
3.5 Primitive Recursion 49

Note that half 1 calls half 2 and vice versa. This is an example of so-called mutual
recursion. This can be modeled by one function half 12 returning a pair such
that half 12(x) = 〈half 1(x), half 2(x)〉.

half 12 0 = 〈0, 0〉
half 12 (s(x)) = 〈snd (half 12(x)), s(fst (half 12(x)))

half x = fst (half x)

In our notation this becomes

half 12 = λx ∈ nat. rec x
of h(0)⇒ 〈0, 0〉
| h(s(x′))⇒ 〈snd (h(x)), s(fst (h(x)))

half = λx ∈ nat. fst (half 12 x)

As a last example in the section, consider the subtraction function which
cuts off at zero.

minus 0 y = 0
minus (s(x′)) 0 = s(x′)

minus (s(x′)) (s(y′)) = minus x′ y′

To be presented in the schema of primitive recursion, this requires two nested
case distinctions: the outermost one on the first argument x, the innermost one
on the second argument y. So the result of the first application of minus must
be function, which is directly represented in the definition below.

minus = λx ∈ nat. rec x
of m(0)⇒ λy ∈ nat. 0
| m(s(x′))⇒ λy ∈ nat. rec y

of p(0)⇒ s(x′)
| p(s(y′))⇒ (m (x′)) y′

Note that m is correctly applied only to x′, while p is not used at all. So the
inner recursion could have been written as a case-expression instead.

Functions defined by primitive recursion terminate. This is because the be-
havior of the function on s(n) is defined in terms of the behavior on n. We can
therefore count down to 0, in which case no recursive call is allowed. An alterna-
tive approach is to take case as primitive and allow arbitrary recursion. In such
a language it is much easier to program, but not every function terminates. We
will see that for our purpose about integrating constructive reasoning and func-
tional programming it is simpler if all functions one can write down are total,
that is, are defined on all arguments. This is because total functions can be used
to provide witnesses for propositions of the form ∀x ∈ nat. ∃y ∈ nat. P (x, y)
by showing how to compute y from x. Functions that may not return an appro-
priate y cannot be used in this capacity and are generally much more difficult
to reason about.

Draft of September 28, 2000



50 Proofs as Programs

3.6 Booleans

Another simple example of a data type is provided by the Boolean type with
two elements true and false. This should not be confused with the propositions
> and ⊥. In fact, they correspond to the unit type 1 and the empty type 0.
We recall their definitions first, in analogy with the propositions.

1F
1 type

1I
Γ ` 〈 〉 ∈ type no 1 elimination rule

0F
0 type

no 0 introduction rule
Γ ` t ∈ 0

0E
Γ ` abortτ t ∈ τ

There are no reduction rules at these types.
The Boolean type, bool, is instead defined by two introduction rules.

boolF
bool type

boolI1
Γ ` true ∈ bool

boolI0
Γ ` false ∈ bool

The elimination rule follows the now familiar pattern: since there are two
introduction rules, we have to distinguish two cases for a given Boolean value.
This could be written as

case t of true⇒ s1 | false⇒ s0

but we typically express the same program as an if t then s1 else s0.

Γ ` t ∈ bool Γ ` s1 ∈ τ Γ ` s0 ∈ τ
boolE

Γ ` if t then s1 else s0 ∈ τ

The reduction rules just distinguish the two cases for the subject of the if-
expression.

if true then s1 else s0 =⇒ s1

if false then s1 else s0 =⇒ s0

Now we can define typical functions on booleans, such as and , or , and not .

and = λx ∈ bool. λy ∈ bool.
if x then y else false

or = λx ∈ bool. λy ∈ bool.
if x then true else y

not = λx ∈ bool.
if x then false else true

Draft of September 28, 2000



3.7 Lists 51

3.7 Lists

Another more interesting data type is that of lists. Lists can be created with
elements from any type whatsoever, which means that τ list is a type for any
type τ .

