
Assignment 8:
Storage Management

15-312: Foundations of Programming Languages
Matthew Moore (mlmlm@cmu.edu)

Out: Tuesday, November 16, 2004
Checkpoint: Thursday, December 2nd, 2004 (11:59 pm)

Due: Thursday, December 9th, 2004 (11:59 pm)

150 points + 30 Extra Credit

1 Introduction

In this assignment, you will implement two garbage collectors for an abstract machine. Your
garbage collector will automatically manage the memory used to store pairs, lists, and closures.
In the assignment directory, you’ll find several files with support code; you will only need to fill
in the missing code in eval.sml , mark-gc.sml , semi-gc.sml , qsort.mml , and isort.mml .
You will also write some sample MinML programs and measure the performance of your garbage
collectors on these programs.

Please note that while we allow you to implement each of the collectors as you choose, the
interface for the collector must remain the same. Otherwise, our test programs will not run and
you will lose a significant number of points.

You will rarely, if ever, need to write long or complicated functions to complete this assign-
ment. Therefore, you should strive for elegance. Your solution will be graded primarily on cor-
rectness, but if your code does not correctly handle one or more cases, we will inspect your code
and attempt to give you some credit for the understanding it reflects. It is therefore to your benefit
to write clean, legible code.

We will be considering a similar MinML language to what we used in Assignment 4, which will
include pairs and lists, but some of the details of the implementation have changed significantly.
Before you begin, you may wish to read the provided code (especially the signatures) to gain an
understanding of the setup. All of the necessary SML files are listed in the sources.cm file, and
you can build the project in SML/NJ by typing CM.make() .

2 Checkpoint

For the checkpoint (Thursday, December 2), you must submit a working implementation of the
two garbage collectors. The reason for the checkpoint is that this is a larger assignment than the
previous ones. We also want to give those of you who can’t complete the all tasks involved in
the checkpoint a chance to complete the measurement component of the assignment. We will be
posting a sample implementation to the course website after the checkpoint is due. If you couldn’t

1

get your implementation to work, then you can instrument our sample implementation for your
measurements and analysis.

3 Background

One of the goals of garbage collection is to make memory management opaque to the program-
mer; consequently, we won’t be adding any new typing rules. We will be changing the behavior
of machine, however, and so we will have some new transition rules. We will also add a new com-
ponent to our abstract machine, a heap H . Our evaluation judgments will now look something
like:

H ; k > e

We might read this judgment as “we are currently evaluating expression e with stack k and heap
H .”

Our extended abstract machine semantics will share some features with the structures we used
to reason about references and mutable storage, and in particular, the heap will map locations l
to values. It is important to understand that, unlike our description of references, the heap is not
mutable: there is no way for the program to “update” the value associated with a reference. In
fact, programs will not, in general, even be aware of the heap.

One of our goals in designing the E machine was to build a somewhat more realistic model of
how programs are executed on real hardware. While we carefully described the interactions of the
stack and the environment, we neglected to note that the physical memory used to maintain these
structures can not store data of arbitrary structure or size. For example, the machine registers
mostly likely used to store elements of the current environment are limited to 32 (or 64) bits, far
too small to hold a nested pair structure. So even without adding references to our language, we
have a need to perform memory management.

Like any good hardware (or pseudo-hardware) the E machine has done its job, but now it’s
time to go out and get one of the latest models,

The A machine

The A machine will provide the necessary extensions to support our implementation of an auto-
matic memory manager or garbage collector. In particular, it will distinguish between small values
(those suitable to live in the environment or on the stack) and large values, as shown below.

(small values) v ::= num(i) | true | false | unitel | loc (l) | nil
(large values) w ::= 〈〈η; e〉〉 | Cons(v1, v2) | Pair (v1, v2)

Following our comments above, the A machine will also define a heap, a finite map from loca-
tions to large values (also note that environments now map variables to small values).

