
236

WORKING DRAFT OCTOBER 22, 2002

Part XI

Subtyping and Inheritance

WORKING DRAFT OCTOBER 22, 2002

Chapter 26

Subtyping

A subtype relation is a pre-order1 on types that validates the subsumption
principle: if σ is a subtype of τ , then a value of type σ may be provided
whenever a value of type τ is required. This means that a value of the
subtype should “act like” a value of the supertype when used in supertype
contexts.

26.1 MinML With Subtyping

We will consider two extensions of MinML with subtyping. The first, MinML
with implicit subtyping, is obtained by adding the following rule of implicit
subsumption to the typing rules of MinML:

Γ ` e : σ σ <: τ
Γ ` e : τ

With implicit subtyping the typing relation is no longer syntax-directed,
since the subsumption rule may be applied to any expression e, without
regard to its form.

The second, called MinML with explicit subtyping, is obtained by adding
to the syntax by adding an explicit cast expression, (τ) e, with the following
typing rule:

Γ ` e : σ σ <: τ
Γ ` (τ) e : τ

The typing rules remain syntax-directed, but all uses of subtyping must be
explicitly indicated.

1A pre-order is a reflexive and transitive binary relation.

WORKING DRAFT OCTOBER 22, 2002

240 Subtyping

We will refer to either variation as MinML<: when the distinction does
not matter. When it does, the implicit version is designated MinMLi

<: , the
implicit MinMLe

<: .

To obtain a complete instance of MinML<: we must specify the subtype
relation. This is achieved by giving a set of subtyping axioms, which deter-
mine the primitive subtype relationships, and a set of variance rules, which
determine how type constructors interact with subtyping. To ensure that
the subtype relation is a pre-order, we tacitly include the following rules of
reflexivity and transitivity:

τ <: τ
ρ <: σ σ <: τ

ρ <: τ

Note that pure MinML is obtained as an instance of MinMLi
<: by giving no

subtyping rules beyond these two, so that σ <: τ iff σ = τ .

The dynamic semantics of an instance of MinML<: must be careful to
take account of subtyping. In the case of implicit subsumption the dynamic
semantics must be defined so that the primitive operations of a supertype
apply equally well to a value of any subtype. In the case of explicit sub-
sumption we need only ensure that there be a means of casting a value of
the subtype into a corresponding value of the supertype.

The type safety of MinML<: , in either formulation, is assured, provided
that the following subtyping safety conditions are met:

• For MinMLe
<: , if σ <: τ , then casting a value of the subtype σ to the

supertype τ must yield a value of type τ .

• For MinMLi
<: , the dynamic semantics must ensure that the value of

each primitive operation is defined for closed values of any subtype of
the expected type of its arguments.

Under these conditions we may prove the Progress and Preservation
Theorems for either variant of MinML<: .

Theorem 83 (Preservation)
For either variant of MinML<: , under the assumption that the subtyping
safety conditions hold, if e : τ and e 7→ e′, then e′ : τ .

Proof: By induction on the dynamic semantics, appealing to the casting
condition in the case of the explicit subsumption rule of MinMLe

<: . �

WORKING DRAFT OCTOBER 22, 2002

26.2 Varieties of Subtyping 241

Theorem 84 (Progress)
For either variant of MinML<: , under the assumption that the subtyping
safety conditions hold, if e : τ , then either e is a value or there exists e′ such
that e 7→ e′.

Proof: By induction on typing, appealing to the subtyping condition on
primitive operations in the case of primitive instruction steps. �

26.2 Varieties of Subtyping

In this section we will explore several different forms of subtyping in the
context of extensions of MinML. To simplify the presentation of the exam-
ples, we tacitly assume that the dynamic semantics of casts is defined so
that (τ) v 7→ v, unless otherwise specified.

26.2.1 Arithmetic Subtyping

In informal mathematics we tacitly treat integers as real numbers, even
though Z 6⊆ R. This is justified by the observation that there is an injec-
tion ι : Z ↪→ R that assigns a canonical representation of an integer as a
real number. This injection preserves the ordering, and commutes with the
arithmetic operations in the sense that ι(m + n) = ι(m) + ι(n), where m
and n are integers, and the relevant addition operation is determined by
the types of its arguments.

In most cases the real numbers are (crudely) approximated by floating
point numbers. Let us therefore consider an extension of MinML with an
additional base type, float , of floating point numbers. It is not necessary
to be very specific about this extension, except to say that we enrich the
language with floating point constants and arithmetic operations. We will
designate the floating point operations using a decimal point, writing +.
for floating point addition, and so forth.2

By analogy with mathematical practice, we will consider taking the
type int to be a subtype of float . The analogy is inexact, because of
the limitations of computer arithmetic, but it is, nevertheless, informative
to consider it.

To ensure the safety of explicit subsumption we must define how to cast
an integer to a floating point number, written (float) n. We simply postu-

2This convention is borrowed from O’Caml.

WORKING DRAFT OCTOBER 22, 2002

242 Subtyping

late that this is possible, writing n.0 for the floating point representation of
the integer n, and noting that n.0 has type float .3

To ensure the safety of implicit subsumption we must ensure that the
floating point arithmetic operations are well-defined for integer arguments.
For example, we must ensure that an expression such as +. (3, 4) has a well-
defined value as a floating point number. To achieve this, we simply require
that floating point operations implicitly convert any integer arguments to
floating point before performing the operation. In the foregoing example
evaluation proceeds as follows:

+. (3, 4) 7→ +. (3.0, 4.0) 7→ 7.0.