τ type
listF

τ list type

Lists are built up from the empty list (nil) with the operation :: (pronounced
“cons”), written in infix notation.

listIn
Γ ` nilτ ∈ τ list

Γ ` t ∈ τ Γ ` s ∈ τ list
listIc

Γ ` t :: s ∈ τ list

The elimination rule implements the schema of primitive recursion over lists. It
can be specified as follows:

f (nil) = sn
f (x :: l) = sc(x, l, f(l))

where we have indicated that sc may mention x, l, and f(l), but no other
occurrences of f . Again this guarantees termination.

Γ ` t ∈ τ list Γ ` sn ∈ σ Γ, x ∈ τ, l ∈ τ list, f(l) ∈ σ list ` sc ∈ σ
listE

Γ ` rec t of f(nil)⇒ sn | f(x :: l)⇒ sc ∈ σ

We have overloaded the rec constructor here—from the type of t we can always
tell if it should recurse over natural numbers or lists. The reduction rules are
once again recursive, as in the case for natural numbers.

(recnil of f(nil)⇒ sn | f(x :: l)⇒ sc) =⇒ sn
(rec (h :: t) of f(nil)⇒ sn | f(x :: l)⇒ sc) =⇒
[(rec t of f(nil)⇒ sn | f(x :: l)⇒ sc)/f(l)] [h/x] [t/l] sc

Now we can define typical operations on lists via primitive recursion. A
simple example is the append function to concatenate two lists.

append nil k = k
append (x :: l′) k = x :: (append l′ k)

In the notation of primitive recursion:

append = λl ∈ τ list. λk ∈ τ list. rec l
of a(nil)⇒ k
| a(x :: l′)⇒ x :: (a l′)

` append ∈ τ list→ τ list→ τ list

Note that the last judgment is parametric in τ , a situation referred to as
parametric polymorphism. In means that the judgment is valid for every type

Draft of September 28, 2000



52 Proofs as Programs

τ . We have encountered a similar situation, for example, when we asserted that
(A ∧B)⊃A true. This judgment is parametric in A and B, and every instance
of it by propositions A and B is evident, according to our derivation.

As a second example, we consider a program to reverse a list. The idea is
to take elements out of the input list l and attach them to the front of a second
list a one which starts out empty. The first list has been traversed, the second
has accumulated the original list in reverse. If we call this function rev and the
original one reverse, it satisfies the following specification.

rev ∈ τ list→ τ list→ τ list
rev nil a = a

rev (x :: l′) a = rev l′ (x :: a)

reverse ∈ τ list→ τ list
reverse l = rev l nil

In programs of this kind we refer to a as the accumulator argument since it
accumulates the final result which is returned in the base case. We can see that
except for the additional argument a, the rev function is primitive recursive.
To make this more explicit we can rewrite the definition of rev to the following
equivalent form:

rev nil = λa. a
rev (x :: l) = λa. rev l (x :: a)

Now the transcription into our notation is direct.

rev = λl ∈ τ list. rec l
of r(nil)⇒ λa ∈ τ list. a
| r(x :: l′)⇒ λa ∈ τ list. r (l′) (x :: a)

reverse l = rev l nil

Finally a few simple functions which mix data types. The first counts the
number of elements in a list.

length ∈ τ list→nat

length nil = 0
length (x :: l′) = s(length (l′))

length = λx ∈ τ list. rec x
of le(nil)⇒ 0
| le(x :: l′)⇒ s(le (l′))

The second compares two numbers for equality.

eq ∈ nat→nat→bool

eq 0 0 = true
eq 0 (s(y′)) = false
eq (s(x′)) 0 = false

eq (s(x′)) (s(y′)) = eq x′ y′

Draft of September 28, 2000



3.8 Summary of Data Types 53

As in the example of subtraction, we need to distinguish two levels.

eq = λx ∈ nat. rec x
of e(0)⇒ λy ∈ nat. rec y

of f(0)⇒ true
| f(s(y′))⇒ false

| e(s(x′))⇒ λy ∈ nat. rec y
of f(0)⇒ false
| f(s(y′))⇒ e(x′) y′

We will see more examples of primitive recursive programming as we proceed
to first order logic and quantification.