(heaps) H ::= · | H, l=w

Given a heap, the problem of garbage collection may then be phrased as, “when is it safe to
remove a mapping from the heap?” Most garbage collectors will answer this question using a
technique known as tracing. These collectors determine what is and is not garbage by following
the reachability graph of the current state of the machine.

2

4 Evaluation

To become familiar with our new abstract machine, you will first complete the implementation of
its transition rules. Most of the rules carry over from the E machine, with the addition of the heap
to each state. Many rules have already been implemented; you will be responsible for the cases
involving pairs, lists, and functions.

As it turns out, it was no accident that we asked you to think about building more efficient
closures in Assignment 4: it will be a key to good performance in the A machine.

Task 1: A machine Evaluation (10 points)
Modify eval.sml to complete the implementation of evaluation for the A machine. In particular,
you should implement those rules that appear below. (The rules for recursive bindings have al-
ready been implemented.) Note that even though we have not begun our implementation of the
garbage collector, you will still use the functions alloc and read , as defined in the GCsignature,
to allocate space for large values and to lookup those values once they have been stored in the
heap. Finally, you should use the provided function closure to ensure that your machine builds
the smallest possible closures. This is important closures with unnecessary pointers into the heap
will prevent many heap cells from being garbage collected, leading to very poor performance.

H ; k . Cons(v1,�) < v2 7→a (H, l = Cons(v1, v2)) ; k < loc (l)

H ; k > nil 7→a H ; k < nil

H ; k . case (�, e1, h.t.e2) < nil 7→a H ; k > e1

H = (H1, l = Cons(v1, v2),H2)
H ; k . case (�, e1, h.t.e2) < loc (l) 7→a H ; k . (h = v1, t = v2) > e2

η′ = η(k)|FV (fn (x.e))
H ; k > fn (x.e) 7→a (H, l = 〈〈η′; fn (x.e)〉〉) ; k < loc (l)

H = (H1, l = 〈〈η′; fn (x.e)〉〉,H2)
H ; k . apply (loc (l),�) < v2 7→a H ; k . (η′, x = v2) > e

H ; k > rec (x.e) 7→a (H, l = 〈〈η(k); rec (x.e)〉〉) ; k . (x ∗= loc (l)) > e

η(k) = (η1, x
∗= loc (l), η2) H = (H1, l = 〈〈η′; e〉〉,H2)
H ; k > x 7→a H ; k . η′ > e

Where the notation: η(k)|FV (e) means the current environment restricted to the free variables
of e. Another new notation worth commenting on is how we only add new bindings to the stack,
ie. in the case rule for Cons, we only add the bindings h, t to the stack. This avoids excessive
copying of the current environment and will improve the performance of your garbage collector
(it will have to trace through much less).

Evaluation is invoked in a manner that differs slightly from previous assignments. You must
now initialize the evaluator with the size of the heap, for example by typing either

Top.file_eval heapSize "test_file.mml";

3

at the SML/NJ prompt. If you don’t specify a sufficiently large heap size, then your implemen-
tation will quit on an OutOfMemory exception. Once you have completed this portion of the
assignment, you can test it using the NoGC, which is a “collector” that allocates memory, but never
frees any. Be sure you provide a sufficiently large heap size when testing your implementation on
the trivial collector.

5 Semi-Space Collection

A semi-space collector (perhaps unsurprisingly) divides memory into two halves, and offers ex-
actly one half to the user’s program to be used as storage.1 If we try to perform an allocation and
our unreserved space is full, we invoke the collector to try and free some space, but otherwise,
we take the next available cell. We have provided you with some suggested starter code for the
Semi-Space heap:

val heap : HeapElement Array.array ref
val upper : int ref
val lower : int ref
val next : int ref

The heap corresponds to physical memory, upper and lower correspond to upper and lower
bounds on available memory, and next stores the index of the next available memory cell. Each
slot of heap has type: HeapElement , which has three branches. Unused corresponds to an empty
cell, Cell corresponds to an occupied cell, and Fwd corresponds to a cell that has been copied to
another index (the new index is what is stored in the Fwd cell). The type location is given as
int ref for the Semi-Space collector because when we collect, the location of a given large value
in memory will change, so when we copy it to its new index in memory, we change the index that
the location stores.

