects; here the monads isolate the intentions of the prin-X; T = ~ if either A9 < ~* or for someB ¢ T,
cipals from each other. The Dependency Core Calculus4? < B~. The sign of a subformula of a sequent com-
(DCC) [3] uses a family of strong monads indexed by el- pletely determines whether the subformula will occur as an
ements of a lattice to model security levels in systems in a@ssumption or a conclusion in a cut-free proof of the se-
generic manner. Non-interference theorems similar to ourgquent. This is formalized by lemma 2.

property 1 (section 3) hold in this calculus also.

Authorization logics have sometimes been characterized  1ye grop the judgmentrue from A true and simply writeA because
as epistemic logics or belief logics, whefé says A is this does not cause any ambiguity.




Lemma 2 (Signed subformula property) If .
.1/, A = ~ is a sequent occurring in a cut-free Policy of BCL: ,
proof of ¥;:I' = ~, then A~ and 4/t are signed BCL says employee(john, BCL)

subformulas of; I' = ~. Policy of BigCo:

BigCo says Vz : person.

Our first non-interference property (shown below) is (BCL says employee(z, BCL) > employee(x, BCL))

simple and probably obvious, but it has important conse- BigCo says Va : person.

guences in the authorization logic. In particular, it can be (employee(z, BCL) > employee(z, BigCo))
used toformally show that statements made by principals  BigCo says Vx : person.

other than those mentioned explicitly in a policy have no (S says workshard(z) D workshard(z))
consequence on decisions made using the policy.

Policy of S:
Property 1 (First non-interference property) Suppose S says Vz : person.
K does not occur free il and ~, and the sequent (BigCo says employee(z, BigCo) D employee(x, BigCo))

¥;T" = ~ does not have any signed subformula of the
form (Va:principal. A(x))~. ThenX;T', K says B = v . . .
if and only ifS3; T — . Figure 2. Policies of principals for example 1
Proof. In the “if” direction by weakening and “only if”

direction by induction on the given derivation. 0 of some formula by; may result in the affirmation of truth

of some other formula by<s. For example, consider a pol-
icy which contains the formulak’; says A D K, says B
and K> says B’ D K3 says C. Supposek; makes an as-
sertion of the formK; says A’. Then, up to a very coarse
approximation, it is possible that this assertion will lead to
the truth of K5 says B, which might result in the truth of
K3 says C. In this case we say thaffirmation may flow
from K, to K3. The related analysis is called affirmation
flow analysis

If we can determine that affirmation cannot flow frdti
to K3 in some policy, then we can safely say that statements
made byK; will not affect statements concluded ks
using the policy. Such a result has a strong flavor of a non-
interference property. In this subsection, we will formalize
the idea of affirmation flow analysis and use it to obtain a
non-interference property. As it turns out, it is not enough

Example 1.Figure 2 shows the policies of three principals:
a companyBCL, its parent companBigCo and a service
companys that assesses if employeesigCo work hard?

Let X.; T, represent this policy in our logic, i.e., I&, =
{BCL : principal, BigCo : principal, S : principal, john :
person} and letT. be the set of all five policy state-
ments in figure 2. Then for any princip&l distinct from
BigCo, BCL andS, and for everyr, K does not occur i,
andS says employee(z, BigCo). Also, there are no neg-
ative occurrences of a universal quantifier over principals
in ¥.;I"c = S says employee(z, BigCo). We can ap-
ply property 1 to conclude that.;T'., K says B —

S says employee(z, BigCo) if and only if ¥,;T, —

S says employee(z, BigCo). Thus, statements made by
principals other than those occurring explicitly in the policy - e i X .
have no effect on conclusions drawn Byregarding who to_ consujerjust_pnnmpals for affirmation rov_v analysis. We
the employees dBigCo are. The same analysis works if we will conS|d9r aricher set of symbols over which we perform
replaceS by BigCo or BCL. the analysis.

Property 1 is too Weak to |et us Conclude anything about Throughout th|S Subsection, we impose two reStriCtionS
hypotheses of the formBigCo says B, BCL says B and on the logical formulas we consider. First, we assume that
S says B, because each of these three principals occurs inthere are no positive occurrences of the universal quantifier
the policy. The property can be used to show that “irrele- Over principals in our formulas. This may appear to be a
vant” principals (those that are not mentioned in a policy) big restriction, but we are yet to come across any policy

cannot inadvertently or maliciously affect decisions made that uses such a quantification in its encoding. The reason
from the policy. for this is that a positively occurring universal quantifier ex-

pressesreation of fresh principals. Even though the im-
plementation of a policy may require creation of principals,
the specification usually does not. Second, we assume that
first order function symbols do not generate principals. This

In many cases, we can examine a policy to determine pairsalso does not appear to be a significant restriction in prac-

of principals(K, K) such that an affirmation of the truth tice. Together these restrictions imply that if a principal
occurs in a cut-free proof of the sequéentl’ —> +, then

2This example is based on an example in [13]. K:principal € 3.

