
15-312 Foundations of Programming Languages

Lecture 1: Overview

Frank Pfenning

http://www.cs.cmu.edu/˜fp/courses/312/

Carnegie Mellon University

August 31, 2004

15-312 Lecture 1: Overview – p.1

Teaching Staff

• Frank Pfenning <fp@cs.cmu.edu>

• Office Hour: Tue 3:00-4:00, WeH 8117
• Matt Moore <mlmlm@cmu.edu>

• Office Hour: Wed 2:30-3:30, 7th floor whiteboards
• Jason Reed <jcreed+@andrew.cmu.edu>

• Office Hour: WeH 3721, Thu 5-6pm
• Course web page

http://www.cs.cmu.edu/˜fp/courses/312/

• Blackboard area only for grade sheet

15-312 Lecture 1: Overview – p.2

Outline

• The Science of Programming Languages
• Our Approach
• Topic Overview
• Assignments and Exams
• Recitation
• Summary

15-312 Lecture 1: Overview – p.3

Factors in Programmer Productivity

• Programmer productivity
• Initial development time
• Program correctness and robustness
• Software maintainability

• Crucial factors
• Programming language(s)
• Development environment
• Software engineering practices

15-312 Lecture 1: Overview – p.4

Language Is Critical

• How do we implement data structures?
• How do we design and structure the code?
• How do we express assumptions and guarantees?
• How do we read and analyze a program?

15-312 Lecture 1: Overview – p.5

Two Quotes

An ideal language allows us to express easily what is
useful for the programming task and at the same time
makes it difficult to write what leads to incomprehensible
or incorrect programs.

—Nico Habermann

Good languages make it easier to establish, verify, and
maintain the relationship between code and its
properties. —Robert Harper

15-312 Lecture 1: Overview – p.6

Too Many Languages?

• In the last three years I have written code in at
least the following languages:

Standard ML Emacs Lisp Twelf
TeX Csh C
PHP Java MySql

• Different languages for different purposes
• Many are poorly designed

• The authors did not take 15-312!
• Your favorite mis-feature?

15-312 Lecture 1: Overview – p.7

Language Evaluation Criteria

• Some objective criteria
• Is the grammar LALR(1)?
• Is the language type-safe?
• Is the language dynamically or statically typed?
• Is the language Turing-complete?
• Is the language call-by-value or call-by-name?
• Is the language completely specified?
• Does the language require a heap?
• Does the language require dynamic dispatch?

• A subjective statement: “(I ((like Lisp)) (syntax))”
15-312 Lecture 1: Overview – p.8

From the Perl Manual

When presented with something that might have several
different interpretations, Perl uses the DWIM (that’s ”Do
What I Mean”) principle to pick the most probable
interpretation. This strategy is so successful that Perl
programmers often do not suspect the ambivalence of
what they write. But from time to time, Perl’s notions
differ substantially from what the author honestly meant.

15-312 Lecture 1: Overview – p.9

From the TEX manual

Please don’t read this material until you’ve had plenty of
experience with plain TEX. After you have read and
understood the secrets below, you’ll know all sort of
devious combinations of TEX commands, and you will
often be tempted to write inscrutable macros.

—Donald E. Knuth

15-312 Lecture 1: Overview – p.10

Some Obfuscated TEX Code

\let˜\catcode˜‘76˜‘A13˜‘F1˜‘j00˜‘P2jdefA71F˜‘7113jd efPALLF

PA’’FwPA;;FPAZZFLaLPA//71F71iPAHHFLPAzzFenPASSFthP; A$$FevP

A@@FfPARR717273F737271P;ADDFRgniPAWW71FPATTFvePA**FstRsamP

AGGFRruoPAqq71.72.F717271PAYY7172F727171PA??Fi*LmPA &&71jfi

Fjfi71PAVVFjbigskipRPWGAUU71727374 75,76Fjpar7172737 5Djifx

:76jelse&U76jfiPLAKK7172F71l7271PAXX71FVLnOSeL71SLR yadR@oL

RrhC?yLRurtKFeLPFovPgaTLtReRomL;PABB71 72,73:Fjif.73 .jelse

B73:jfiXF71PU71 72,73:PWs;AMM71F71diPAJJFRdriPAQQFRs reLPAI

I71Fo71dPA!!FRgiePBt’el@ lTLqdrYmu.Q.,Ke;vz vzLqpip.Q .,tz;

