
Assignment 6 Extra Credit:
Subtyping Intersection Types

15-312: Foundations of Programming Languages
Matthew Moore (mlmlm@cmu.edu)

Due: Thursday, November 4, 2004 (11:59 pm)

30 points total

1 Introduction

In class, you were briefly introduced to a new concept in type-theory, intersection types. One of the
obvious benefits of intersection types is the ability to give a formal type to overloaded operators
and overloaded user-defined functions. You may recall from class the notation: e : τ ∧ σ meaning
that we can give e both type τ and type σ.

2 Typing Rules

Consider the following rules for extending our bi-directional typechecker to include intersection
types:

Γ ` v ↓ τ Γ ` v ↓ σ v value

Γ ` v ↓ τ ∧ σ
∧I

Γ ` e ↑ τ ∧ σ

Γ ` e ↑ τ
∧E1

Γ ` e ↑ τ ∧ σ

Γ ` e ↑ σ
∧E2

Under the coercion interpretation, an expression e of type τ1 ∧ τ2 would be compiled to a pair
of expressions 〈e1, e2〉, where e1 has type τ1 and e2 has type τ2. In order to avoid evaluating e twice
(once as e1 and once as e2) we impose a value restriction on this rule.

If we have an overloaded symbol + it is compiled into a pair of two functions: one operating
only on integers and one operating only on floating point numbers, and similarly for ∗ and other
arithmetic operators and constants. For example,

+ : (int ∗ int → int ) ∧ (float ∗ float → float ) elaborates to 〈+int,+float〉

User-defined functions can be similiary overloaded, for example,

λx. x + 4 ↓ (int→ int) ∧ (float→ float)

Task: Subtyping (15 points)
Give subtyping rules (with coercions) for intersection types. This involves: determining where

1



the subtyping relation is appropriate, annotating the relation with a coercion which witnesses the
subtype. You should use the notation given here (which gives the coercion for product types):

f : τ1 v σ1 g : τ2 v σ2

(λx.〈f(fst(x)), g(snd(x))〉) : τ1 ∗ τ2 v σ1 ∗ σ2

Task: Type Checking Algorithm (5 points)

Briefly explain how the new rules force our typechecking algorithm to allow for backtracking
now. In other words, previously, when searching for a typing derivation, we always knew which
rule to apply next, how do the new rules change this?

Task: Implementation (10 points)

Extend your implementation to allow for intersection types (and thereby overloading). If so,
you have implemented a much more complicated type system than any currently existing lan-
guage on the market, including universal, existential, recursive, and intersection types. Congrat-
ulations!

3 Hand-in Instructions

For the implementation portion of the extra credit, turn in separate extra credit files, put them in
a subfolder named EC. You will have to modify other parts of the interpreter than the typechecker
for this portion of the assignment, so turn in all of the assignment files. We should be able to
simply type CM.make() into sml and have it load your solution properly.

Turn in written extra credit solutions as text, postscript or pdf files in the handin directory. Or,
if you wish, you may turn in answers on paper, due in the instructor’s office by 11:59 pm on the
due date. If you are using late days, paper handin is by arrangement only (send mail and we’ll
figure something out).

2