3.1. Non-Interference Through Affirmation
Flow Analysis




We now formalize our non-interference property based

on affirmation flow analysis. LeP denote predicate sym- ¢=>LZL .
bols. First we define the class ®§mbolsL. ¢=P=P ¢=L1=L ¢=L=K.L
L:=P|Ll|K.L ®=L=<KL o, KF,F=L=<KL
d=KL<KL O KF=L=<K.L

During our analysis, we use sets of symbols to abstract over

formulas. Briefly, the non-interference property works as QL2 le=Ls 2Ly P L1 X La= Lo X La

follows. We define a functioms, indexed by signatures D, L1 X Ly= L3 2Ly

¥, that maps a formulad to a set of symbolgsy.(A).

Informally speaking, this set contains every possible sym-

bol K; ... K,.P, such that the truth oA may imply the Figure 3. Sequent calculus for reasoning with

truth of K, says ... K, says P. Next, given a sequent ordering formulas

;' = ~, we construct araffirmation flow pre-order

(<) between symbols based on this sequent. The non-

interference property says that if for somec T, it is the

case that therdo notexistL; € psy(A) andLs € psx(7)

such thatl; < L,, thenA has no effect on the conclusion

7, 1.e.,5; ' = v ifand only if 5; T\ A = ~. 4. (Admissibility of cut) Ifb = L, < L, and®, L; <
Let £ denote a set of symbols. ff = {L,,..., L, }, we Ly=L=<1thend =L =<1

defineK.L to be the se{K.L,,...,K.L,}. Now we de-

fine theX-indexed maps from formulas to sets of symbols 5. (ReflexivityYp = L < L.

3. (Transitivity) f® = L; < Ly and® = Ly < Lg,
then® = L, < L.

as follows. )
6. (Identity)®, L < L' = L < L.

psy (L) = {L}
psg(Pt1...tn) = {P} Proof. Weakening and contraction follow by induction on
psy(A D B) = psy(B) the given derivations. Transitivity can be proved by a simul-
psy(K says A) = Kpsg(4) o taneous induction on both given derivations. Admissibility
psy (Va:s.A(2)) = psy(A()) (s #principal)  of oy follows by induction on the second given derivation,
pss(Vowprincipal A(z)) - = Ugrcprincipates) Pos(A(K)) using transitivity as needed. Reflexivity can be proved by
psy (K affirms A) = K.psg(A)

induction onL and identity follows from reflexivity using

Next, we develop a sequent calculus that lets us reasorPn€ application of the last rule in figure 3. U

with affirmation flow between symbols. This calculus is the . _ . _
basis of our affirmation flow analysis. The calculus works ~ The sequent calculus of figure 3 is designed to make it

with ordering formulast, defined by the following gram-  €asy to prove the above theorem and property 2. However, it
mar. is not immediate that this calculus is decidable. This can be

F:u=L <Ly | K.F proved by constructing an alternate sequent calculus equiv-

) . ] ] alent to this one, as shown in Appendix A.
Ly < Lo is an assertion that affirmation may flow from

the symbolL, to the symbolL,. K.F'is an assertion of  Theorem 4 The sequent calculus of figure 3 is decidable,
F, which can be used only when we are reasoning aboutj e | given anyd, L; and L, it is decidable whethe® =

statements made by princip&l. We used to denote multi- 1., < 1, or not.

sets of ordering formulas. Figure 3 describes the sequent

calculus for reasoning with ordering formulas. It uses only Proof. See Appendix A. O
one judgment:® = L; < L,. This judgment should be

read as follows: given that the assumptionspimold, we f & = {F,...,F,), we defne K.& =
can conclude that affirmation may flow from to L. (K.F\,...,K.F,}. Next we define a function that

obtains the affirmation flow information of a signed for-
mula. Formally, this is &-indexed function that maps a
signed formula to a set of ordering formulés We call

Theorem 3 The sequent calculus of figure 3 satisfies the
following properties.

