Part 111

A Functional Language

WORKING DRAFT SEPTEMBER 5, 2002

Chapter 8

MinML, A Minimal Functional
Language

The language MinML will serve as the jumping-off point for much of our
study of programming language concepts. MinML is a call-by-value, effect-
free language with integers, booleans, and a (partial) function type.

8.1 Abstract Syntax

The first-order abstract syntax of MinML is divided into three main syntactic

categories, types, expressions, and programs. Their definition involves some

auxiliary syntactic categories, namely variables, numbers, and operators.
These categories are defined by the following grammar:

Variables x

Numerals n = ...

Operators o = +|* |- |=|<

Types T = int |bool |1m—m

Ezpressions e ::= z|n|o(e;..., e,)|true |false |
if ethen ejelse exfi |
fun f(z:7): is eend |
apply (e1,e2)

Programs p = e

We do not specify precisely the sets of numbers or variables. We generally
write z, y, etc. for variables, and we write numbers in ordinary decimal
notation.

WORKING DRAFT SEPTEMBER 5, 2002

52 MinML, A Minimal Functional Language

To specify the higher-order abstract syntax of MinML we need only de-
fine specify which expression-forming operators bind variables and, for
those that do, specify the range of significance, or scope, of each bound
variable. There is only one variable binding operator in MinML, the func-
tion expression fun f(x: 7): mis eend. In such an expression the vari-
ables f and x are both bound within the body of the function, e. Using the
notation of higher-order terms, this would be written as fun ()7 f, z.e.
But we will stick to the more readable concrete syntax given above.

8.2 Static Semantics

Not all expressions in MinML are well-formed. For example, the expression
if 3then lelse Ofi is not well-formed because 3 is an integer, whereas
the conditional test expects a boolean. In other words, this expression is
ill-typed because the expected constraint is not met. Expressions which do
satisfy these constraints are said to be well-typed.

Typing is clearly context-sensitive. The expression z + 3 may or may
not be well-typed, according to the type we assume for the variable z. That
is, it depends on the surrounding context whether this sub-expression is
well-typed or not.

The definition of well-typed expressions is given by a three-place typing
relation, or typing judgement, written I' - e : 7, where I' is a partial function
with finite domain mapping variables to types, and FV(e) C dom(I"). This
relation may be read as “the expression e has type 7, under the assumption
that its free variables have the types given by I The function I' may be
thought of as a “symbol table” recording the types of the free variables of
the expression e; the type 7 is the type of e under the assumption that its
free variables have the types assigned by I'. When e is closed (has no free
variables), we write simply e : 7 instead of the more unwieldy 0 e : 7.

We write I'(z) for the unique type 7 (if any) assigned to « by I'. The
function I'[x:7], where = ¢ dom(I"), is defined by the following equation

Plazr](y) = { ;(y) i];lzyev“:wZe

The typing relation is inductively defined by the following rules:
'z :T(z) (8.1)

WORKING DRAFT SEPTEMBER 5, 2002

8.2 Static Semantics 53

Here it is understood that if I'(x) is undefined, then no type for x is deriv-
able from assumptions I'.

'kn:int (8.2)
I' +true : bool (8.3)
I' I false : bool (8.4)

Fl—el:int Fl—egiint
'+ +(€17 62) sint (8.5)

Fl—el:int Fl—eg:int
I'* (61, 62) sint (86)

I'ker:int TrFeg:int
'k - (e1,e2) :int (8.7)

I'kep:int I'es:int
'+ =(e1,e2) : bool (8.8)

I'key:int I'eq:int
I' - <(ey, e2) : bool (8.9)

The typing rules for the arithmetic and boolean primitive operators are as

expected.
I'Fe:bool T'Fe:7 They:r

I'Hif ethen ejelse exfi : 7 (8.10)

Notice that the “then” and the “else” clauses must have the same type!

Lifimi—m]lxzm] b e:
'Efun f(x:7m): mis eend : 11—y (8.11)

Here we require that the variables f and = be chosen (by suitable renaming
of the function expression) so that { f,z } N dom(T") = 0.

