
15-312 Foundations of Programming Languages

Continuations

Daniel Spoonhower (spoons+@cs)
Edited by Jason Reed (jcreed+@cs)

October 6, 2004

1 Continuations

We began discussion of continuations last week in lecture; we will continue today
with a pair of more detailed examples, both borrowed from Harper’s notes.

1.1 Review

Recall the static semantics of our constructs for manipulating continuations.

Γ, x:τ cont ` e : τ
Γ ` callccx => e : τ

Γ ` e1 : τ1 Γ ` e2 : τ1 cont

Γ ` throw[τ ] e1 to e2 : τ

Remember that callcc binds the current continuation to a variable and then
continues evaluation, while throw evaluations an expression and then continues
at the point of evaluation marked by the second expression.

1.2 Short Circuiting Evaluation

Consider the following function that computes the product of the elements in
an integer list.

fun mul(l : int list) : int =>
case l
of nil => 1
| x::l => x * mul l

Note that if the list contains the element 0, this function might perform a
significant amount of extra work, particularly if the 0 appears near the beginning
of the list. We might consider a short-circuited version of multiplication, one
where we stop inspecting the remainder of the list once we encounter a 0.

1



fun mul(l : int list) : int =>
case l
of nil => 1
| x::l => if x = 0 then 0

else x * mul l fi

If we expect a list of length n to have exactly one 0 (distributed uniformly),
we’ve reduced the (expected) number of recursive calls by n/2. We are still,
however, performing n/2 multiplications (again, expected case), each of whose
result will be 0. We’d like to jump out the entire sequence of recursive calls,
not just the current one.

For reasons that will become clear in a moment, we first transform the
function by η-expansion:

fn l : int list =>
let mul = fun mul(l : int list) : int =>
case l
of nil => 1
| x::l => if x = 0 then 0

else x * mul l fi
in
mul l

end

Now, using the callcc and throw constructs from above, we can write

fn l : int list =>
callcc ret =>
let mul = fun mul(l : int list) : int =>
case l
of nil => 1
| x::l => if x = 0 then throw 0 to ret

else x * mul l fi
in
mul l

end
end

In this example, we are throwing a value backward to a previous point in
evaluation, and moreover, we don’t really use ret for anything particularly
interesting. We could have easily written a similar short-circuiting function
using exceptions. Next, we’ll see an example where that is definitely not the
case.

2



1.3 Composition

Remember that continuations are values: even though we can’t write a value of
type τ cont in the concrete syntax, they may be manipulated just like any other
value.

We’d like to write a function compose that combines a function with a con-
tinuation, resulting in a new continuation. Specifically, a function with the
following type. (Why does this make sense?)

compose : (τ ′ -> τ) -> τ cont -> τ ′ cont

We begin as follows:

fn f : τ ′ -> τ => fn k : τ cont =>

Now what do we do? Let’s inspect the types and see what we can do.

throw[τ ′] (something of type τ) to k (...this will have type τ ′...)
f (applied to something of type τ ′) (...this will have type τ ...)

Finally, we know we want to return a value of type τ ′ cont, and there is only
one way to create such a value:

callcc k’ => (something of type τ ′) end

Let’s start from the end and work backwards. The k’ above holds the value
we’d like to return, but we can’t simply write

callcc k’ => k’ end

(Remember from lecture that such an expression is not well-typed.)
So how else can we save the continuation (and return it later)? Well, the

only other thing we can do with a continuation is to throw it!

callcc k’ => throw[τ ′] k’ to ? end

(Why do we give the throw expression type τ ′?) Of course, we need somewhere
to throw this continuation, so let’s use another callcc.

callcc ret => ... callcc k’ => throw[τ ′] k’ to ret end end

Now that we have captured the continuation we want, let’s go back and consider
what we’d do if someone actually threw to it. First we’d apply f:

callcc ret => ... f (callcc k’ => throw[τ ′] k’ to ret end) end

What remains? We have only to throw some value of type τ to k. The result
of the application of f is just such value.

3



fn f : τ ′ -> τ => fn k : τ cont =>
callcc ret =>
throw[τ ′ cont] (f (callcc k’ => throw[τ ′] k’ to ret end))
to k

end

(Convince yourself that this function typechecks. What’s the type of ret?
(τ ′ cont cont) Finally, does compose ever return? Did we ever expect it to?)

Clearly, we could not accomplish a feat such as compose with exceptions!

1.4 Threads

You saw briefly in lecture how to make a ‘cooperative’ threading library using
callcc. We’ll review it.

The primitives we want are described by the signature

sig
val fork : (unit -> unit) -> unit
val yield : unit -> unit
val exit : unit -> ’a

end

fork takes a function and starts executing it in a new thread, putting the current
thread to sleep. When it wakes up, it will continue executing from where the
fork ended. yield simply puts the current thread to sleep, which will continue
executing from after the yield when it wakes back up again. exit terminates
the current thread.

What callcc is used for is to express the idea of ‘where I should start
executing again once I’m woken up’. throw is used to actually wake up a
thread.

The signature of the queue that holds all our threads looks like this:

sig
type ’a queue

val new : unit -> ’a queue
val enqueue : ’a queue * ’a -> unit
val dequeue : ’a queue -> ’a
val clear : ’a queue -> unit

end

Pretty straightforward.
Now we can start coding up the thread library itself. What a thread is going

to be is a continuation that receives no data in particular, i.e. unit:

structure T :> THREADS =
struct

4



type thread = unit cont
...

Initializing the queue is trivial:

...
val readyQueue : thread Q.queue = Q.new ()

...

Now we’re going to need a pair of functions that accomplishe ‘start running
the next runnable thread.’ and ‘make the following a runnable thread’. The
first means waking it up by throwing it a value of the type of continuation that
it is, which is unit, so we throw it (). The second is simply enqueueing the
given thread, which is a unit continuation: it must have come from a callcc
somewhere.

...
fun dispatch () =

let
val t = Q.dequeue readyQueue

handle Q.Dequeue => raise NoRunnableThreads
in

throw t ()
end

fun enq t = Q.enqueue (readyQueue, t)
...

Now here comes the actual guts of the thread library. Look how simple they
are! Notice how yield is a special case of fork: It’s the forking-off of the empty
job.

...
fun exit () = dispatch ()
fun fork f = callcc (fn parent => (enq parent; f (); exit ()))
fun yield () = callcc (fn parent => (enq parent; dispatch ()))

end

The ‘current thread’ is represented by the actual current execution of the ML
program. All the items in our queue are inactive threads, or, more accurately,
the entry points into the current execution point of all our inactive threads,
represented as a continuation.

So exit works by removing something from the queue transferring control
to it. The current thread, the current computation is abandoned in favor of
the next thread that wants to run. Nothing else is pushed onto the queue, so
the current thread will never see the light of day again. This happens even
if an exit is buried deep inside a thread’s code! (Compare this to raising an
exception or calling exit in C code) A thread also ends if it just happens to ‘fall
off the end’ of its code by returning (), but exit is more powerful.

5



What fork does is enqueues the current position, and starts executing its
argument f. We first do a callcc to capture our current continuation, enqueue
it onto the runnable-thread queue, call f on the unit value, and if f ever finishes
(it may not!) we pick something off the runnable queue to run instead.

What yield does is very similar. It just doesn’t insert any new computation,
but goes directly to the runnable queue to find some new work to do. This just
has the obvious effect of letting other work in other threads get done before
coming back to the current computation.

1.5 Other Stuff if I Have Time

CallCC and classical logic? A favorite topic of mine, may not be one of yours.

6