1. (Weakening) i = L, < Lo, then®d, F = L; < Lo. this function AR 5. It is described below. Note that there is
no rule definingARyx((Va:principal.A(z))t) because we
2. (Contraction) If®, F, F = L; = Lo, then®, F = have assumed that there are no positive occurrences of the
L, < L. universal quantifier over principals.



ARs(L?) = {}

ARs((Pti...tn)%) = {}

ARs((AD B)T) = ARg(A™) U ARx(B")
AR5((AD B)") = ARs(AT) U ARs(B™) U

{L1 = Lo | L1 € psy(A), L2 € psy(B)}
ARs((K says A)9) = K. ARs(A9Y)
ARs((Vx:s.A(z))?) = ARs(A(z)?) s # principal
ARE((VIPI’IHCIPB'A(CL‘))i) = U(K:principalEE) ARZ(A(K)i)
ARs ((K affirms A)T) = K.ARs(AT)
Finally we define theaffirmation flow pre-order(<)

of a sequents; I’ — ~. Letl’ = Ay,..., A4, and
P = ARz(A;) U...uU ARZ(A;) @] ARE(’Y+). Then

the affirmation flow pre-order of this sequent is the binary

relation<« between symbols such that < L, if and only
if & = L, < L,. Note thatk is a pre-order because of the
reflexivity and transitivity properties from theorem 3.

Property 2 (Second non-interference property)Let

< be the affirmation flow relation for the sequent
3 I'A = ~, and suppose that therdo not exist
L, € psy(A) and Ly € psy () such thatl; < L. Then
;1A= vyifandonly if3; ' = ~.

Proof. By weakening in the “if” direction and by induction
on the structure of the derivatidiy I', A = ~ in the other
direction. O

Example 2. Let X ;T'. represent the policy in fig-
ure 2. Consider the sequeri.;T.,BigCo says
employee(z,y) = BCL says employee(z,u) for any
x,y,z,u. Then the affirmation flow pre-order of this se-
quentisl; < Lo ifand only if ® = L, < Lo, where

® = {BigCo.(BCL.employee < employee),
BigCo.(employee < employee),
BigCo.(S.workshard < workshard)

S.(BigCo.employee =< employee)}

By definition psy, (BigCo says employee(z,y)) =
{BigCo.employee} and psy_ (BCL says
employee(z, u)) {BCL.employee}. It is very
easy to show using the rules of figure 3 that
® # BigCo.employee < BCL.employee. Consequently
by property 2, we can conclude that;T'., BigCo says
employee(z,y) = BCL says employee(z, u) if and only

if X.;T. = BCL says employee(z,u), which is to say
that statements regarding the predicateloyee by BigCo

do not influence the truth of similar statementsBiii.

Property 2 applies in a large number of cases, but
verifying its associated non-interference condition requires
reasoning with the sequent calculus in figure 3, which
W
see this property as a valuable tool for reasoning about
policies expressed in our logic using an automated decision
procedure for the sequent calculus in figure 3, which is

can be cumbersome in some cases, if done manually.

Policy of K,:
K, says isHospital(K.)

K, says isHospital(Ky)

K, says Vz,y : person.
isPhysician0f(x,y) D readMedRec(z,y)

K, says Vz,y : person. Vk : principal.
isHospital(k) D
(k says isPhysician0f(z,y)) D
isPhysicianOf(x,y)

K, says Vki, ko, k : principal.
isHospital(k1) D isHospital(kz) D
(k1 says isHospital(k)) D (k2 says isHospital(k)) D
isHospital(k)

Policy of K3:
Ky, says isPhysicianOf (alice, peter)

Policy of K.:
K. says isHospital(Kjs)

Policy of K:
K4 says isHospital(K3)

Figure 4. Policies of four hospitals

decidable (theorem 4). Efficient implementation of such a
decision procedure is a subject of immediate future work.
The next example describes a more complicated policy
where property 2 can be used.

Example 3. The policies of four hospitald<,, K, K.
and K, are shown in figure 4. The policies govern physi-
cians’ access to medical records of patients. The propo-
sition readMedRec(x,y) means that: can read the med-
ical records ofy. K,'s policy can be summarized as fol-
lows. K, believes that the principal&’. and K; are hos-
pitals. K, grantsz access tg,'s medical records if it be-
lieves thatr is y's physician. K, trusts all hospitals’ state-
ments regarding physician-patient relationships. Finally, if
two hospitals affirm that a principal is a hospitd{,, is
willing to believe this claim. It is quite easy to show that
K, says readMedRec(alice, peter) is provable with this
policy.

