
4.3 Arithmetic 69

4.3 Arithmetic

We obtain the system of first-order arithmetic if we restrict quantifiers to el-
ements of type nat. Recall the induction principle for natural numbers and
the rules for equality n =N m and the less-than relation n < m summarized in
Section 3.10.

As a reminder, we will prove some frequently needed properties of equality.
The first is reflexivity of equality.

∀x∈nat. x =
N
x

We first give the informal proof, then its translation into a formal proof language.

Proof: The proof is by induction on x.

Case: x = 0. Then 0 =N 0 by rule =N I0.

Case: x = s(x′). Then

x′ =N x′ by induction hypothesis
s(x′) =N s(x′) by rule =N Is.

2

As a formal proof in linear format:

[x : nat; % assumption

0 = 0; % by =I0 (base case)

[x’ : nat, x’ = x’; % assumptions

s(x’) = s(x’)]; % by =Is (induction step)

x = x]; % by induction on x

!x:nat. x = x; % by !I

We can also write out the proof term that corresponds to the proof above.

refl : ∀x∈nat. x =N x
= λx∈nat. rec x

of r(0)⇒ eq0

| r(s(x′))⇒ eqs(r(x
′))

As a second example, we consider transitivity of equality.

∀x∈nat. ∀y∈nat. ∀z∈nat. x =
N
y⊃ y =

N
z⊃x =

N
z

This time we will give the proof in three forms: as an informal mathematical
proof, as a formal proof in linear form, and as an equational specification proof
term.

Proof: The proof is by induction on x. We need to distinguish
subcases on y and z.

Draft of October 16, 2000

70 First-Order Logic and Type Theory

Case: x = 0. Then we distinguish subcases on y.

Case: y = 0. Then we distinguish subcases on z.

Case: z = 0. Then 0 =N 0 by rule =N I0.

Case: z = s(z′). Then y =N z is impossible by rule
=
N
E0s.

Case: y = s(y′). Then x =
N
y is impossible by rule =

N
E0s.

Case: x = s(x′). We assume the induction hypothesis

∀y∈nat. ∀z∈nat. x′ =N y⊃ y =N z⊃ x′ =N z

and distinguish subcases on y.

Case: y = 0. Then x =
N
y is impossible by rule =

N
E0s.

Case: y = s(y′). Then we distinguish subcases on z.

Case: z = 0. Then y =N z is impossible by rule =NEs0.

Case: z = s(z′). Then we assume s(x′) =N s(y′) and
s(y′) =N s(z′) and have to show that s(x′) =N s(z′).
We continue:

x′ =
N
y′ by rule =

N
Ess

y′ =
N
z′ by rule =

N
Ess

x′ =N z′ by universal and implication eliminations
from induction hypothesis

s(x′) =N s(z′) by rule =N Is.

2

The formal proof of transitivity is a good illustration why mathematical
proofs are not written as natural deductions: the granularity of the steps is too
small even for relatively simple proofs.2

[x : nat;

[y : nat;

[z : nat;

[0 = 0;

[0 = 0;

0 = 0]; % eqI0

0 = 0 => 0 = 0];

0 = 0 => 0 = 0 => 0 = 0; % case (z = 0)

[z’ : nat, 0 = 0 => 0 = s(z’) => 0 = s(z’);

[0 = 0;

[0 = s(z’);

0 = s(z’)]; % eqE0s

0 = s(z’) => 0 = s(z’)];

0 = 0 => 0 = s(z’) => 0 = s(z’)]; % case (z = s(z’))

0 = 0 => 0 = z => 0 = z;

!z:nat. 0 = 0 => 0 = z => 0 = z; % case (y = 0)

2Warning: the “proof” below has not been verified by a proof checker!

Draft of October 16, 2000

4.3 Arithmetic 71

[y’ : nat; !z:nat 0 = y’ => y’ = z => 0 = z;

[z : nat;

[0 = s(y’);

[s(y’) = z;

0 = z]; % eqE0s

s(y’) = z => 0 = z];

0 = s(y’) => s(y’) = z => 0 = z];

!z:nat. 0 = s(y’) => s(y’) => z => 0 = z]; % case (y = s(y’))

!z:nat. 0 = y => y = z => 0 = z];

!y:nat. !z:nat. 0 = y => y = z => 0 = z]; % base case (x = 0)

[x’ : nat, !y:nat. !z:nat. x’ = y => y = z => x’ = z % ind hyp (x)

