
Supplementary Notes on
Environments

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 26
December 3, 2002

In the final two lectures of this course we go into slightly lower-level
issues regarding the implementation of functional languages. As we will
see, related issues arise in object-oriented languages.

This first observation about our semantic specifications is that most of
them rely on substitution as a primitive operation. From the point of view
of implementation, this is impractical, because a program would be copied
many times. So we seek an alternative semantics in which substitutions are
not carried out explicitly, but an association between variables and their
values is maintained. Such a data structure is called an environment. Care
has to be taken to ensure that the intended meaning of the program (as
given by the specification with substitution) is not changed.

Because we are in a call-by-value language, environment η always bind
variables to values.

Environments η : : = · | η, x=v

The basic intuition regarding typing is that if Γ ` e : τ , then e should
be evaluated in an environment which supplies bindings of appropriate
type for all the variables declared in Γ. We therefere formalize this as a
judgment, writing η : Γ if the bindings of variables to values in η match
the context Γ. We make the general assumption that a variable x is bound
only once in an environment, which corresponds to the assumption that a
variable x is declared only once in a context. If necessary, we can rename
bound variables in order to maintain this invariant.

· : ·
η : Γ · ` v : τ v value

(η, x=v) : (Γ, x:τ)

SUPPLEMENTARY NOTES DECEMBER 3, 2002

L26.2 Environments

Note that the values v bound in an environment are closed, that is, they
contain no free variables. This means that expressions are evaluated in an
environment, but the resulting values must be closed. This creates a dif-
ficulty when we come to the evaluation of function expressions. Relaxing
this restriction, however, causes even more serious problems.1

In order to concentrate on the essential issues with environments, we
give here only a big-step operational semantics relating an expression to
its final value. See [Ch. 11.2] for a version of the C-machine that main-
tains environments. We first give a big-step operational semantics using
substitution. We concentrate on pairs and (non-recursive) functions; other
constructs can be added but distract from the main issues.

e1 ⇓ v1 e2 ⇓ v2

pair(e1, e2) ⇓ pair(v1, v2)

e ⇓ pair(v1, v2)
fst(e) ⇓ v1

e ⇓ pair(v1, v2)
snd(e) ⇓ v2

λx.e ⇓ λx.e

e1 ⇓ λx.e3 e2 ⇓ v2 {v2/x}e3 ⇓ v

apply(e1, e2) ⇓ v

Next we try to add environments, being careful not to carry out substi-
tutions, but just adding binding to the environments. The final two rules
are actually incorrect, as we explain shortly.

η ` e1 ⇓ v1 η ` e2 ⇓ v2

η ` pair(e1, e2) ⇓ pair(v1, v2)

η ` e ⇓ pair(v1, v2)
η ` fst(e) ⇓ v1

η ` e ⇓ pair(v1, v2)
η ` snd(e) ⇓ v2

η1, x=v, η2 ` x ⇓ v

η ` λx.e ⇓ λx.e
??

η ` e1 ⇓ λx.e3 η ` e2 ⇓ v2 η, x=v2 ` e3 ⇓ v

η ` apply(e1, e2) ⇓ v
??

If we now try to prove type preservation in the following form

If η : Γ and Γ ` e : τ and η ` e ⇓ v then · ` v : τ

1This is known in the Lisp community as the upward funarg problem.

SUPPLEMENTARY NOTES DECEMBER 3, 2002

Environments L26.3

we find that it is violated in the rule for λ-abstraction, since the value λx.e
may have free variables referring to η. If we try to fix this problem by
proving instead

If η : Γ and Γ ` e : τ and η ` e ⇓ v then Γ ` v : τ

the rule for λ-abstraction now works correctly, but the rule for application
has a problem. This is because we eventually obtain from the induction
hypothesis and multiple steps of reasoning that Γ, x:τ2 ` v : τ , but we need
that Γ ` v : τ .

So neither of the two ideas works, and type preservation would be vio-
lated. In order to restore is, we need to pair up a value with its environment
forming a closure. There are many strategies to make this efficient. For ex-
ample, we could restrict the environment to those variables occurring free
in the value, but we do not consider such refinements here. This means we
have a new form of value, only used in the operational semantics, but not
in the source expression.

Expressions e : : = . . . | 〈〈η;λx.e〉〉

There are no evaluation rules for closures (they are values), and the typ-
ing rules have to “guess” an context that matches the environment. Note
that we always type values in the empty environment.

〈〈η;λx.e〉〉 value

η : Γ Γ ` λx.e : τ

· ` 〈〈η;λx.e〉〉 : τ

We now modify the incorrect rules by building and destructing closures
instead.

η ` λx.e ⇓ 〈〈η;λx.e〉〉

η ` e1 ⇓ 〈〈η′;λx.e3〉〉 η ` e2 ⇓ v2 η′, x=v2 ` e3 ⇓ v

η ` apply(e1, e2) ⇓ v

Now it is easy to prove by induction over the structure of the evaluation
that type preservation holds in the following form.

Theorem 1 (Type preservation with environments)
Assume η : Γ and Γ ` e : τ . If η ` e ⇓ v then · ` v : τ .