I'kFep:m—1 I'Fea:m
' apply (ei,e2) : 7 (8.12)

WORKING DRAFT SEPTEMBER 5, 2002

54 MinML, A Minimal Functional Language

8.3 Properties of Typing

It is useful at this stage to catalogue some properties of the typing rela-
tion. We will make use of the principle of induction on typing derivations, or
induction on the typing rules.

A key observation about the typing rules is that there is exactly one
rule for each form of expression — that is, there is one rule for the each of
the boolean constants, one rule for functions, etc.. The typing relation is
therefore said to be syntax-directed; the form of the expression determines
the typing rule to be applied. While this may seem inevitable at this stage,
we will later encounter type systems for which this is not the case.

A simple — but important — consequence of syntax-directedness are
the following inversion principles for typing. The typing rules define suffi-
cient conditions for typing. For example, to show that

I'Hif ethen ejelse exfi :7,

it suffices to show thatI' - e : bool ,T'F e; : 7, and I' F ey : 7, because
of Rule 8.10. Since there is exactly one typing rule for each expression, the
typing rules also express necessary conditions for typing. For example, if
I'-if ethen ejelse eyfi :7,thenT'Fe:bool ,I'Fei:7andT Fey: 7.
That is, we can “invert” each rule to obtain a necessary typing condition.
This is the content of the following theorem.

Theorem 5 (Inversion)
1. IfT+ 2 : 7, thenT'(z) = 7.

2. IfT’'+n:7,thent =int .
3. IfT' Ftrue :7,thenT = bool , and similarly for false
4

. IfT Hif ethen ejelse exfi :7,thenl' e :bool ,T't e : 7 and
I'Feg:T.

5 IfT' + fun f(x:7):mis eend : 7, then I[fim—mn]lxin] Fe:
and T = 11 —To.

6. IfT'+ apply (e1,e2) : 7, then there exists 7o such thatT' - ey : To—7
andT'+ eg : .

Proof: Each case is proved by induction on typing. In each case exactly
one rule applies, from which the result is obvious. |

WORKING DRAFT SEPTEMBER 5, 2002

8.3 Properties of Typing 55

Lemma 6
1. Typing is not affected by “junk” in the symbol table. IfT" - e : T and
IVYDOT, thenl'!Fe:rT.

2. Substitution for a variable with type T by an expression of the same
type doesn’t affect typing. If T'[z:7] - ¢’ : 7/, and T F e : 7, then
'k {e/x}e : 7.
Proof:

1. By induction on the typing rules. For example, consider the typing
rule for applications. Inductively we may assume that if I O T', then
It ey :m—7andif IV D T, then I F eg : 75. Consequently, if IV D T,
then IV - apply (ei,e2) : 7, as required. The other cases follow a
similar pattern.

2. By induction on the derivation of the typing I'[z:7] - €’ : 7. We will
consider several rules to illustrate the idea.

(Rule 8.1) We have that ¢’ is a variable, say y, and 7/ = I'[z:7](y).
If y # z, then {e/x}y = y and I'|x:7](y) = I'(y), hence I' - y : I'(y),
as required. If z = y, then 7/ = I'[z:7](z) = 7, and {e/z}z = e. By
assumption I' - e : 7, as required.

(Rule 8.11) We have thate¢’ = fun f(y: 71): mis esend and 7/ =
71—72. We may assume that f and y are chosen so that

{£,9} N (FV(e) U{x} Udom(T)) = 0.
By definition of substitution,
{e/z}e =fun f(y:m):mis {e/x}esend.
Applying the inductive hypothesis to the premise of Rule 8.11,
Dlx:7)[fmi—me|ly:m] b ea: 1o,

it follows that
Llf:m—7lly:m]| F {e/z}es : 1.
Hence
CHfun f(y: m1):mis {e/z}esend : 71—y,

as required.

WORKING DRAFT SEPTEMBER 5, 2002

56 MinML, A Minimal Functional Language

8.4 Dynamic Semantics

The dynamic semantics of MinML is given by an inductive definition of the
one-step evaluation relation, e — ¢’, between closed expressions. Recall that
we are modelling computation in MinML as a form of “in place” calculation;
the relation e — ¢’ means that €’ is the result of performing a single step of
computation starting with e. To calculate the value of an expression e, we
repeatedly perform single calculation steps until we reach a value, v, which
is either a number, a boolean constant, or a function.