Task 2: Semi-Space Allocation (10 points)
Implement the alloc function, which should call the collector if next is not in the range: [lower,
upper). Otherwise, it should return the next available cell (updating next accordingly). If the
collector doesn’t free any memory, then alloc should raise the exception OutOfMemory . You
should also implement the read function, which should lookup the supplied location in memory
and return the large value stored there.

When we run out of memory to allocate in alloc , we must try and “collect” the cells which
are no longer reachable. In order to determine the reachable locations, the collector must be able
to discover which ‘large’ values are currently available to the program, and then find which other
large values are reachable from those. We can find all of the large values which are available by
traversing the stack and looking inside the frames and environments (a large value will appear in
these places as a small value of the form Loc (l)). However, large values can reference other large
values, so we must traverse the large values associated with every location we find as well.

Task 3: Tracing/Copying Large Values (20 points)
In the file semi-gc.sml , you will find several stubbed out (mutually recursive) functions:
copyStack , copyEnv , copyPtr , copysVal , and copylVal . These functions will work together

1What we have been calling “user program” is often referred to as “the mutator,” and we will sometimes use that
terminology as well (despite the fact that, in our language, no mutation can occur).

4

to traverse the current stack, k, the large value we are trying to allocate space for and copy all the
reachable locations into the reserved space.

Task 4: Collection (10 points)
In Semi-Space collection, what we will do is copy all of the reachable locations in our unreserved
space into our reserved space by tracing through the stack, and the value we are trying to allocate
space for. This is taken care of using: copyStack and copylVal . However, after all of the
reachable locations have been copied into the reserved space, we must switch the roles of our to
spaces. (So now the reserved space becomes the unreserved space, and vice-versa). Implement a
function, which you call when you run out of memory, which calls copyStack and copylVal
on the parameters to alloc and then switched the roles of the two halves of memory.

Congratulations! Once you have completed this last task, you will have a implemented a com-
plete garbage collector. To be sure that you implementation is correct, try running some programs
with a heap size that is smaller than the total number of large values allocated, but as great as the
largest number of reachable values at any time. You can try running test.mml with a heap of
size 33.

6 Mark-And-Sweep Collection

A Mark-And-Sweep collector intermixes currently allocated cells with free cells on the heap. In
order to be able to allocate new cells efficiently, the free cells are maintained as a linked list, that
is, the contents of a free cell actually points to the next free cell, etc.

When a Mark-And-Sweep collector starts collecting, it also traces through the stack finding all
the reachable locations. However, whenever a location is reached, instead of copying its contents,
we mark it as reached (and traverse any children it might have). Once we have marked all the
reachable locations in this manner we “sweep” through the whole heap. If a cell was marked,
then we clear the marker, if it wasn’t marked, then we add it to the free list.

We now need a free list because when we collect we aren’t “compacting” all the reachable
locations at the beginning of our space (as we were before), so our space can become fragmented.

We have provided you with the following starter code for the Mark-And-Sweep heap:

val heap : HeapElement Array.array ref
val next : int ref

Again heap represents our physical memory, but now next represents the index of the first
cell in the free list, not the beginning of free memory. Our HeapElement type has also changed
to allow for our new bookkeeping information. Unmarked represents a cell which has some data
that hasn’t been marked by the collection algorithm. Marked represents a cell which has some
data and has been marked by the collection algorithm. And Free represents a cell which has
not been allocated, and stores the location of the next cell on the free list. For this collector, our
location type is simply int , because we do not move heap cells once allocated.

Task 5: Mark-And-Sweep Allocation (10 points)
Implement the alloc function, which should call the collector if next is outside of the heap.
Otherwise, if should allocate the next available cell (updating next accordingly). If the collector
doesn’t free any memory, then alloc should raise the exception OutOfMemory . You should also
implement the read function, which simply returns the large value associated with the supplied
location in the heap.

