Supplementary Notes on
Storage Management

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 27
December 5, 2002

In this lecture we discuss issues of storage managment and garbage
collection. The lecture follows [Ch. 31] rather closely, so we concentrate on
what is slightly different here, namely the presentation of bisimulation.

In order to talk about garbage collection, we need to formalize the dis-
tinction between small values and large values, where small values can be
part of the stack, while large values must be allocated in the heap. For
the purpose of this lecture, small values are either integers, booleans, or
“pointers” to large values. Functions are large values, as are pairs. We use
the judgments v svalue and v lvalue for small and large values, respectively.
Pointers are represented by a new kind of value /, standing for locations in
memory. Unlike with mutable storage, such locations cannot be changed,
but they can be allocated (implicitly) and deallocated (by garbage collec-
tion).

int(n) svalue [svalue

v1 svalue w9 svalue
pair(vy, v) Ivalue A\z.e lvalue

Note that the components of a pair are small values. This means they
must either be integers, booleans, or again pointers.
Heaps are simply locations together with their (immutable) values.

Heaps H ::= -|H,l=v

As usual, all location [must be distinct. Furthermore, values stored in
the heap must be large values, that is, if [=v is part of the heap, then v Ivalue.

SUPPLEMENTARY NOTES DECEMBER 5, 2002

L27.2 Storage Management

We describe a heap-based operational semantics using the A-machine,
which is an extension of the C-machine to account for the heap. Recall:

Stacks K ::= e | Krapply(de2) | K >apply(vi,)
| Kovpair(d,e2) | K> pair(v1,0) | K>fst(O) | K >snd(0)

States s ::= K>e|K<w

We restrict stacks and states to contain only small values. If an expres-
sion e is stored on the stack or in the process of being evaluated it has not
yet been turned into a value and therefore does not have to satisfy this cri-
terion. We show only a few rules which formalize this intuition. We ignore
issues of typing, since they are largely orthogonal and basically unchanged
from the typing of the C-machine.

K stack e exp K stack v svalue
K > e state K > v state
K stack e9 exp K stack w7 svalue
K > apply(0, e2) stack K > apply(vy,) stack

H heap wlvalue (I ¢ dom(H))
- heap H,l=v heap

A machine state is now extended by a heap, written as H;s, where s
is either K > e or K < v. There are several invariants we will want to
maintain of machine states. For example, it should be self-contained. If we
denote the location defined by a heap with dom(H) and the free locations
in a term (that is, expression, value, stack, or values defined in a heap) by
FL(.), the H;s is self-contained if FL(H) U FL(s) C dom(H). For other
invariants, see [Ch. 31].

The transitions of the A-machine can now be developed in analogy with
the C-machine, keeping in mind that we need to maintain the distinction
between small and large values.

H; K > pair(e1, e2) —a H; K> pair(O,e2) > ep
H; K v pair(O,e2) < vy +—, H; K pair(vy,0) > e9
H; K v pair(vy,0) <wvy +—, H,l=pair(vi,v2); K <l (I ¢ dom(H))

H; K > fst(e) —a H;K»>fst(O) >e
H;Kv>fst(O) <1 —a H3 K <o (I=pair(vi,v2) € H)
H; K > snd(e) —a H;Kp>snd(O) >e
H;Kv>snd(OD) <1 —a H; K < vy (I=pair(vi,v2) € H)

SUPPLEMENTARY NOTES DECEMBER 5, 2002

Storage Management L27.3

It is easy to verify inductively that the value size invariants for heaps
and stacks are preserved by these rules. We finish with the rules for func-
tions.

H; K > apply(e1, e2) —a H; Ko apply(O,eg) > e

H; K >apply(,e2) <v1 +—a H; Kpapply(v,0d) > ez

H; Kvapply(l;,00) <wvy —5 H;K > {vy/x}ey (h=MAz.e; € H)
H;K > \x.e —a Hjl=\ve; K < (I ¢ dom(H))

Next we would like to show the correctness of the A-machine when
compared to the C-machine. Interestingly, this becomes a strong bisimula-
tion theorem: the two machines execute in lock-step. This requires that we
set up a bisimulation relation. Following some of the prior examples we
have seen, this amounts to substituting values for location labels I. Also
as before, this has to be done recursively, because the values v can again
contain references to other values, and so on. The inductive definition of
the bisimulation as a judgment is not difficult, but somewhat tedious, so
we only show a few cases. We have the judgments

H;K ~K'

H;en~¢

H;v~7

H;s~ s
defined by the following rules:

Hyv~v (I=veH) H;K~K' Hye~é H/K~K H;v~v
H:l~ HK>e~K >¢ HK<v~K <

H;K ~K' H;ey~é,
H;o~e H; K vapply(0, e2) ~ K’ > apply(0, €3)

H;K ~K' H;v ~}
H; K > apply(vi,0) ~ K’ >apply(vy, 0)

H;ey ~éy H;ey~ ¢ H;e~¢

H;apply(e1, ea) ~ apply(e], €5) H:) \v.e ~ \z.€ Hxz~z

These rules are extended to handle pairs and states using straightforward
congruence rules for all constructs. The fact this works essentially works
like a congruence yields the following lemma. We take exchange for granted:
the order of the locations in the heap is irrelevant. We use O and O’ to stand
for stacks, expressions, values, or states.

SUPPLEMENTARY NOTES DECEMBER 5, 2002

L27.4 Storage Management

Lemma 1 (Weakening and Substitution)
(i) IfH;O ~ O then H,H';0 ~ O’

(ii) If H;v ~v" and H; O ~ O’ then H; {v/x}O ~ {v'/2}0O’

Proof: By induction on the structure of the given derivation relating O and
0. |

Now we can prove strong bisimulation according to the following dia-
gram:

B /
Hl;sl ~N S

E|a ClE’

. /
Hs; s9 o %

We have to show (1) that if B and FE are given, then s/, E’, and C' exist, and
(2) that if B and E’ are given, then Hj, s3, E, and C exist.

Theorem 2 (Strong Bisimulation for A- and C-machine)
(i) If Hy;s1 ~ s} and Hy; s1 —a, Ha; so then there is an s}, such that s} —.
st and Ha; s9 ~ sbh.

(i) If Hy;s1 ~ sy and s} —c s, then there is an Hy and sy such that
Hy; 81+, Ha; s9 and Ha; sg ~ sb.

Proof: In direction (1) we examine the cases for £, applying inversion to
B to construct s5 and E’. In direction (2) we examine the cases for E’, ap-
plying inversion to B to construction H», s and C'. [|

On observable values (i.e. integers, pairs of integers, etc.) the simula-
tion yields the right translation, as can readily be verified.

Once we have heaps, we can formulate garbage collection as a way to
trace through the heap and copying all locations accessible in a state. In
some ways this inverts the weakening lemma into a strengthening property,
where we remove part of the heap H' that is not referred to in the stack
or expression. Garbage collection admits only weak bisimulation, since the
steps of garbage collection are not accounted for in the C-machine. Please
see [Ch. 31] for further details and discussion of garbage collection.

SUPPLEMENTARY NOTES DECEMBER 5, 2002