The rules defining the dynamic semantics of MinML may be classified
into two categories: rules defining the fundamental computation steps (or,
instructions) of the language, and rules for determining where the next in-
struction is to be executed. The purpose of the search rules is to ensure that
the dynamic semantics is deterministic, which means that for any expression
there is at most one “next instruction” to be executed.!

First the instructions governing the primitive operations. We assume
that each primitive operation o defines a total function — given values vy,
..., vy of appropriate type for the arguments, there is a unique value v
that is the result of performing operation o on vy, ..., v,. For example, for
addition we have the following primitive instruction:

+(m,n) —m-+n (8.13)

The other primitive operations are defined similarly.
The primitive instructions for conditional expressions are as follows:

if true then ejelse esfi — e (8.14)

if false then ejelse exfi — eg (8.15)

The primitive instruction for application is as follows:

(v="fun f(z:7): mis eend)
apply (Uv Ul) = {U7 vl/fa .ZU}@ (816)

To apply the function v = fun f(z: 7): mis eend to an argument vy
(which must be a value!), we substitute the function itself, v, for f, and the

1Some languages are, by contrast, non-determinstic, notably those involving concurrent
interaction. We'll come back to those later.

WORKING DRAFT SEPTEMBER 5, 2002

8.4 Dynamic Semantics 57

argument value, vy, for z in the body, e, of the function. By substituting v
for f we are “unrolling” the recursive function as we go along.

This completes the primitive instructions of MinML. The “search” rules,
which determine which instruction to execute next, follow.

For the primitive operations, we specify a left-to-right evaluation order.
For example, we have the following two rules for addition:

e1— €}

+(e1,e2) — *(e], e2) (8.17)
eg — €

+(U1, 62) — +(’U1, 6/2) (818)

The other primitive operations are handled similarly.
For the conditional, we evaluate the test expression.

e—é
if ethen ejelse exfi —if e'then e;else esfi (8.19)

For applications, we first evaluate the function position; once that is
complete, we evaluate the argument position.

e1— €}

apply (e1,e2) — apply (e, e2) (8.20)
e — €

apply (wvi,e2) — apply (v1,e5) (8.21)

This completes the definition of the MinML one-step evaluation relation.

The multi-step evaluation relation, e —* €', is inductively defined by the
following rules:

e—"e (8.22)

e — e/ e/ H* e//

e r—* e (8.23)

In words: e —* ¢ iff performing zero or more steps of evaluation starting
from the expression e yields the expression ¢’. The relation —* is sometimes
called the Kleene closure, or reflexive-transitive closure, of the relation —.

WORKING DRAFT SEPTEMBER 5, 2002

58 MinML, A Minimal Functional Language

8.5 Properties of the Dynamic Semantics

Let us demonstrate that the dynamic semantics of MinML is well-defined in
the sense that it assigns at most one value to each expression. (We should
be suspicious if this weren't true of the semantics, for it would mean that
programs have no definite meaning.)

First, observe that if v is a value, then there is no e (value or otherwise)
such that v — e. Second, observe that the evaluation rules are arranged so
that at most one rule applies to any given form of expression, even though
there are, for example, n+1 rules governing each n-argument primitive op-
eration. These two observations are summarized in the following lemma.

Lemma 7
For every closed expression e, there exists at most one ¢’ such thate — ¢'.
In other words, the relation — is a partial function.

Proof: By induction on the structure of e. We leave the proof as an exercise
to the reader. Be sure to consider all rules that apply to a given expression
e! [

It follows that evaluation to a value is deterministic:

Lemma 8
For every closed expression e, there exists at most one value v such that

e —* .

Proof: Follows immediately from the preceding lemma, together with the
observation that there is no transition from a value. []

8.6 Exercises

1. Can you think of a type system for a variant of MinML in which inver-
sion fails? What form would such a type system have to take? Hint:
think about overloading arithmetic operations.

2. Prove by induction on the structure of e that for every e and every I
there exists at most one 7 such that I' - e : 7. Hint: use rule induction
for the rules defining the abstract syntax of expressions.