;Lql.IrsZ.eap,qn.i. i.eLlMaesLdRcna,;!;h htLqm.MRasZ. ilk,%

s$;z zLqs’.ansZ.Ymi,/sx ;LYegseZRyal,@i;@ TLRlogdLrDsW ,@;G

LcYlaDLbJsW,SWXJW ree @rzchLhzsW,;WERcesInW qt.’oL.Rtr ul;e

doTsW,Wk;Rri@stW aHAHHFndZPpqar.tridgeLinZpe.LtYer.W ,:jbye

15-312 Lecture 1: Overview – p.11

Some Obfuscated C Code

• Prior TEX code in obf-tex.tex

• See obf-tex.pdf for result of
pdftex obf-tex.tex

• Also see separate source obf-c.c

• See output obf-c.txt

15-312 Lecture 1: Overview – p.12

Science of Programming Languages

• There is an established science of programming
languages. Among its first papers:

“Some Properties of Conversion”, Alonzo
Church and J.B. Rosser, Transactions of the
American Mathematical Society, Vol. 39(3),
pp. 472–482, May 1936.

15-312 Lecture 1: Overview – p.13

Basic Tools

• Type theory: Techniques for structuring
languages to ensure safety and modularity of
programs

• Operational semantics: Techniques for
describing the execution behavior of programs, at
various level of abstraction

• Mathematical logic: Techniques for specifying
and verifying programs

15-312 Lecture 1: Overview – p.14

Outline

• The Science of Programming Languages
• Our Approach
• Topic Overview
• Assignments and Exams
• Recitation
• Summary

15-312 Lecture 1: Overview – p.15

Approach I: Vivisection

• Take one or several living languages, preferably
widely used

• Analyze it or them in minute detail
• Syntax: Grammar and parsing
• Semantics: Type-checking and operational

semantics
• Pragmatics: Programming methodology and

implementation strategies
• Can be interesting and instructive
• Not our approach

15-312 Lecture 1: Overview – p.16

Approach II: Autopsy

• Take one or several dead languages, preferably
used

• Analyze it or them in minute detail
• Syntax: Grammar and parsing
• Semantics: Type-checking and operational

semantics
• Pragmatics: Programming methodology and

implementation strategies
• Can be interesting and instructive
• Not our approach

15-312 Lecture 1: Overview – p.17

Approach III: Genesis

• Take a problem domain, preferably useful
• Design the ultimate language

• Syntax: Grammar and parsing
• Semantics: Type-checking and operational

semantics
• Pragmatics: Programming methodology and

implementation strategies
• Can be interesting and instructive
• Not our approach

15-312 Lecture 1: Overview – p.18

Approach IV: Taxonomy

• Analyze many languages based on few criteria
• Create taxonomy of (living or dead) languages
• Can be interesting and instructive
• Not our approach

15-312 Lecture 1: Overview – p.19

Approach V: Study Basic Concepts

• Ignore issues of syntax (largely)
• Isolate and investigate basic concepts, such as

• Functions, procedures, and variables
• Classes, objects, and methods
• Effect-free vs. imperative programming
• Static vs. dynamic typing
• Concrete vs. abstract types
• Sequential vs. concurrent vs. parallel prog.

• Emphasize mathematical tools
• This is our approach!