This strategy requires that the floating point operations detect the presence
of integer arguments, and that it convert any such arguments to floating
point before carrying out the operation. We will have more to say about
this inefficiency in Section 26.4 below.

26.2.2 Function Subtyping

Suppose that int <: float . What subtyping relationships, if any, should
hold among the following four types?

1. int →int

2. int →float

3. float →int

4. float →float

To determine the answer, keep in mind the subsumption principle, which
says that a value of the subtype should be usable in a supertype context.

Suppose f : int →int . If we apply f to x : int , the result has type
int , and hence, by the arithmetic subtyping axiom, has type float . This
suggests that

int →int <: int →float

is a valid subtype relationship. By similar reasoning, we may derive that

float →int <: float →float

3We may handle the limitations of precision by allowing for a cast operation to fail in
the case of overflow. We will ignore overflow here, for the sake of simplicity.

WORKING DRAFT OCTOBER 22, 2002

26.2 Varieties of Subtyping 243

is also valid.
Now suppose that f : float →int . If x : int , then x : float by

subsumption, and hence we may apply f to x to obtain a result of type
int . This suggests that

float →int <: int →int

is a valid subtype relationship. Since int →int <: int →float , it follows
that

float →int <: int →float

is also valid.
Subtyping rules that specify how a type constructor interacts with sub-

typing are called variance principles. If a type constructor preserves subtyp-
ing in a given argument position, it is said to be covariant in that position. If,
instead, it inverts subtyping in a given position it is said to be contravariant
in that position. The discussion above suggests that the function space con-
structor is covariant in the range position and contravariant in the domain
position. This is expressed by the following rule:

τ1 <: σ1 σ2 <: τ2
σ1→σ2 <: τ1→τ2

Note well the inversion of subtyping in the domain, where the function
constructor is contravariant, and the preservation of subtyping in the range,
where the function constructor is covariant.

To ensure safety in the explicit case, we define the dynamic semantics
of a cast operation by the following rule:

(τ1→τ2) v 7→ fn x: τ1 in (τ2) v((σ1) x) end

Here v has type σ1→σ2, τ1 <: σ1, and σ2 <: τ2. The argument is cast to
the domain type of the function prior to the call, and its result is cast to the
intended type of the application.

To ensure safety in the implicit case, we must ensure that the primi-
tive operation of function application behaves correctly on a function of a
subtype of the “expected” type. This amounts to ensuring that a function
can be called with an argument of, and yields a result of, a subtype of the
intended type. One way is to adopt a semantics of procedure call that is
independent of the types of the arguments and results. Another is to intro-
duce explicit run-time checks similar to those suggested for floating point
arithmetic to ensure that calling conventions for different types can be met.

WORKING DRAFT OCTOBER 22, 2002

244 Subtyping

26.2.3 Product and Record Subtyping

In Chapter 19 we considered an extension of MinML with product types.
In this section we’ll consider equipping this extension with subtyping. We
will work with n-ary products of the form τ1* · · · * τn and with n-ary records
of the form {l1: τ1, . . . , ln: τn}. The tuple types have as elements n-tuples
of the form <e1, . . . , en> whose ith component is accessed by projection,
e. i. Similarly, record types have as elements records of the form {l1: e1, . . . , ln: en}
whose lth component is accessed by field selection, e. l.

Using the subsumption principle as a guide, it is natural to consider a
tuple type to be a subtype of any of its prefixes:

m > n
τ1* · · · * τm <: τ1* · · · * τn

Given a value of type τ1* · · · * τn, we can access its ith component, for any
1 ≤ i ≤ n. If m > n, then we can equally well access the ith component
of an m-tuple of type τ1* · · · * τm, obtaining the same result. This is called
width subtyping for tuples.

For records it is natural to consider a record type to be a subtype of
any record type with any subset of the fields of the subtype. This may be
written as follows:

m > n
{l1: τ1, . . . , lm: τm} <: {l1: τ1, . . . , ln: τn}

Bear in mind that the ordering of fields in a record type is immaterial, so
this rule allows us to neglect any subset of the fields when passing to a
supertype. This is called width subtyping for records. The justification for
width subtyping is that record components are accessed by label, rather
than position, and hence the projection from a supertype value will apply
equally well to the subtype.

What variance principles apply to tuples and records? Applying the
principle of subsumption, it is easy to see that tuples and records may be
regarded as covariant in all their components. That is,

∀1 ≤ i ≤ n σi <: τi

σ1* · · · * σn <: τ1* · · · * τn

and
∀1 ≤ i ≤ n σi <: τi

{l1: σ1, . . . , ln: σn} <: {l1: τ1, . . . , ln: τn}.

These are called depth subtyping rules for tuples and records, respectively.

WORKING DRAFT OCTOBER 22, 2002

26.2 Varieties of Subtyping 245

To ensure safety for explicit subsumption we must define the meaning
of casting from a sub- to a super-type. The two forms of casting corre-
sponding to width and depth subtyping may be consolidated into one, as
follows:

m ≥ n

(τ1* · · · * τn) <v1, . . . , vm> 7→ <(τ1) v1, . . . , (τn) vn>.

An analogous rule defines the semantics of casting for record types.
To ensure safety for implicit subsumption we must ensure that projec-

tion is well-defined on a subtype value. In the case of tuples this means
that the operation of accessing the ith component from a tuple must be in-
sensitive to the size of the tuple, beyond the basic requirement that it have
size at least i. This can be expressed schematically as follows:

<v1, . . . , vi, . . .>. i 7→ vi.