According to K,’'s policy, it believes other hospi-
tals’ statements regarding the predicate§ospital and

isPhysicianOf only. It does not directly trust other hos-

é)itals’ statements regarding the predicagadMedRec. In

particular, if K;, says readMedRec(z,y) for any per-
sonsx,y, then this should not influence the provability

3This example is based on an example in [23].



of K, says readMedRec(z,y). Formally, letX, = in the setting of proof-carrying authorization [5, 6] (PCA),
{K, : principal, K, : principal, K. : principal, Ky : where distributed theorem proving procedures appear to be
principal, alice : person, peter : person} be the set efficient enough in practice [9]. We believe that it is possi-
of all terms under consideration and let be the set of  ble to extend our logic with further judgments or proposi-
all policy statements in figure 4. Then we want to show tion to deal with more complex principals where a mapping

that for anyz, y, ¥.; ¢, K} says readMedRec(z,y) = to first-order quantification may be undesirable (as perhaps
K, says readMedRec(z,y) only if ¥,; T, = K, says in [1]).
readMedRec(r, y). Another concept studied by Abadi et al. is delegation of
We can prove this result using property 2. Consider the rights among principals. Delegation of rights related to spe-
affirmation flow pre-order of the sequent; I, K} says cific predicates can be readily encoded in the logic we have
readMedRec(z,y) = K, says readMedRec(z,y). This  presented. There is also a more general form of delegation
pre-orderisL; < Ly ifand only if ® = L, < Lo, where where a principal delegates another principal the right to
makeany statements on its behalf. While there is a method
® = {K,.(isPhysician0f < readMedRec), tp systematically extenq our logic to include ;uch delega-
K,.(isHospital < isPhysicianOf), tion, we do .not preseljt |t_here, becggse we believe that §uch
K,.(K,.isHospital < isPhysicianOf), delegation is a §ecgr|ty n;k for policies. The problem with
K,.(Ky.isHospital < isPhysicianOf), general delegation is that it exte_nd_s to all predicates, includ-
K,.(K..isHospital < isPhysicianOf), ing those that the delegating principal may not be aware of.
K,.(Kq.isHospital < isPhysicianOf), The logic underlying proof-carrying authorization [5, 6]
K,.(isHospital < isHospital), has been explicitly designed as a (classical) higher-order
K,o.(K,.isHospital < isHospital), logic. This makes a meta-theoretic analysis of the logic and
K,.(K.isHospital < isHospital), policies expressed in it extremely difficult because proof
K,.(K,.isHospital < isHospital), calculi will not obey the subformula property. Besides an
K,..(Kq.isHospital < isHospital)} argument for consistency, no analysis of non-interference
properties of this logic has been provided. We advocate a
We observe thapsy, (K, says readMedRec(z,y)) = more tractable logic such as the one presented here since
{K,.readMedRec} and psy, (Kb says the logical calculus is part of the trusted computing base of
readMedRec(z,y)) = {Kj,.readMedRec}. Thus, if we a PCA architecture implementation such as the Grey sys-
can show tha® # Kj.readMedRec < K,.readMedRec, tem [8] and should therefore be easy to understand and ana-
we can use property 2 to conclude that; I'., K, says lyze, ideally with formal verification tools as we have done.

readMedRec(z,y) = K, says readMedRec(z,y) if A logic that more closely resembles ours is the one un-
and only if¥.;I'e = K, says readMedRec(z,y). The  derlying Binder [13]. Even though Binder is first-order,
former can be shown using the sequent calculus in figure 3,qeries are decidable in polynomial time because it is de-
but this is a tedious exercise to perform manually. Using rived from the Datalog fragment of first-order logic. The
an automated decision procedure for this calculus would ginder logic appears to be intuitionistic because on Horn
enable verification of this fact easily. formulas intuitionistic and classical logic coincide. How-
ever, the logical status of the modal operators, their non-
4. Further Related Work interference, or other properties of proofs are not ana-
lyzed. We conjecture that a similarly decidable Datalog-
We only touch here upon some of the most closely re- inspired restriction exists for our logic and plan to inves-
lated work. Further pointers to the literature can be found tigate this in future work. There are several other propos-
in a survey by Abadi [2]. als[10, 17, 16, 12] for authorization logics based on Datalog
The study of access control with logical means was ini- and its extensions, but like Binder, they do not analyze the
tiated by Abadi et al. [4]. Their system was a classical logical status of their operators, or non-interference.
propositional logic with a rich algebra of principals. They Ruel3 and Shankar’s Cyberlogic [23] is a more expressive
presented a Kripke semantics for which the axioms and in-logic in that one can reason about more than just authoriza-
ference rules were sound. However, they were completetion. Itis constructed along similar lines as the Binder logic
only for a fragment. The system was axiom-based and noin that interesting fragments permit a logic programming
proof-theoretic analysis or non-interference properties wereinterpretation and that it is intuitionistic, just like our logic.
given. Here we avoid a complex calculus of principals by However, no analysis ddttestation(the analogue o&ffir-
allowing first-order quantification over principals to express mation) in terms of standard modal logic concepts or proof
concepts such as groups. This comes at the cost of a pritheory is provided, and some of the axioms such as distribu-
ori undecidability, which, however, has not been a problem tion of attestation over disjunction and implication are ques-