WORKING DRAFT SEPTEMBER 5, 2002

Chapter 9

Type Safety for MinML

Programming languages such as ML and Java are said to be “safe” (or,
“type safe”, or “strongly typed”). Informally, this means that certain kinds
of mismatches cannot arise during execution. For example, it will never
arise that an integer is to be applied to an argument, nor that two functions
could be added to each other. The goal of this section is to make this infor-
mal notion precise. What is remarkable is that we will be able to clarify the
idea of type safety without making reference to an implementation. Con-
sequently, the notion of type safety is extremely robust — it is shared by all
correct implementations of the language.

9.1 Defining Type Safety

Type safety is a relation between the static and dynamic semantics. It tells
us something about the execution of well-typed programs; it says nothing
about the execution of ill-typed programs. In implementation terms, we ex-
pect ill-typed programs to be rejected by the compiler, so that nothing need
be said about their execution behavior (just as syntactically incorrect pro-
grams are rejected, and nothing is said about what such a program might
mean).

In the framework we are developing, type safety amounts to the follow-
ing two conditions:

1. Preservation. If e is a well-typed program, and e — ¢, then ¢’ is also
a well-typed program.

2. Progress. If e is a well-typed program, then either e is a value, or
there exists ¢’ such that e — ¢'.

WORKING DRAFT SEPTEMBER 5, 2002

60 Type Safety for MinML

Preservation tells us that the dynamic semantics doesn’t “run wild”. If we
start with a well-typed program, then each step of evaluation will neces-
sarily lead to a well-typed program. We can never find ourselves lost in
the tall weeds. Progress tells us that evaluation never “gets stuck”, unless
the computation is complete (i.e., the expression is a value). An example
of “getting stuck” is provided by the expression apply (3,4) — itis easy
to check that no transition rule applies. Fortunately, this expression is also
ill-typed! Progress tells us that this will always be the case.

Neither preservation nor progress can be expected to hold without some
assumptions about the primitive operations. For preservation, we must as-
sume that if the result of applying operation o to arguments vy,..., v, is
v, and o(vy,...,v,) : 7, then v : 7. For progress, we must assume that if
o(v1,...,vy) is well-typed, then there exists a value v such that v is the re-
sult of applying o to the arguments vy, . . ., v,,. For the primitive operations
we’re considering, these assumptions make sense, but they do preclude
introducing “partial” operations, such as quotient, that are undefined for
some arguments. We’ll come back to this shortly.

9.2 Type Safety of MinML

Theorem 9 (Preservation)
Ife:Tande— €, thene' : 1.

Proof: Note that we are proving not only that ¢’ is well-typed, but that
it has the same type as e. The proof is by induction on the rules defining
one-step evaluation. We will consider each rule in turn.

(Rule 8.13) Heree = +(m,n), 7 =int ,and ¢ = m + n. Clearly ¢’ : int ,
as required. The other primitive operations are handled similarly.

(Rule 8.14) Heree =if true then ejelse exfi and e’ =e;. Sincee : 7,
by inversion e; : 7, as required.

(Rule 8.15) Here e = if false then ejelse eyfi and ¢ = e,. Since
e : 7, by inversion e : 7, as required.

(Rule 8.16) Heree = apply (wvi,v2),wherev; =fun f(x: m):7is esend,
and €’ = {v1,v2/f, z}es. By inversion applied to e, we have v; : ,—7 and

WORKING DRAFT SEPTEMBER 5, 2002

9.2 Type Safety of MinML 61

v : T9. By inversion applied to v1, we have [f:mp—7|[z:72] F ez : 7. There-
fore, by substitution we have {v1,v2/f,z}es : 7, as required.

(Rule 8.17) Here e = +(ej,e2), ¢/ = +(€},e2), and e; — ¢). By inversion
e1 :int , so that by induction €} : int , and hence ¢’ : int , as required.

(Rule 8.18) Here e = +(vy,e2), ¢ = +(v1,¢€5), and ex — ¢f. By inversion
ez :int , so that by induction € : int , and hence ¢’ : int , as required.
The other primitive operations are handled similarly.

(Rule8.19) Heree =if ejthen eyelse esfi ande’ =if €| then eyelse esfi .
By inversion we have that e; : bool , e; : 7 and e3 : 7. By inductive hypoth-
esis €] : bool , and hence ¢’ : 7.