The ellision indicates that fields beyond the ith are not relevant to the op-
eration. Similarly, for records we postulate that selection of the lth field is
insensitive to the presence of any other fields:

{l: v, . . .}. l 7→ v.

The ellision expresses the independence of field selection from any “extra”
fields.

26.2.4 Reference Subtyping

Finally, let us consider the reference types of Chapter 14. What should be
the variance rule for reference types? Suppose that r has type σ ref . We
can do one of two things with r:

1. Retrieve its contents as a value of type σ.

2. Replace its contents with a value of type σ.

If σ <: τ , then retrieving the contents of r yields a value of type τ , by
subsumption. This suggests that references are covariant:

σ <: τ

σ ref
?

<: τ ref .

WORKING DRAFT OCTOBER 22, 2002

246 Subtyping

On the other hand, if τ <: σ, then we may store a value of type τ into r.
This suggests that references are contravariant:

τ <: σ

σ ref
?

<: τ ref .

Given that we may perform either operation on a reference cell, we
must insist that reference types are invariant:

σ <: τ τ <: σ
σ ref <: τ ref .

The premise of the rule is often strengthened to the requirement that σ and
τ be equal:

σ = τ
σ ref <: τ ref

since there are seldom situations where distinct types are mutual subtypes.
A similar analysis may be applied to any mutable data structure. For

example, immutable sequences may be safely taken to be covariant, but mu-
table sequences (arrays) must be taken to be invariant, lest safety be com-
promised.

26.3 Type Checking With Subtyping

Type checking for MinML<: , in either variant, clearly requires an algorithm
for deciding subtyping: given σ and τ , determine whether or not σ <:
τ . The difficulty of deciding type checking is dependent on the specific
rules under consideration. In this section we will discuss type checking for
MinML<: , under the assumption that we can check the subtype relation.

Consider first the explicit variant of MinML<: . Since the typing rules
are syntax directed, we can proceed as for MinML, with one additional case
to consider. To check whether (σ) e has type τ , we must check two things:

1. Whether e has type σ.

2. Whether σ <: τ .

The former is handled by a recursive call to the type checker, the latter by
a call to the subtype checker, which we assume given.

This discussion glosses over an important point. Even in pure MinML it
is not possible to determine directly whether or not Γ ` e : τ . For suppose
that e is an application e1(e2) . To check whether Γ ` e : τ , we must find

WORKING DRAFT OCTOBER 22, 2002

26.3 Type Checking With Subtyping 247

the domain type of the function, e1, against which we must check the type
of the argument, e2. To do this we define a type synthesis function that
determines the unique (if it exists) type τ of an expression e in a context
Γ, written Γ ` e ⇒ τ . To check whether e has type τ , we synthesize the
unique type for e and check that it is τ .

This methodology applies directly to MinMLe
<: by using the following

rule to synthesize a type for a cast:

Γ ` e ⇒ σ σ <: τ
Γ ` (τ) e ⇒ τ

Extending this method to MinMLi
<: is a bit harder, because expressions

no longer have unique types! The rule of subsumption allows us to weaken
the type of an expression at will, yielding many different types for the same
expression. A standard approach is define a type synthesis function that
determines the principal type, rather than the unique type, of an expression
in a given context. The principal type of an expression e in context Γ is the
least type (in the subtyping pre-order) for e in Γ. Not every subtype system
admits principal types. But we usually strive to ensure that this is the case
whenever possible in order to employ this simple type checking method.

The rules synthesizing principal types for expressions of MinMLi
<: are

as follows:
(Γ(x) = τ)
Γ ` x ⇒ τ Γ ` n ⇒ int

Γ ` true ⇒ bool Γ ` false ⇒ bool
Γ ` e1 ⇒ σ1 σ1 <: τ1 · · · Γ ` en ⇒ σn σn <: τn

Γ ` o(e1, . . . , en) ⇒ τ

where o is an n-ary primitive operation with arguments of type τ1,. . . , τn,
and result type τ . We use subsumption to ensure that the argument types
are subtypes of the required types.

Γ ` e ⇒ σ σ <: bool Γ ` e1 ⇒ τ1 τ1 <: τ Γ ` e2 ⇒ τ2 τ2 <: τ
Γ ` if e then e1 else e2 fi ⇒ τ

We use subsumption to ensure that the type of the test is a subtype of bool .
Moreover, we rely on explicit specification of the type of the two clauses of
the conditional.4

Γ[f :τ1→τ2][x:τ1] ` e ⇒ τ2

Γ ` fun f (x: τ1) : τ2 is e end ⇒ τ1→τ2

4This may be avoided by requiring that the subtype relation have least upper bounds
“whenever necessary”; we will not pursue this topic here.

WORKING DRAFT OCTOBER 22, 2002

248 Subtyping

Γ ` e1 ⇒ τ2→τ Γ ` e2 ⇒ σ2 σ2 <: τ2

Γ ` e1(e2) ⇒ τ

We use subsumption to check that the argument type is a subtype of the
domain type of the function.

Theorem 85
1. If Γ ` e ⇒ σ, then Γ ` e : σ.

2. If Γ ` e : τ , then there exists σ such that Γ ` e ⇒ σ and σ <: τ .

Proof:

1. By a straightforward induction on the definition of the type synthesis
relation.

2. By induction on the typing relation.

�

26.4 Implementation of Subtyping

26.4.1 Coercions

The dynamic semantics of subtyping sketched above suffices to ensure type
safety, but is in most cases rather impractical. Specifically,

• Arithmetic subtyping relies on run-time type recognition and conver-
sion.