5

When we run out of cells in the free list, we must try to “collect” any unreachable memory
locations. We do this by tracing through the stack as before. When we reach a location which is
unmarked we mark the location and traverse the large value stored there.

Task 6: Tracing/Marking Large Values (10 points)
In the file mark-gc.sml , you will find several stubbed out (mutually recursive) functions:
markStack , markEnv , markPtr , marksVal , and marklVal . These functions will work together
to traverse the current stack, k, the large value we are trying to allocate space for and mark all the
reachable locations.

Task 7: Sweep (10 points)
Implement the function sweep , which scans the entire heap doing the following:

• For a Free cell, do nothing.

• For a Marked cell, change it to Unmarked .

• For an Unmarked cell, add it to the free list.

Task 8: Collection (10 points)
In Mark-And-Sweep collection, what we will do is mark all of the reachable locations in our heap
by tracing through the stack, and the value we are trying to allocate space for. This is taken care of
by: markStack and marklVal . However, after all of the reachable locations have been marked,
we must sweep through the heap. This is taken care of by: sweep . Implement a function, which
you call in alloc when you run out of available memory, that calls markStack on the supplied
stack, and marklVal on the value we are trying to allocate space for, and then calls sweep to
cleanup the heap.

7 Analysis

It is important in choosing what kind of garbage collector to use for your interpreter to perform
tests to see how they perform under various circumstances. In order to do this, we will have to
set up our collectors to produce certain usage statistics, and we will have to write test cases with
which to test our collectors.

Task 9: Usage Statistics (5 points)
Set up your collectors to maintain the following statistics:

• Number of allocations performed

• Number of reads performed

• Number of collections performed

• Number of accesses to heap locations during collection. (This means we would increment some
counter for every read and write to memory which occurs during collection)

6

Task 10: Benchmarks (10 points)
Write a function in MinML which implements quicksort on int s in the file: qsort.mml , and
another which implements insertion sort on int s in the file: isort.mml .

Task 11: Analysis (35 points)
Produce a written analysis of how your garbage collector performs for the two different sorting
algorithms with 20 different heap and list sizes. You should include tables or graphs with the per-
formance data produced by your collector. You should also reach a conclusion about the number
of accesses required by the two collection algorithms. To aid in your analysis, we have provided a
function:

Top.file_apply heapSize listSize "test_file.mml";

which applies the function given in the file to a random list of the specified length, using the given
heap size.

8 Extra Credit

A reference counting collector operates by knowing (for each element on the heap) how many
active references there are to it. This is done by incrementing and decrementing the reference
counts associated with a large value, as variable which reference it come in and out of scope.
Naturally when the reference count reaches zero, we may collect that large value.

Task 12: Reference Counting Collector (30 points)
Program and measure a reference counting garbage collector. For this collector (and this collector
only) you will have to change the GC signature so that reference counts can be incremented and
decremented by the evaluator.

9 Test Cases

We have included two files, test.mml and test2.mml that exhibit interesting behavior from a
memory usage standpoint, but the results of their respective executions should be obvious.

You are encouraged to submit other test cases to us. We will test each submission against a
subset of the submitted test cases, in addition to our own. So, even though you will not receive
any points specifically for handing in test cases, it is in your interest to send us tests that your code
handles correctly. See below for submission instructions.

10 Hand-in Instructions

Turn in the files eval.sml , semi-gc.sml , mark-gc.mml , qsort.mml , and isort.mml along
with any other test files by copying them to your handin directory

/afs/andrew/scs/cs/15-312/students/ Andrew user ID/P4/

by 11:59 pm on the due date. Immediately after the deadline, we will run a script to sweep through
all the handin directories and copy your files elsewhere. We will also sweep 24, 48, and 72 hours
after the deadline, for anyone using late days on this assignment.

7

Turn in non-programming questions as a text, postscript or pdf file in the handin directory
called measurement.txt (or .ps or .pdf).

For more information on handing in code, refer to

http://www.cs.cmu.edu/˜fp/courses/312/assignments.html

8

