
Supplementary Notes on Aggregate Data
Structures

15-312: Foundations of Programming Languages
Frank Pfenning

modified by Jonathan Aldrich

Lecture 7
Sep 16, 2003

Now we come to various language extensions which make MinML a
more realistic language without changing its basic character.

Products. Introducing products just means adding pairs and a unit ele-
ment to the language [Ch. 19.1]. We could also directly add n-ary prod-
ucts, but we will instead discuss records later when we talk about object-
oriented programming. MinML is a call-by-value language. For consistency
with the basic choice, the pair constructor also evaluates its arguments—
otherwise we would be dealing with lazy pairs.1 In addition to the pair
constructor, we can extract the first and second component of a pair.2

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` pair (e1, e2) : cross (τ1, τ2)

Γ ` e : cross (τ1, τ2)
Γ ` fst (e) : τ1

Γ ` e : cross (τ1, τ2)
Γ ` snd (e) : τ2

For the unit type we only have a constructor but no destructor, since there
are no components to extract.

Γ ` unitel : unit

1See Assignment 3
2An alternative treatment is given in [Ch. 19.1], where the destructor provides access to

both components of a pair simultaneously. Also, the unit type comes with a corresponding
check construct.

SUPPLEMENTARY NOTES SEP 16, 2003

L7.2 Aggregate Data Structures

We often adopt a more mathematical notation according to the table
at the end of these notes. However, it is important to remember that the
mathematical shorthand is just that: it is just a different way to shorten
higher-order abstract syntax or make it easier to read.

A pair is a value if both components are values. If not, we can use the
search rules to reduce, using a left-to-right order. Finally, the reduction
rules extract the corresponding component of a pair.

e1 value e2 value

pair (e1, e2) value

e1 7→ e′
1

pair (e1, e2) 7→ pair (e′
1, e2)

v1 value e2 7→ e′
2

pair (v1, e2) 7→ pair (v1, e
′
2)

e 7→ e′

fst (e) 7→ fst (e′)
e 7→ e′

snd (e) 7→ snd (e′)

v1 value v2 value

fst (pair (v1, v2)) 7→ v1

v1 value v2 value

snd (pair (v1, v2)) 7→ v2

Since it is at the core of the progress property, we make the value inversion
property explicit.

If · ` v : cross (τ1, τ2) and v value then v = pair (v1, v2) for
some v1 value and v2 value.

Unit Type. The unit types does not yield any new search or reduction
rules, only a new value. At first it may not seem very useful, but we will
see an application when we add references to the language.

unitel value

The value inversion property is also simple.

If · ` v : unit then v = 〈 〉.

Sums. Unions, as one might now them from the C programming lan-
guage, are inherently not type safe. They can be abused in order to access
the underlying representations of data structures and intentionally violate
any kind of abstraction that might be provided by the language. Consider,
for example, the following snippet from C.

SUPPLEMENTARY NOTES SEP 16, 2003

Aggregate Data Structures L7.3

union {
float f;
int i;

} unsafe;

unsafe.f = 5.67e-5;
printf("%d", unsafe.i);

Here we set the member of the union as a floating point number and then
print the underlying bit pattern as if it represented an integer. Of course,
much more egregious examples can be imagined here.

In a type-safe language we replace unions by disjoint sums. In the im-
plementation, the members of a disjoint sum type are tagged with their
origin so we can safely distinguish the cases. In order for every expression
to have a unique type, we also need to index the corresponding injection
operator with their target type.3

Γ ` e1 : τ1

Γ ` inl (τ1, τ2, e1) : sum(τ1, τ2)
Γ ` e2 : τ2

Γ ` inr (τ1, τ2, e2) : sum(τ1, τ2)

Γ ` e : sum(τ1, τ2) Γ, x1:τ1 ` e1 : σ Γ, x2:τ2 ` e2 : σ

Γ ` case (e, x1.e1, x2.e2) : σ

Note that we require both branches of a case -expression to have the same
type σ, just as for a conditional, because we cannot be sure at type-checking
time which branch will be taken.

e1 value

inl (τ1, τ2, e1) value

e2 value

inr (τ1, τ2, e2) value

e 7→ e′

case (e, x1.e1, x2.e2) 7→ case (e′, x1.e1, x2.e2)

v1 value

case (inl (τ1, τ2, v1), x1.e1, x2.e2) 7→ {v1/x1}e1

v2 value

case (inr (τ1, τ2, v2), x1.e1, x2.e2) 7→ {v2/x2}e2

We also state the value inversion property.
3Strictly speaking, some of this information is redundant, but it is easier read if we are

fully explicit here.