• Tuple projection depends on the insensitivity of projection to the ex-
istence of components after the point of projection.

• Record field selection depends on being able to identify the lth field
in a record with numerous fields.

• Function subtyping may require run-time checks and conversions to
match up calling conventions.

These costs are significant. Fortunately they can be avoided by taking a
slightly different approach to the implementation of subtyping. Consider,
for example, arithmetic subtyping. In order for a mixed-mode expression
such as +. (3, 4) to be well-formed, we must use subsumption to weaken

WORKING DRAFT OCTOBER 22, 2002

26.4 Implementation of Subtyping 249

the types of 3 and 4 from int to float . This means that type conversions
are required exactly insofar as subsumption is used during type checking
— a use of subsumption corresponds to a type conversion.

Since the subsumption rule is part of the static semantics, we can in-
sert the appropriate conversions during type checking, and omit entirely
the need to check for mixed-mode expressions during execution. This is
called a coercion interpretation of subsumption. It is expressed formally by
augmenting each subtype relation σ <: τ with a function value v of type
σ→τ (in pure MinML) that coerces values of type σ to values of type τ . The
augmented subtype relation is written σ <: τ v.

Here are the rules for arithmetic subtyping augmented with coercions:

τ <: τ id τ

ρ <: σ v σ <: τ v′

ρ <: τ v; v′

int <: float to float
τ1 <: σ1 v1 σ2 <: τ2 v2
σ1→σ2 <: τ1→τ2 v1→v2

These rules make use of the following auxiliary functions:

1. Primitive conversion: to float .

2. Identity: id τ = fn x: τ in x end .

3. Composition: v; v′ = fn x: τ in v′(v(x)) end .

4. Functions: v1→v2 =
fn f : σ1→σ2 in fn x: τ1 in v2(f (v1(x))) end end .

The coercion interpretation is type correct. Moreover, there is at most
one coercion between any two types:

Theorem 86
1. If σ <: τ v, then `− v : σ→τ .

2. If σ <: τ v1 and σ <: τ v2, then `− v1
∼= v2 : σ→τ .

Proof:

1. By a simple induction on the rules defining the augmented subtyping
relation.

2. Follows from these equations:

(a) Composition is associative with id as left- and right-unit ele-
ment.

WORKING DRAFT OCTOBER 22, 2002

250 Subtyping

(b) id →id ∼= id .

(c) (v1→v2); (v′1→v′2) ∼= (v′1; v1)→(v2; v′2).

�

The type checking relation is augmented with a translation from MinMLi
<:

to pure MinML that eliminates uses of subsumption by introducing coer-
cions:

Γ ` e : σ e′ σ <: τ v
Γ ` e : τ v(e′)

The remaining rules simply commute with the translation. For example,
the rule for function application becomes

Γ ` e1 : τ2→τ e′1 Γ ` e2 : τ2 e′2
Γ ` e1(e2) : τ e′1(e′2)

Theorem 87
1. If Γ ` e : τ e′, then Γ ` e′ : τ in pure MinML.

2. If Γ ` e : τ e1 and Γ ` e : τ e2, then Γ ` e1
∼= e2 : τ in pure

MinML.

3. If e : int e′ is a complete program, then e ⇓ n iff e′ ⇓ n.

The coercion interpretation also applies to record subtyping. Here the
problem is how to implement field selection efficiently in the presence of
subsumption. Observe that in the absence of subtyping the type of a record
value reveals the exact set of fields of a record (and their types). We can
therefore implement selection efficiently by ordering the fields in some
canonical manner (say, alphabetically), and compiling field selection as a
projection from an offset determined statically by the field’s label.

In the presence of record subtyping this simple technique breaks down,
because the type no longer reveals the fields of a record, not their types. For
example, every expression of record type has the record type {} with no
fields whatsoever! This makes it difficult to predict statically the position
of the field labelled l in a record. However, we may restore this important
property by using coercions. Whenever the type of a record is weakened
using subsumption, insert a function that creates a new record that exactly
matches the supertype. Then use the efficient record field selection method
just described.

WORKING DRAFT OCTOBER 22, 2002

26.4 Implementation of Subtyping 251

Here, then, are the augmented rules for width and depth subtyping for
records:

m > n
{l1: τ1, . . . , lm: τm} <: {l1: τ1, . . . , ln: τn} drop m,n,l,τ

σ1 <: τ1 v1 . . . σn <: τn vn

{l1: σ1, . . . , ln: σn} <: {l1: τ1, . . . , ln: τn} copy n,l,σ,v

These rules make use of the following coercion functions:

drop m,n,l,σ =
fn x: {l1: σ1, . . . , lm: σm} in {l1: x. l1, . . . , ln: x. ln}end

copy n,l,σ,v =
fn x: {l1: σ1, . . . , ln: σn} in {l1: v1(x. l1) , . . . , ln: vn(x. ln) }end

In essence this approach represents a trade-off between the cost of sub-
sumption and the cost of field selection. By creating a new record whenever
subsumption is used, we make field selection cheap. On the other hand, we
can make subsumption free, provided that we are willing to pay the cost of
a search whenever a field is selected from a record.

But what if record fields are mutable? This approach to coercion is out
of the question, because of aliasing. Suppose that a mutable record value
v is bound to two variables, x and y. If coercion is applied to the binding
of x, creating a new record, then future changes to y will not affect the
new record, nor vice versa. In other words, uses of coercion changes the
semantics of a program, which is unreasonable.