[y : nat;

[z : nat;

[s(x’) = 0;

[0 = z;

s(x’) = z]; % eqEs0

0 = z => s(x’) = z];

s(x’) = 0 => 0 = z => s(x’) = z];

!z:nat. s(x’) = 0 => 0 = z => s(x’) = z; % case (y = 0)

[y’ : nat, !z:nat. s(x’) = y’ => y’ = z => s(x’) = z;

[z : nat;

[s(x’) = s(y’);

[s(y’) = 0;

s(x’) = 0]; % eqEs0

s(y’) = 0 => s(x’) = 0];

s(x’) = s(y’) => s(y’) = 0 => s(x’) = 0; % case (z = 0)

[z’ : nat, s(x’) = s(y’) => s(y’) = z’ => s(x’) = z’;

[s(x’) = s(y’);

[s(y’) = s(z’);

x’ = y’; % eqEss

y’ = z’; % eqEss

!z:nat. x’ = y’ => y’ = z => x’ = z;

x’ = y’ => y’ = z’ => x’ = z’;

y’ = z’ => x’ = z’;

x’ = z’;

s(x’) = s(z’)]; % eqIs

s(y’) = s(z’) => s(x’) = s(z’)];

s(x’) = s(y’) => s(y’) = s(z’) => s(x’) = s(z’)];

s(x’) = s(y’) => s(y’) => z => s(x’) = z];

!z:nat. s(x’) = s(y’) => s(y’) = z => s(x’) = z];

% case (y = s(y’))

!z:nat. s(x’) = y => y = z => s(x’) = z];

!y:nat. !z:nat. s(x’) = y => y = z => x = z];

% ind step (x = s(x’))

!y:nat. !z:nat. x = y => y = z => x = z];

!x:nat. !y:nat. !z:nat. x = y => y = z => x = z;

Draft of October 16, 2000

72 First-Order Logic and Type Theory

Instead of giving the proof term in full, we give its specification. Recall that

trans : ∀x∈nat. ∀y∈nat. ∀z∈nat. x =N y⊃ y =N z⊃x =N z

and therefore trans is a function of five arguments: natural numbers x, y, and
z and proof terms u:x =

N
y and w:y =

N
z. It has to return a proof term

M : x =
N
z. The proof above corresponds to the following specification.

trans 0 0 0 u w = eq0

trans 0 0 (s(z′)) u w = eqE0s(w)
trans 0 (s(y′)) z u w = eqE0s(u)
trans (s(x′)) 0 z u w = eqEs0(u)
trans (s(x′)) (s(y′)) 0 u w = eqEs0(w)
trans (s(x′)) (s(y′)) (s(z′)) u w =

eqs(trans x′ y′ z′ (eqEss(u)) (eqEss(w)))

Note that all but the first and the last case are impossible, for which we provide
evidence by applying the right elimination rule to either u or w. We can also see
that the first argument to the recursive call to trans is at x′ and the specificaton
above therefore satisfies the restriction on primitive recursion. By comparing
this to the formal proof (and also the omitted proof term) we can see the pro-
gramming with equational specifications of this kind is much simpler and more
concise than many other representations. There is ongoing research on directly
verifying and compiling specifications, which is close to actual programming
practice in languages such as ML or Haskell.

Symmetry of equality can be proven in a similar way. This proof and the
corresponding specification and proof term are left as an exercise to the reader.

A second class of example moves us closer the extraction of functional pro-
grams on natural numbers from constructive proofs. Keeping in mind the con-
structive interpretation of the existential quantifier, how could we specify the
predecessor operation? There are many possible answers to this. Here we would
like express that the predecessor should only be applied to positive natural num-
bers.

∀x∈nat. ¬x =
N

0⊃∃y∈nat. s(y) =
N
x

We can prove this by cases on x. Formally, this takes the form of an induction
in which the induction hypothesis is not used.

Proof: The proof proceeds by cases on x.

Case: x = 0. Then the assumption ¬0 =
N

0 is contradictory.

Case: x = s(x′). Assume ¬s(x′) =
N

0. We have to show that
∃y∈nat. s(y) =N s(x′). This follows with the witness x′ for y
since s(x′) =N s(x′) by reflexivity of equality.

2

Here is the same proof in the linear notation for natural deductions.