SUPPLEMENTARY NOTES SEP 16, 2003

L7.4 Aggregate Data Structures

If · ` v : sum(τ1, τ2) then either v = inl (τ1, τ2, v1) with v1 value
or v = inr (τ1, τ2, v2) with v2 value.

Void type. The empty type void can be thought of as a zero-ary sum. It
has no values, and can only be given to expressions that do not terminate.
For example,

Γ, x:void ` x : void

Γ ` rec (void , x.x) : void

The value inversion property here just expresses that there are no values
of void type.

If · ` v : void then we have a contradiction.

Run-Time Errors. Next, we discuss how run-time errors can be handled
in a type-safe language [Ch. 9.3]. Consider extending our MinML language
by a partial division operator, div (e1, e2). Besides the usual typing rules
and search rules for the operational semantics, we would also have the
following reduction rule:

(n2 6= 0)
div (num(n1), num(n2)) 7→ num(bn1/n2c)

The condition n2 6= 0 means that there is no rule for div (num(n), num(0))
and evaluation gets stuck. Progress would be violated.

We can restore an amended progress theorem if we introduce a new
contruct error representing a run-time error. This expression allows us to
state that the program terminates in an orderly way after an error rather
than continuing in some random state. The error expression is created
when a divide-by-zero error occurs:

div (num(n1), num(0)) 7→ error

We can think of the error expression having any type; thus it is safe to
replace any expression with error:

Γ ` error : τ

However, we are not finished, because an expression such as

plus (div (num(3), num(0)), num(2))

SUPPLEMENTARY NOTES SEP 16, 2003

Aggregate Data Structures L7.5

must also abort, but we have no rule that allows us to conclude this. So in
addition to the search rules we have “error propagation” rules that prop-
agate run-time errors up to the overall program we are trying to evaluate.
We show the two rules for application as an example; similar rules are nec-
essary for all search rules to account for a possible abort.

apply (error, e2) 7→ error

v1 value

apply (v1, error) 7→ error

Now we can refine the statement of progress to account for the new judg-
ment. Note that preservation and determinism do not change, because re-
placing any expression with error preserves the type.

1. (Preservation) If · ` e : τ and e 7→ e′ then · ` e′ : τ .

2. (Progress) If · ` e : τ then either

(i) e 7→ e′ for some e′, or

(ii) e value, or

(iii) e is error.

3. (Determinism) If · ` e : τ then exactly one of

(i) e 7→ e′ for some unique e′, or

(ii) e value.

We do not give her a proof of these properties. In a future lecture,
however, we will discuss how the language might be extended with a
try . . . handle . . . end construct in order to catch error conditions.

SUPPLEMENTARY NOTES SEP 16, 2003

L7.6 Aggregate Data Structures

Higher-Order
Abstract Syntax Concrete Syntax Mathematical Syntax

arrow (τ1, τ2) τ1 -> τ2 τ1 → τ2

cross (τ1, τ2) τ1* τ2 τ1 × τ2

unit unit 1
sum(τ1, τ2) τ1+τ2 τ1 + τ2

void void 0

pair (e1, e2) (e1, e2) 〈e1, e2〉
fst (e) #1 e π1 e
snd (e) #2 e π2 e
unitel () 〈 〉
inl (τ1, τ2, e1) inl (e1) : τ1+τ2 inlτ1+τ2(e1)
inr (τ1, τ2, e2) inr (e2) : τ1+τ2 inrτ1+τ2(e2)
case (e, x1.e1, x2.e2) case e

of inl (x1) => e1

| inr (x2) => e2

esac

case(e, x1.e1, x2.e2)

abort (τ, e) abort (e) : τ abortτ (e)

SUPPLEMENTARY NOTES SEP 16, 2003