One widely-used approach is to increase slightly the cost of field se-
lection (by a constant factor) by separating the “view” of a record from its
“contents”. The view determines the fields and their types that are present
for each use of a record, whereas the contents is shared among all uses.
In essence we represent the record type {l1: τ1, . . . , ln: τn} by the product
type

{l1: int , . . . , ln: int }* (τ array).

The field selection l. e becomes a two-stage process:

snd (e) [fst (e) . l]

Finally, coercions copy the view, without modifying the contents. If σ =
{l1: σ1, . . . , ln: σn} and τ = {l1: int , . . . , ln: int }, then

drop m,n,l,σ = fn x in (drop m,n,l,τ (fst (x)) , snd (x)) end .

WORKING DRAFT OCTOBER 22, 2002

252 Subtyping

WORKING DRAFT OCTOBER 22, 2002

Chapter 27

Inheritance and Subtyping in
Java

In this note we discuss the closely-related, but conceptually distinct, no-
tions of inheritance, or subclassing, and subtyping as exemplified in the Java
language. Inheritance is a mechanism for supporting code re-use through
incremental extension and modification. Subtyping is a mechanism for ex-
pressing behavioral relationships between types that allow values of a sub-
type to be provided whenever a value of a supertype is required.

In Java inheritance relationships give rise to subtype relationships, but
not every subtype relationship arises via inheritance. Moreover, there are
languages (including some extensions of Java) for which subclasses do not
give rise to subtypes, and there are languages with no classes at all, but
with a rich notion of subtyping. For these reasons it is best to keep a clear
distinction between subclassing and subtyping.

27.1 Inheritance Mechanisms in Java

27.1.1 Classes and Instances

The fundamental unit of inheritance in Java is the class. A class consists
of a collection of fields and a collection of methods. Fields are assignable
variables; methods are procedures acting on these variables. Fields and
methods can be either static (per-class) or dynamic (per-instance).1 Static
fields are per-class data. Static methods are just ordinary functions acting
on static fields.

1Fields and methods are assumed dynamic unless explicitly declared to be static.

WORKING DRAFT OCTOBER 22, 2002

254 Inheritance and Subtyping in Java

Classes give rise to instances, or objects, that consist of the dynamic meth-
ods of the class together with fresh copies (or instances) of its dynamic
fields. Instances of classes are created by a constructor, whose role is to allo-
cate and initialize fresh copies of the dynamic fields (which are also known
as instance variables). Constructors have the same name as their class, and
are invoked by writing new C(e1, . . . , en) , where C is a class and e1, . . . , en

are arguments to the constructor.2 Static methods have access only to the
static fields (and methods) of its class; dynamic methods have access to
both the static and dynamic fields and methods of the class.

The components of a class have a designated visibility attribute, either
public , private , or protected . The public components are those that
are accessible by all clients of the class. Public static components are acces-
sible to any client with access to the class. Public dynamic components are
visible to any client of any instance of the class. Protected components are
“semi-private; we’ll have more to say about protected components later.

The components of a class also have a finality attribute. Final fields are
not assignable — they are read-only attributes of the class or instance. Ac-
tually, final dynamic fields can be assigned exactly once, by a constructor
of the class, to initialize their values. Final methods are of interest in con-
nection with inheritance, to which we’ll return below.

The components of a class have types. The type of a field is the type of its
binding as a (possibly assignable) variable. The type of a method specifies
the types of its arguments (if any) and the type of its results. The type of a
constructor specifies the types of its arguments (if any); its “result type” is
the instance type of the class itself, and may not be specified explicitly. (We
will say more about the type structure of Java below.)

The public static fields and methods of a class C are accessed using “dot
notation”. If f is a static field of C, a client may refer to it by writing C. f .
Similarly, if m is a static method of C, a client may invoke it by writing
C. m(e1,..., en) , where e1, . . . , en are the argument expressions of the
method. The expected type checking rules govern access to fields and in-
vocations of methods.

The public dynamic fields and methods of an instance c of a class C
are similarly accessed using “dot notation”, albeit from the instance, rather
than the class. That is, if f is a public dynamic field of C, then c. f refers
to the f field of the instance c. Since distinct instances have distinct fields,
there is no essential connection between c. f and c′. f when c and c′ are

2Classes can have multiple constructors that are distinguished by overloading. We will
not discuss overloading here.

WORKING DRAFT OCTOBER 22, 2002

27.1 Inheritance Mechanisms in Java 255

distinct instances of class C. If m is a public dynamic method of C, then
c. m(e1, . . . , en) invokes the method m of the instance c with the specified
arguments. This is sometimes called sending a message m to instance c with
arguments e1, . . . , en.

Within a dynamic method one may refer to the dynamic fields and
methods of the class via the pseudo-variable this , which is bound to the
instance itself. The methods of an instance may call one another (or them-
selves) by sending a message to this . Although Java defines conventions
whereby explicit reference to this may be omitted, it is useful to eschew
these conveniences and always use this to refer to the components of an
instance from within code for that instance. We may think of this as an
implicit argument to all methods that allows the method to access to object
itself.

27.1.2 Subclasses

A class may be defined by inheriting the visible fields and methods of an-
other class. The new class is said to be a subclass of the old class, the su-
perclass. Consequently, inheritance is sometimes known as subclassing. Java
supports single inheritance — every class has at most one superclass. That
is, one can only inherit from a single class; one cannot combine two classes
by inheritance to form a third. In Java the subclass is said to extend the
superclass.