3.8 Summary of Data Types

Judgments.
τ type τ is a type
t ∈ τ t is a term of type τ

Type Formation.

natF
nat type

boolF
bool type

τ type
listF

τ list type

Term Formation.

natI0
0 ∈ nat

n ∈ nat
natIs

s(n) ∈ nat

Γ ` t ∈ nat Γ ` t0 ∈ τ Γ, x ∈ nat, f(x) ∈ τ ` ts ∈ τ
natE

Γ ` rec t of f(0)⇒ t0 | f(s(x))⇒ ts ∈ τ

boolI1
Γ ` true ∈ bool

boolI0
Γ ` false ∈ bool

Γ ` t ∈ bool Γ ` s1 ∈ τ Γ ` s0 ∈ τ
boolE

Γ ` if t then s1 else s0 ∈ τ

listIn
Γ ` nilτ ∈ τ list

Γ ` t ∈ τ Γ ` s ∈ τ list
listIc

Γ ` t :: s ∈ τ list

Γ ` t ∈ τ list Γ ` sn ∈ σ Γ, x ∈ τ, l ∈ τ list, f(l) ∈ σ list ` sc ∈ σ
listE

Γ ` rec t of f(nil)⇒ sn | f(x :: l)⇒ sc ∈ σ

Draft of September 28, 2000



54 Proofs as Programs

Reductions.

(rec 0 of f(0)⇒ t0 | f(s(x))⇒ ts) =⇒ t0
(rec s(n) of f(0)⇒ t0 | f(s(x))⇒ ts) =⇒

[(rec n of f(0)⇒ t0 | f(s(x))⇒ ts)/f(x)] [n/x] ts

if true then s1 else s0 =⇒ s1

if false then s1 else s0 =⇒ s0

(rec nil of f(nil)⇒ sn | f(x :: l)⇒ sc) =⇒ sn
(rec (h :: t) of f(nil)⇒ sn | f(x :: l)⇒ sc) =⇒

[(rec t of f(nil)⇒ sn | f(x :: l)⇒ sc)/f(l)] [h/x] [t/l] sc

3.9 Predicates on Data Types

In the preceding sections we have introduced the concept of a type which is
determined by its elements. Examples were natural numbers, Booleans, and
lists. In the next chapter we will explicitly quantify over elements of types. For
example, we may assert that every natural number is either even or odd. Or we
may claim that any two numbers possess a greatest common divisor. In order
to formulate such statements we need some basic propositions concerned with
data types. In this section we will define such predicates, following our usual
methodology of using introduction and elimination rules to define the meaning
of propositions.

We begin with n < m, the less-than relation between natural numbers. We
have the following formation rule:

Γ ` m ∈ nat Γ ` n ∈ nat
<F

Γ ` m < n prop

Note that this formation rule for propositions relies on the judgment t ∈ τ .
Consequently, we have to permit a hypothetical judgment, in case n or m men-
tion variables declared with their type, such as x ∈ nat. Thus, in general, the
question whether A prop may now depend on assumptions of the form x ∈ τ .

This has a consequence for the judgment A true. As before, we now must
allow assumptions of the form B true, but in addition we must permit assump-
tions of the form x ∈ τ . We still call the collection of such assumptions a context
and continue to denote it with Γ.

<I0
Γ ` 0 < s(n) true

Γ `m < n true
<Is

Γ ` s(m) < s(n) true

The second rule exhibits a new phenomenon: the relation ‘<’ whose meaning
we are trying to define appears in the premise as well as in the conclusion. In
effect, we have not really introduced ‘<’, since it already occurs. However, such
a definition is still justified, since the conclusion defines the meaning of s(m) < ·
in terms of m < ·. We refer to this relation as inductively defined. Actually we

Draft of September 28, 2000



3.9 Predicates on Data Types 55

have already seen a similar phenomenon in the second “introduction” rule for
nat:

Γ ` n ∈ nat
natIs

Γ ` s(n) ∈ nat

The type nat we are trying to define already occurs in the premise! So it may
be better to think of this rule as a formation rule for the successor operation on
natural numbers, rather than an introduction rule for natural numbers.