Draft of October 16, 2000

4.3 Arithmetic 73

[x : nat;

[~ 0 = 0;

0 = 0;

F;

?y:nat. s(y) = 0];

~ 0 = 0 => ?y:nat. s(y) = 0; % case (x = 0)

[x’ : nat; ~ x’ = 0 => ?y:nat. s(y) = x’;

[~ s(x’) = 0;

!z:nat. z = z; % reflexivity lemma

s(x’) = s(x’);

?y:nat. s(y) = s(x’)]

~ s(x’) = 0 => ?y:nat. s(y) = s(x’)]; % case (x = s(x’))

~ x = 0 => ?y:nat. s(y) = x];

!x:nat. ~ x = 0 => ?y:nat. s(y) = x;

Next we give the equational specification of the function pred ′ corresponding
to this proof. Note that the function takes two arguments: x and a proof u of
¬x =

N
0. It returns a pair consisting of a witness n and proof that s(n) =

N
x.

pred ′ 0 u = abort(u eq0)
pred ′ (s(x′)) u = 〈x′, refl (s(x′))

Note that in the case of x = 0 we do not explicitly construct a pair, but
abort the computation, which may have any type. This specification can be
written as a program rather directly.

pred ′ : ∀x∈nat. ¬x =N 0⊃∃y∈nat. s(y) =N x
pred ′ = λx∈nat. rec x

of f(0)⇒ (λu. abort (u eq0))
| f(s(x′))⇒ (λu. 〈x′, refl(s(x′))〉)

If we erase the parts of this term that are concerned purely with propositions
and leave only data types we obtain

pred ′ = λx∈nat. rec x
of f(0)⇒
| f(s(x′))⇒ x′

which is close to our earlier implementation of the predecessor. Erasing the
abort clause from the impossible case has left a hole, which we denoted by .
We return to a formal specification of this erasure process in the next section.

First, we discuss and alternative way to connect arithmetic to functional
programming. This is to write the program first and prove its properties. Recall
the definition of pred :

pred = λx∈nat. rec x
of f(0)⇒ 0
| f(s(x′))⇒ x′

Draft of October 16, 2000

74 First-Order Logic and Type Theory

Now we can prove that

∀x ∈ nat. ¬x =N 0⊃ s(pred(x)) =N x

Proof: The proof is by cases over x.

Case: x = 0. Then ¬0 =
N

0 is contradictory.

Case: x = s(x′). Then

s(pred(s(x′)))
=⇒ s(rec s(x′)

of f(0)⇒ 0
| f(s(x′))⇒ x′)

=⇒ s(x′)

and s(x′) =N s(x′) by reflexivity.

2

This shows that we must be able to use the rules of computation when
reasoning about functions. This is not a property particular to natural numbers,
but we might have to reason about functions at arbitrary types or proofs of
arbitrary propositions. Reduction therefore has to be an integral part of the
type theory. We will use two rules of the form

Γ `M : A A =⇒ A′ Γ ` A prop
conv

Γ `M : A′

Γ `M : A′ A =⇒ A′ Γ ` A prop
conv ′

Γ `M : A

where A =⇒ A′ allows the reduction of a term occurring in A. A unified
form of this rule where A ⇐⇒ A′ allows an arbitrary number of reduction and
expansion steps in both directions is called type conversion. While reduction
generally preserves well-formedness (see Theorem 3.1), the converse does not.
Generally, this is implied either from the premise or the conclusion, depending
on whether we are reasoning backward or forward. Note that the conversion
rules are “silent” in that the proof term M does not change.

In the formal proof, computations are omitted. They are carried out implic-
itly by the type checker. The question whether the resulting checking problem
is decidable varies, depending on the underlying notion of computation. We
return to this question when discussing the operational semantics in Section ??.

Draft of October 16, 2000

4.3 Arithmetic 75

We close this section with the formal version of the proof above. Note the
use of the conversion rule conv ′.

[x : nat;

[~ 0 = 0; 0 = 0; F;

s(pred(x)) = x];

~ 0 = 0 => s(pred(x)) = x; % case (x = 0)

[x’ : nat, ~ x’ = 0 => s(pred(x’)) = x’;

[~ s(x’) = 0;

!z:nat. z = z; % reflexivity lemma

s(pred(s(x’))) = s(x’)]; % since pred(s(x’)) ==> x’

~ s(x’) = 0 => s(pred(s(x’))) = s(x’)];

% case (x = s(x’))

~ x = 0 => s(pred(x)) = x];

!x:nat. ~ x = 0 => s(pred(x)) = x;

Draft of October 16, 2000