There are two forms of inheritance available in Java:

1. Enrichment. The subclass enriches the superclass by providing addi-
tional fields and methods not present in the superclass.

2. Overriding. The subclass may re-define a method in the superclass by
giving it a new implementation in the subclass.

Enrichment is a relatively innocuous aspect of inheritance. The true power
of inheritance lies in the ability to override methods.

Overriding, which is also known as method specialization, is used to “spe-
cialize” the implementation of a superclass method to suit the needs of the
subclass. This is particularly important when the other methods of the class
invoke the overridden method by sending a message to this . If a method
m is overridden in a subclass D of a class C, then all methods of D that
invoke m via this will refer to the “new” version of m defined by the
override. The “old” version can still be accessed explicitly from the sub-
class by referring to super. m. The keyword super is a pseudo-variable
that may be used to refer to the overridden methods.

WORKING DRAFT OCTOBER 22, 2002

256 Inheritance and Subtyping in Java

Inheritance can be controlled using visibility constraints. A sub-class
D of a class C automatically inherits the private fields and methods of C
without the possibility of overriding, or otherwise accessing, them. The
public fields and methods of the superclass are accessible to the subclass
without restriction, and retain their public attribute in the subclass, unless
overridden. A protected component is “semi-private” — accessible to
the subclass, but not otherwise publically visible.3

Inheritance can also be limited using finality constraints. If a method
is declared final , it may not be overridden in any subclass — it must be
inherited as-is, without further modification. However, if a final method in-
vokes, via this , a non-final method, then the behavior of the final method
can still be changed by the sub-class by overriding the non-final method.
By declaring an entire class to be final, no class can inherit from it. This
serves to ensure that any instance of this class invokes the code from this
class, and not from any subclass of it.

Instantiation of a subclass of a class proceeds in three phases:

1. The instance variables of the subclass, which include those of the su-
perclass, are allocated.

2. The constructor of the superclass is invoked to initialize the super-
class’s instance variables.

3. The constructor of the subclass is invoked to initialize the subclass’s
instance variables.

The superclass constructor can be explicitly invoked by a subclass construc-
tor by writing super(e1, . . . , en) , but only as the very first statement of the
subclass’s constructor. This ensures proper initialization order, and avoids
certain anomalies and insecurities that arise if this restriction is relaxed.

27.1.3 Abstract Classes and Interfaces

An abstract class is a class in which one or more methods are declared,
but left unimplemented. Abstract methods may be invoked by the other
methods of an abstract class by sending a message to this , but since their
implementation is not provided, abstract classes do not themselves have
instances. Instead the obligation is imposed on a subclass of the abstract

3Actually, Java assigns protected components “package scope”, but since we are not
discussing packages here, we will ignore this issue.

WORKING DRAFT OCTOBER 22, 2002

27.1 Inheritance Mechanisms in Java 257

class to provide implementations of the abstract methods to obtain a con-
crete class, which does have instances. Abstract classes are useful for setting
up “code templates” that are instantiated by inheritance. The abstract class
becomes the locus of code sharing for all concretions of that class, which
inherit the shared code and provide the missing non-shared code.

Taking this idea to the extreme, an interface is a “fully abstract” class,
which is to say that

• All its fields are public static final (i.e., they are constants).

• All its methods are abstract public ; they must be implemented
by a subclass.

Since interfaces are a special form of abstract class, they have no instances.
The utility of interfaces stems from their role in implements declara-

tions. As we mentioned above, a class may be declared to extend a single
class to inherit from it.4 A class may also be declared to implement one
or more interfaces, meaning that the class provides the public methods of
the interface, with their specified types. Since interfaces are special kinds
of classes, Java is sometimes said to provide multiple inheritance of interfaces,
but only single inheritance of implementation. For similar reasons an inter-
face may be declared to extend multiple interfaces, provided that the result
types of their common methods coincide.

The purpose of declaring an interface for a class is to support writing
generic code that works with any instance providing the methods specified
in the interface, without requiring that instance to arise from any particular
position in the inheritance hierarchy. For example, we may have two un-
related classes in the class hierarchy providing a method m. If both classes
are declared to implement an interface that mentions m, then code pro-
grammed against this interface will work for an instance of either class.

The literature on Java emphasizes that interfaces are descriptive of be-
havior (to the extend that types alone allow), whereas classes are prescrip-
tive of implementation. While this is surely a noble purpose, it is curious
that interfaces are classes in Java, rather than types. In particular interfaces
are unable to specify the public fields of an instance by simply stating their
types, which would be natural were interfaces a form of type. Instead fields
in interfaces are forced to be constants (public, static, final), precluding their
use for describing the public instance variables of an object.

4Classes that do not specify a superclass implicitly extend the class Object of all objects.

WORKING DRAFT OCTOBER 22, 2002

258 Inheritance and Subtyping in Java

27.2 Subtyping in Java

The Java type system consists of the following types:

1. Base types, including int , float , void , and boolean .

2. Class types C, which classify the instances of a class C.

3. Array types of the form τ [] , where τ is a type, representing mutable
arrays of values of type τ .

The basic types behave essentially as one would expect, based on pre-
vious experience with languages such as C and C++. Unlike C or C++ Java
has true array types, with operations for creating and initializing an array
and for accessing and assigning elements of an array. All array operations
are safe in the sense that any attempt to exceed the bounds of the array
results in a checked error at run-time.