tionable from our point of view. Proving non-interference [3]
properties for Cyberlogic appears to be difficult.

5. Conclusion
(4]

We have presented a new constructive authorization
logic developed from judgmental principles, which yields
a clean proof theory, an analysis of the meaning of the [5]
connectives from their proof rules, and is inherently open-
ended and extensible. We have shown that the logic itself
satisfies some non-interference properties between princi-
pals and provided some high-level tools for analyzing poli- [6]
cies expressed in the authorization logic. We believe it is
a promising logic for reasoning about authorization in gen- [7]
eral, and also a good foundation for the implementation of
a proof-carrying authorization infrastructure where policy
enforcement is directly based on proof objects.

There are several avenues for future work besides those (8]
mentioned with the related work. One is to consider
whether one should integrate certificate revocation in a
more logical manner than standard techniques using revo-
cation lists or short-lived certificates. Another is whether [g)
explicit reasoning about time should be integrated into the
logic via temporal operators. Either of these might change
the character of the logic significantly and complicate its
analysis and the interpretation of the statements made in it.

Another promising direction is the integration logfear [10]
reasoningwhich can support consumable credentials and
therefore electronic transactions. Intuitionistic linear logic
is fully compatible with lax logic [11, 25] and therefore
with the family of monads indexed by principals we devel-
oped here. The logic design based on judgmental principles
means that such an extension will be conservative over they;2]
logic presented here, so that the present non-interference
properties will continue to hold. The difficulty then appears [13]
not to be the logical reasoning, but the design of an en-
forcement mechanism to support consumable credentials at
the right level of atomicity that is consistent with the logic.

See [7] for some initial developments in this direction.

(11]

(14]
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A. Decidability of Ordering Formulas

This appendix shows that the sequent calculus for order-
ing formulas given in figure 3 is decidable. This is done in
two steps. First we construct another sequent calculus for
reasoning with ordering formulas and show that it is equiv-
alent to the one given in figure 3. In the second step, we
show that the new calculus is decidable.
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The second calculus we consider is shown in figure 5. It
differs from the first calculus only in the premises of the last
two rules. We denote its sequents using the arpyy.

We first show that the calculi in figure 3 and 5 are equiv-
alent in the sense tha = L; =< L if and only if
® =p L; < Ly,. We need a few lemmas about the two
calculi.

Lemma 3 (Properties of calculus in figure 3) 1. If
O F K.F= 1L =Ly, then® F = [, < Ls.

2. |f@,L1 < Ly= L3 = Ll,then@ = L3 < L.
3. |f@,L1 < Ly= Ly = L3,then<I> = Lo < Ls.

Proof. In each case by induction on the given derivatian.

Lemma 4 (Weakening for calculus in figure 5) The cal-
culus in figure 5 satisfies weakening:d#f=p L; < Lo,
then®, F =p L1 < Lo.

Lemma 5 (Equivalence)® = L; < Lo if and only if
b =p L =X Lo.

Proof. In each direction by induction on the given deriva-
tion. The proof in the “only if” direction requires use of
lemma 3. O

Lemma 6 Given any®, L, Lo, it can be decided whether
$ =p L, =< Ly or not.

Proof. In the calculus in figure 5, the sequents in the
premise of each rule have a strictly smaller size than the
sequent of the conclusion. Further, given any sequent, there
are only a finite number of rules that could have been used
to conclude it. As a result, if we reason backward, then the
calculus is decidable. O

Theorem 5 Given any®, L, Lo, it can be decided whether
® = L; < Ly or not.

Proof. Follows immediately from lemmas 5and 6. O