15-312 Lecture 1: Overview – p.20

Our Approach and Goals

• Not bound by flaws or limits in actual languages
• But can draw conclusions about actual languages
• After this course, you should be able to

• confidently critique existing languages
• define and analyze your own language
• prove properties of languages
• avoid common mistakes and pitfalls
• reflect more deeply on programming style
• write better programs(?)
• carry out research on programming languages

15-312 Lecture 1: Overview – p.21

Outline

• The Science of Programming Languages
• Our Approach
• Topic Overview
• Assignments and Exams
• Recitation
• Summary

15-312 Lecture 1: Overview – p.22

Core Topics

• Mathematical foundations
• Judgments and inductive definitions
• Variable renaming and substitution
• Structural induction

• Language description techniques
• Concrete and abstract syntax
• Static semantics via type systems
• Dynamic semantics via abstract machines
• Type safety and its consequences

15-312 Lecture 1: Overview – p.23

Language Features (Tentative)

• Continuations

• Exceptions

• Mutable storage

• Monads

• Parallelism

• Polymorphism

• Data abstraction

• Laziness

• Dynamic typing

• Subtyping

• Inheritance

• Concurrency

• Storage management

• Refinement types

15-312 Lecture 1: Overview – p.24

Course Reading

• Lectures notes will be handed out
• Notes complement, but do not replace lecture!
• Additional material, mostly from

Programming Languages: Theory and Practice.
Robert Harper. Draft from August 2004.

• Supplementary reading
Types and Programming Languages.
Benjamin C. Pierce.
The MIT Press, 2002. ISBN 0-262-16209-1.

• Available in CMU bookstore
15-312 Lecture 1: Overview – p.25

Outline

• The Science of Programming Languages
• Our Approach
• Topic Overview
• Assignments and Exams
• Recitation
• Summary

15-312 Lecture 1: Overview – p.26

Written Assignments

• Alternating written (4) and programming (4)
assignments

• Integral part of this course
• Schedule see web page
• Written assignments:

• Total 200/1000 points (20%)
• 1 week assignments
• Hand in before lecture on due date
• Graded on correctness and thoroughness

15-312 Lecture 1: Overview – p.27

Programming Assignments

• Total 450/1000 points (45%)
• 2 week assignments
• Hand in by midnight on due date
• Graded for correctness and documentation
• Implementation language is Standard ML
• Hand into AFS directory
• Final assignment is 3 weeks

15-312 Lecture 1: Overview – p.28

Assignment Policies

• 3 late days without penalty for each student
• Spread throughout the semester
• Can be used for written or programming

assignments
• No other late hand-ins permitted
• No group projects—all work must be your own!

15-312 Lecture 1: Overview – p.29

Examinations

• Midterm
• Thursday Oct 14, in class
• Closed book, one double-sided sheet of notes
• Total 100/1000 points (10%)

• Final
• Date and time TBA
• Open book
• Total 250/1000 points (25%)

15-312 Lecture 1: Overview – p.30

Outline

• The Science of Programming Languages
• Our Approach
• Topic Overview
• Assignments and Exams
• Recitation
• Summary

15-312 Lecture 1: Overview – p.31

Recitation

• Each Wednesday in two sections
• 9:30/9:30 or 9:30/10:30?
• Practice technique from lectures
• Discuss assignments
• Occasionally covers new material
• See schedule on web page

15-312 Lecture 1: Overview – p.32

Outline

• The Science of Programming Languages
• Our Approach
• Topic Overview
• Assignments and Exams
• Recitation
• Summary

15-312 Lecture 1: Overview – p.33

Summary

• Language is critical for programmer productivity
• The good, the bad, and the ugly
• Rigorous study of programming languages with

mathematical tools
• Type theory
• Operational semantics
• Mathematical logic

• Thorough investigation of basic concepts
• Combine theory (proof) with practice

(implementation)
15-312 Lecture 1: Overview – p.34

	Teaching Staff
	Outline
	Factors in Programmer Productivity
	Language Is Critical
	Two Quotes
	Too Many Languages?
	Language Evaluation Criteria
	From the Perl Manual
	From the TeX manual
	Some Obfuscated TeX Code
	Some Obfuscated C Code
	Science of Programming Languages
	Basic Tools
	Outline
	Approach I: Vivisection
	Approach II: Autopsy
	Approach III: Genesis
	Approach IV: Taxonomy
	Approach V: Study Basic Concepts
	Our Approach and Goals
	Outline
	Core Topics
	Language Features (Tentative)
	Course Reading
	Outline
	Written Assignments
	Programming Assignments
	Assignment Policies
	Examinations
	Outline
	Recitation
	Outline
	Summary