Every class, whether abstract or concrete, including interfaces, has as-
sociated with it the type of its instances, called (oddly enough) the instance
type of the class. Java blurs the distinction between the class as a program
structure and the instance type determined by the class — class names
serve not only to identify the class but also the instance type of that class. It
may seem odd that abstract classes, and interfaces, all define instance types,
even though they don’t have instances. However, as will become clear be-
low, even abstract classes have instances, indirectly through their concrete
subclasses. Similarly, interfaces may be thought of as possessing instances,
namely the instances of concrete classes that implement that interface.

27.2.1 Subtyping

To define the Java subtype relation we need two auxiliary relations. The
subclass relation, C C C ′, is the reflexive and transitive closure of the extends
relation among classes, which holds precisely when one class is declared to
extend another. In other words, C C C ′ iff C either coincides with C ′, in-
herits directly from C ′, or inherits from a subclass of C ′. Since interfaces are
classes, the subclass relation also applies to interfaces, but note that multi-
ple inheritance of interfaces means that an interface can be a subinterface
(subclass) of more than one interface. The implementation relation, C J I , is
defined to hold exactly when a class C is declared to implement an interface
that inherits from I .

WORKING DRAFT OCTOBER 22, 2002

27.2 Subtyping in Java 259

The Java subtype relation is inductively defined by the following rules.
Subtyping is reflexive and transitive:

τ <: τ (27.1)

τ <: τ ′ τ ′ <: τ ′′

τ <: τ ′′ (27.2)

Arrays are covariant type constructors, in the sense of this rule:

τ <: τ ′

τ [] <: τ ′ [] (27.3)

Inheritance implies subtyping:

C C C ′

C <: C ′ (27.4)

Implementation implies subtyping:

C J I
C <: I (27.5)

Every class is a subclass of the distinguished “root” class Object :

τ <: Object (27.6)

The array subtyping rule is a structural subtyping principle — one need
not explicitly declare subtyping relationships between array types for them
to hold. On the other hand, the inheritance and implementation rules of
subtyping are examples of nominal subtyping — they hold when they are
declared to hold at the point of definition (or are implied by further sub-
typing relations).

27.2.2 Subsumption

The subsumption principle tells us that if e is an expression of type τ and
τ <: τ ′, then e is also an expression of type τ ′. In particular, if a method
is declared with a parameter of type τ , then it makes sense to provide an
argument of any type τ ′ such that τ ′ <: τ . Similarly, if a constructor takes
a parameter of a type, then it is legitimate to provide an argument of a
subtype of that type. Finally, if a method is declared to return a value of
type τ , then it is legitimate to return a value of any subtype of τ .

WORKING DRAFT OCTOBER 22, 2002

260 Inheritance and Subtyping in Java

This brings up an awkward issue in the Java type system. What should
be the type of a conditional expression e ? e1: e2? Clearly e should have
type boolean , and e1 and e2 should have the same type, since we cannot
in general predict the outcome of the condition e. In the presence of sub-
typing, this amounts to the requirement that the types of e1 and e2 have
an upper bound in the subtype ordering. To avoid assigning an excessively
weak type, and to ensure that there is a unique choice of type for the con-
ditional, it would make sense to assign the conditional the least upper bound
of the types of e1 and e2. Unfortunately, two types need not have a least
upper bound! For example, if an interface I extends incomparable inter-
faces K and L, and J extends both K and L, then I and J do not have a
least upper bound — both K and L are upper bounds of both, but neither
is smaller than the other. To deal with this Java imposes the rather ad hoc
requirement that either the type of e1 be a subtype of the type of e2, or vice
versa, to avoid the difficulty.

A more serious difficulty with the Java type system is that the array sub-
typing rule, which states that the array type constructor is covariant in the
type of the array elements, violates the subsumption principle. To under-
stand why, recall that we can do one of two things with an array: retrieve
an element, or assign to an element. If τ <: τ ′ and A is an array of type
τ [] , then retrieving an element of A yields a value of type τ , which is by
hypothesis an element of type τ ′. So we are OK with respect to retrieval.
Now consider array assignment. Suppose once again that τ <: τ ′ and that
A is an array of type τ [] . Then A is also an array of type τ ′ [] , according
to the Java rule for array subtyping. This means we can assign a value x
of type τ ′ to an element of A. But this violates the assumption that A is an
array of type τ [] — one of its elements is of type τ ′.

With no further provisions the language would not be type safe. It is
a simple matter to contrive an example involving arrays that incurs a run-
time type error (“gets stuck”). Java avoids this by a simple, but expensive,
device — every array assignment incurs a “run-time type check” that en-
sures that the assignment does not create an unsafe situation. In the next
subsection we explain how this is achieved.

27.2.3 Dynamic Dispatch

According to Java typing rules, if C is a sub-class of D, then C is a sub-type
of D. Since the instances of a class C have type C, they also, by subsump-
tion, have type D, as do the instances of class D itself. In other words, if
the static type of an instance is D, it might be an instance of class C or an

WORKING DRAFT OCTOBER 22, 2002

27.2 Subtyping in Java 261

instance of class D. In this sense the static type of an instance is at best an
approximation of its dynamic type, the class of which it is an instance.

The distinction between the static and the dynamic type of an object is
fundamental to object-oriented programming. In particular method spe-
cialization is based on the dynamic type of an object, not its static type.
Specifically, if C is a sub-class of D that overrides a method m, then in-
voking the method m of a C instance o will always refer to the overriding
code in C, even if the static type of o is D. That is, method dispatch is
based on the dynamic type of the instance, not on its static type. For this
reason method specialization is sometimes called dynamic dispatch, or, less
perspicuously, late binding.