(Rule 8.20) Here ¢ = apply (e1,e2) and € = apply (€),e2). By inver-
sion e; : T9—7 and ey : Ty, for some type 2. By induction ¢} : 7s—7, and
hence ¢ : 7.

(Rule 8.21) Here e = apply (vi,e2) and € = apply (v1,€)). By inver-

sion, v1 : To—7 and ey : T2, for some type 72. By induction ¢}, : 75, and hence

e .

The type of a closed value “predicts” its form.

Lemma 10 (Canonical Forms)
Suppose that v : 7 is a closed, well-formed value.

1. If 7 = bool , then either v = true orv = false
2. If r =int , then v = n for some n.

3. If T = 11—y, thenv = fun f(z:m): nis eend for some f, x, and
€.

Proof: By induction on the typing rules, using the fact that v is a value.
|

Exercise 11
Give a proof of the canonical forms lemma.

WORKING DRAFT SEPTEMBER 5, 2002

62 Type Safety for MinML

Theorem 12 (Progress)
Ife : 7, then either e is a value, or there exists e’ such thate — €’.

Proof: The proof is by induction on the typing rules.
(Rule 8.1) Cannot occur, since e is closed.

(Rules 8.2, 8.3, 8.4, 8.11) In each case e is a value, which completes the
proof.

(Rule 8.5) Heree = +(ej,e2) and 7 =int , withe; :int and ey : int . By
induction we have either e; is a value, or there exists €/ such that e; — €}
for some expression ¢}. In the latter case it follows that e — ¢, where
¢/ = +(ef,e2). In the former case, we note that by the canonical forms
lemma e; = n; for some ni, and we consider e;. By induction either es
is a value, or es — €, for some expression ¢). If es is a value, then by the
canonical forms lemma e = ns for some no, and we note that e — ¢/, where

¢/ = ny + ng. Otherwise, e — €/, where ¢/ = +(vy, €}), as desired.

(Rule 8.10) Heree =if ejthen egelse esfi ,witheq : bool , ey : 7, and
es : 7. By the first inductive hypothesis, either e, is a value, or there exists
e} such that e; — ¢]. If ey is a value, then we have by the Canonical Forms
Lemma, either ¢; = true or e; = false . In the former case e — ¢35, and
in the latter e — e3, as required. If e; is not a value, then e — ¢/, where
¢ =if e then eyelse esfi , by Rule 8.19.

(Rule 8.12) Here e = apply (ei,e2), withe; : o—7 and ez : 7. By the
first inductive hypothesis, either e; is a value, or there exists ¢ such that
e1 — €). If e; is not a value, then e — apply (e}, e2) by Rule 8.20, as
required. By the second inductive hypothesis, either e, is a value, or there
exists e}, such that ey — €. If eg is not a value, then e — ¢/, where ¢/ =
apply (e1,€)), as required. Finally, if both e; and ez are values, then by
the Canonical Forms Lemma, e; = fun f(xz: m): 7is ¢’end,and e — ¢/,
where ¢/ = {e1, e2/f,z}e”, by Rule 8.16.

[|

Theorem 13 (Safety)
If e is closed and well-typed, then evaluation of e can only terminate with
a value of the same type. In particular, evaluation cannot “get stuck” in an

WORKING DRAFT SEPTEMBER 5, 2002

9.3 Run-Time Errors and Safety 63

ill-defined state.

9.3 Run-Time Errors and Safety

Stuck states correspond to ill-defined programs that attempt to, say, treat
an integer as a pointer to a function, or that move a pointer beyond the
limits of a region of memory. In an unsafe language there are no stuck states
— every program will do something — but it may be impossible to predict
how the program will behave in certain situations. It may “dump core”, or
it may allow the programmer to access private data, or it may compute a
“random” result.

The best-known example of an unsafe language is C. It's lack of safety
manifests itself in numerous ways, notably in that computer viruses nearly
always rely on overrunning a region of memory as a critical step in an at-
tack. Another symptom is lack of portability: an unsafe program may ex-
ecute sensibly on one platform, but behave entirely differently on another.
To avoid this behavior, standards bodies have defined portable subsets of
C that are guaranteed to have predictable behavior on all platforms. But
there is no good way to ensure that a programmer, whether through malice
or neglect, adheres to this subset.!