Returning to the less-than relation, we have to derive the elimination rules.
What can we conclude from Γ ` m < n true? Since there are two introduction
rules, we could try our previous approach and distinguish cases for the proof of
that judgment. This, however, is somewhat awkward in this case—we postpone
discussion of this option until later. Instead of distinguishing cases for the proof
of the judgment, we distinguish cases for m and n. In each case, we analyse
how the resulting judgment could be proven and write out the corresponding
elimination rule. First, if n is zero, then the judgment can never have a normal
proof, since no introduction rule applies. Therefore we are justified in concluding
anything, as in the elimination rule for falsehood.

Γ ` m < 0 true
<E0

Γ ` C true

If the m = 0 and n = s(n′), then it could be inferred only by the first introduc-
tion rule <I0. This yields no information, since there are no premises to this
rule. This is just as in the case of the true proposition >.

The last remaining possibility is that both m = s(m′) and n = s(n′). In
that case we now that m′ < n′, because <Is is the only rule that could have
been applied.

Γ ` s(m′) < s(n′) true
<Es

Γ ` m′ < n′ true

We summarize the formation, introduction, and elimination rules.

Γ ` n ∈ nat Γ ` m ∈ nat
<F

Γ ` n < m prop

<I0
Γ ` 0 < s(n) true

Γ `m < n true
<Is

Γ ` s(m) < s(n) true

Γ ` m < 0 true
<E0

Γ ` C true

no rule for 0 < s(n′)
Γ ` s(m′) < s(n′) true

<Es
Γ ` m′ < n′ true

Now we can prove some simple relations between natural numbers. For

Draft of September 28, 2000



56 Proofs as Programs

example:
<I0

· ` 0 < s(0) true
<Is

· ` 0 < s(s(0)) true

We can also establish some simple parametric properties of natural numbers.

u
m ∈ nat, m < 0 true ` m < 0 true

<E0
m ∈ nat, m < 0 true ` ⊥ true

⊃Iu
m ∈ nat ` ¬(m < 0) true

In the application of the <E0 rule, we chose C = ⊥ in order to complete the
proof of ¬(m < 0). Even slightly more complicated properties, such as m <
s(m) require a proof by induction and are therefore postponed until Section ??.

We introduce one further relation between natural numbers, namely equality.
We write m =

N
n. Otherwise we follow the blueprint of the less-than relation.

Γ ` m ∈ nat Γ ` n ∈ nat
=
N
F

Γ ` m =N n prop

=N I0
Γ ` 0 =N 0 true

Γ ` m =
N
n true

=
N
Is

Γ ` s(m) =N s(n) true

no =
N
E00 elimination rule

Γ ` 0 =N s(n)
=NE0s

Γ ` C true

Γ ` s(m) =N 0 true
=NEs0

Γ ` C true

Γ ` s(m) =N s(n) true
=NEss

Γ `m =N n true

Note the difference between the function

eq ∈ nat→nat→bool

and the proposition
m =N n

The equality function provides a computation on natural numbers, always re-
turning true or false. The proposition m =

N
n requires proof. Using induction,

we can later verify a relationship between these two notions, namely that eq nm
reduces to true if m =N n is true, and nm reduces to false if if ¬(m =N n).

Draft of September 28, 2000



Bibliography

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472–482, May
1936.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathe-
matische Zeitschrift, 39:176–210, 405–431, 1935. English translation in
M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages
68–131, North-Holland, 1969.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, pages 479–490. Academic
Press, 1980. Hitherto unpublished note of 1969, rearranged, corrected,
and annotated by Howard.

[ML80] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Logic, Methodology and Philosophy of Science VI, pages 153–
175. North-Holland, 1980.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

Draft of September 28, 2000