How is this achieved? Essentially, every object is tagged with the class
that created it, and this tag is used to determine which method to invoke
when a message is sent to that object. The constructors of a class C “label”
the objects they create with C. The method dispatch mechanism consults
this label when determining which method to invoke.5

The same mechanism is used to ensure that array assignments do not
lead to type insecurities. Suppose that the static type of A is C [] , and
that the static type of instance o is C. By covariance of array types the
dynamic type of A might be D [] for some sub-class D of C. But unless
the dynamic type of o is also D, the assignment of o to an element of A
should be prohibited. This is ensured by an explicit run-time check. In
Java every single array assignment incurs a run-time check whenever the array
contains objects.6

27.2.4 Casting

A container class is one whose instances “contain” instances of another class.
For example, a class of lists or trees or sets would be a container class in
this sense. Since the operations on containers are largely (or entirely) inde-
pendent of the type of their elements, it makes sense to define containers
generally, rather than defining one for each element type. In Java this is
achieved by exploiting subsumption. Since every object has type Object ,
a general container is essentially a container whose elements are of type
Object . This allows the container operations to be defined once for all

5In practice the label is a pointer to the vector of methods of the class, and the method is
accessed by indexing into this vector. But we can just as easily imagine this to be achieved
by a case analysis on the class name to determine the appropriate method vector.

6Arrays of integers and floats do not incur this overhead, because numbers are not ob-
jects.

WORKING DRAFT OCTOBER 22, 2002

262 Inheritance and Subtyping in Java

element types. However, when retrieving an element from a container its
static type is Object ; we lost track of its dynamic type during type check-
ing. If we wish to use such an object in any meaningful way, we must
recover its dynamic type so that message sends are not rejected at compile
time.

Java supports a safe form of casting, or change of type. A cast is written
(τ) e. The expression e is called the subject of the cast, and the type τ is the
target type of the cast. The type of the cast is τ , provided that the cast makes
sense, and its value is that of e. In general we cannot determine whether
the cast makes sense until execution time, when the dynamic type of the
expression is available for comparison with the target type. For example,
every instance in Java has type Object , but its true type will usually be
some class further down the type hierarchy. Therefore a cast applied to an
expression of type Object cannot be validated until execution time.

Since the static type is an attenuated version of the dynamic type of an
object, we can classify casts into three varieties:

1. Up casts, in which the static type of the expression is a subtype of
the target type of the cast. The type checker accepts the cast, and no
run-time check is required.

2. Down casts, in which the static type of the expression is a supertype of
the target type. The true type may or may not be a subtype of the
target, so a run-time check is required.

3. Stupid casts, in which the static type of the expression rules out the
possibility of its dynamic type matching the target of the cast. The
cast is rejected.

Similar checks are performed to ensure that array assignments are safe.
Note that it is up to the programmer to maintain a sufficiently strong

invariant to ensure that down casts do not fail. For example, if a container
is intended to contain objects of a class C, then retrieved elements of that
class will typically be down cast to a sub-class of C. It is entirely up to the
programmer to ensure that these casts do not fail at execution time. That
is, the programmer must maintain the invariant that the retrieved element
really contains an instance of the target class of the cast.

WORKING DRAFT OCTOBER 22, 2002

27.3 Methodology 263

27.3 Methodology

With this in hand we can (briefly) discuss the methodology of inheritance
in object-oriented languages. As we just noted, in Java subclassing entails
subtyping — the instance type of a subclass is a subtype of the instance type
of the superclass. It is important to recognize that this is a methodological
commitment to certain uses of inheritance.

Recall that a subtype relationship is intended to express a form of be-
havioral equivalence. This is expressed by the subsumption principle, which
states that subtype values may be provided whenever a supertype value is
required. In terms of a class hierarchy this means that a value of the sub-
class can be provided whenever a value of the superclass is required. For
this to make good sense the values of the subclass should “behave prop-
erly” in superclass contexts — they should not be distinguishable from
them.

But this isn’t necessarily so! Since inheritance admits overriding of
methods, we can make almost arbitrary7 changes to the behavior of the
superclass when defining the subclass. For example, we can turn a stack-
like object into a queue-like object (replacing a LIFO discipline by a FIFO
discipline) by inheritance, thereby changing the behavior drastically. If we
are to pass off a subclass instance as a superclass instance using subtyping,
then we should refrain from making such drastic behavioral changes.

The Java type system provides only weak tools for ensuring a behav-
ioral subtyping relationship between a subclass and its superclass. Fun-
damentally, the type system is not strong enough to express the desired
constraints.8. To compensate for this Java provides the finality mechanism
to limit inheritance. Final classes cannot be inherited from at all, ensuring
that values of its instance type are indeed instances of that class (rather than
an arbitrary subclass). Final methods cannot be overridden, ensuring that
certain aspects of behavior are “frozen” by the class definition.

Nominal subtyping may also be seen as a tool for enforcing behavioral
subtyping relationships. For unless a class extends a given class or is de-
clared to implement a given interface, no subtyping relationship holds.
This helps to ensure that the programmer explicitly considers the behav-
ioral subtyping obligations that are implied by such declarations, and is
therefore an aid to controlling inheritance.

7Limited only by finality declarations in the superclass.
8Nor is the type system of any other language that I am aware of, including ML

WORKING DRAFT OCTOBER 22, 2002