Safe languages, in contrast, avoid ill-defined states entirely, by imposing
typing restrictions that ensure that well-typed programs have well-defined
behavior. MIinML is a good example of a safe language. It is inherently
portable, because its dynamic semantics is specified in an implementation-
independent manner, and because its static semantics ensures that well-
typed programs never “get stuck”. Stated contrapositively, the type safety
theorem for MinML assures us that stuck states are ill-typed.

But suppose that we add to MinML a primitive operation, such as quo-
tient, that is undefined for certain arguments. An expression such as 3/0
would most-assuredly be “stuck”, yet would be well-typed, at least if we
take the natural typing rule for it:

Pl—el:int F|—62:int
Ff‘@llegiint

What are we to make of this? Is the extension of MinML with quotient
unsafe?
To recover safety, we have two options:

Tt should be easy to convince yourself that it is undecidable whether a given C program
can reach an implementation-dependent state.

WORKING DRAFT SEPTEMBER 5, 2002

64 Type Safety for MinML

1. Enhance the type system so that no well-typed program can ever divide
by zero.

2. Modify the dynamic semantics so that division by zero is not “stuck”,
but rather incurs a run-time error.

The first option amounts to requiring that the type checker prove that the
denominator of a quotient is non-zero in order for it to be well-typed. But
this means that the type system would, in general, be undecidable, for we
can easily arrange for the denominator of some expression to be non-zero
exactly when some Turing machine halts on blank tape. It is the subject of
ongoing research to devise conservative type checkers that are sufficiently
expressive to be useful in practice, but we shall not pursue this approach
any further here.

The second option is widely used. It is based on distinguishing checked
from unchecked errors. A checked error is one that is detected at execution
time by an explicit test for ill-defined situations. For example, the quotient
operation tests whether its denominator is zero, incurring an error if so. An
unchecked error is one that is not detected at execution time, but rather is
regarded as “stuck” or “ill-defined”. Type errors in MinML are unchecked
errors, precisely because the static semantics ensures that they can never
occur.

The point of introducing checked errors is that they ensure well-defined
behavior even for ill-defined programs. Thus 3/0 evaluates to error , rather
than simply “getting stuck” or behaving unpredictably. The essence of type
safety is that well-typed programs should have well-defined behavior, even
if that behavior is to signal an error. That way we can predict how the pro-
gram will behave simply by looking at the program itself, without regard to
the implementation or platform. In this sense safe languages are inherently
portable, which explains the recent resurgence in interest in them.

How might checked errors be added to MinML? The main idea is to add
to MinML a special expression, error , that designates a run-time fault in
an expression. Its typing rule is as follows:

I'kerror :7 9.1)

Note that a run-time error can have any type at all. The reasons for this
will become clear once we re-state the safety theorem.

The dynamic semantics is augmented in two ways. First, we add new
transitions for the checked errors. For example, the following rule checks

WORKING DRAFT SEPTEMBER 5, 2002

9.3 Run-Time Errors and Safety 65

for a zero denominator in a quotient:

v/ 0 — error (9.2)

Second, we add rules to propagate errors; once an error has arisen, it aborts
the rest of the computation. Here are two representative error propagation
rules:

error (wy) — error (9.3)

vi(error) — error (9.4)

These rule state that if the function or argument position of an application
incur an error, then so does the entire application.

With these changes, the type safety theorem may be stated as follows:

Theorem 14 (Safety With Errors)
If an expression is well-typed, it can only evaluate to a value or evaluate to
error . It cannot “get stuck” in an ill-defined state.

As before, safety follows from preservation and progress. The preser-
vation theorem states that types are preserved by evaluation. We have al-
ready proved this for MinML; we need only consider error transitions. But
for these preservation is trivial, since error has any type whatsoever. The
canonical forms lemma carries over without change. The progress theorem
is proved as before, relying on checked errors to ensure that progress can
be made, even in ill-defined states such as division by zero.

WORKING DRAFT SEPTEMBER 5, 2002