Proof: By induction on the derivation of η ` e ⇓ v, applying inversion on
the typing derivation in each case. We show the three critical cases.

SUPPLEMENTARY NOTES DECEMBER 3, 2002

L26.4 Environments

Case: η1, x=v, η2 ` x ⇓ v.

Γ ` x : τ Given
Γ = Γ1, x:τ,Γ2 By inversion
η : Γ Given
(η1, x=v, η2) : (Γ1, x:τ,Γ2) Defns. of η and Γ
· ` v : τ By inversion

Case: η ` λx.e ⇓ 〈〈η;λx.e〉〉.

Γ ` λx.e : τ Given
η : Γ Given
· ` 〈〈η;λx.e〉〉 : τ By rule

Case: η ` apply(e1, e2) ⇓ v.

η ` e1 ⇓ 〈〈η′;λx.e3〉〉 Subderivation
η ` e2 ⇓ v2 Subderivation
η′, x=v2 ` e3 ⇓ v Subderivation
Γ ` apply(e1, e2) : τ Given
Γ ` e1 : τ2 → τ and
Γ ` e2 : τ2 for some τ2 By inversion
η : Γ Given
· ` 〈〈η′;λx.e3〉〉 : τ2 → τ By i.h.
η′ : Γ′ and
Γ′ ` λx.e3 : τ2 → τ for some Γ′ By inversion
Γ′, x:τ2 ` e3 : τ By inversion
· ` v2 : τ2 By i.h.
(η′, x=v2) : (Γ′, x:τ2) By rule
· ` v : τ By i.h.

�

A big-step semantics is unsuitable for proving a progress theorem, so
we will not do so here (see [Ch. 11.2]).

Type preservation tells us that the environment semantics we gave is
sensible, but actually want to know more, namely that is is in an appropri-
ate sense equivalent to the substitution semantics we gave earlier. This is
another instance of a bisimulation theorem. It will be an instance of weak
bisimulation because we do not care about the intermediate states of eval-
uation. In other words, we can only observe the final value returned by a
computation. Even this we have to refine, as discussed in lecture 22.

SUPPLEMENTARY NOTES DECEMBER 3, 2002

Environments L26.5

There are three steps in proving a bisimulation theorem that shows the
observational equivalence of two forms of operational semantics

1. Define the bisimulation relation.

2. Show that it is an observational equivalence.

3. Prove that it is a bisimulation.

We now go through these steps on the substitution and environment se-
mantics.

Defining the bisimulation. Intuitively, the bisimulation substitutes out
the environment. The main complication is that it must do this recursively,
because the values in an environment can again contain closures and envi-
ronments. The bisimulation decomposes into two judgments: one to relate
expressions in an environment to closure-free expression, and one to relate
values to values.

η ` e⇐⇒ e′ e in environment η is related to e′

v ←→ v′ v is related to v′

In order to describe the typing properties of the translation, we need to
generalize environment to contain bindings x=x′. Typing for environments
is then generalized as follows

Γ′ ` · : ·
Γ′ ` η : Γ · ` v : τ

Γ′ ` (η, x=v) : (Γ, x:τ)

Γ′ ` η : Γ Γ′ ` x′ : τ

Γ′ ` (η, x=x′) : (Γ, x:τ)

The typings are presupposed to be related as follows: if η ` e ⇐⇒ e′

then Γ′ ` η : Γ and Γ ` e : τ and Γ′ ` e′ : τ for some Γ and Γ′.

(x=v ∈ η) v ←→ v′

η ` x⇐⇒ v′
(x=x′ ∈ η)

η ` x⇐⇒ x′

η ` e1 ⇐⇒ e′
1 η ` e2 ⇐⇒ e′

2

η ` apply(e1, e2)⇐⇒ apply(e′
1, e

′
2)

η, x=x′ ` e⇐⇒ e′

η ` λx.e⇐⇒ λx′.e′

η′ ` λx.e⇐⇒ v′

〈〈η′;λx.e〉〉 ←→ v′

SUPPLEMENTARY NOTES DECEMBER 3, 2002

L26.6 Environments

Observational Equivalence. Since we have simplified our language to
just contain functions, the observational equivalance is trivialized. How-
ever, if we add, for example, integers and primitive operations, then we
would have the rules

η ` e1 ⇐⇒ e′
1 η ` e2 ⇐⇒ e′

2

η ` o(e1, e2)⇐⇒ o(e′
1, e

′
2)

int(n)←→ int(n)

and it is indeed the case that←→ coincides with equality on the observable
type int.

Proving the bisimulation. Bisimulation in this case can be discussed us-
ing the following diagram.

η ` e ks B +3

E

��

e′

E′

��
v oo

C
// v′

We need to show two properties:

1. If B and E are given, then v′, E′, and C exist, and

2. if B and E′ are given, then v, E, and C exist.

Fortunately, neither of these direction is difficult. We do, however, need
a substitution property.

Theorem 2 (Substitution for bisimulation)
If v ←→ v′ and η1, x=x′, η2 ` e⇐⇒ e′ then η1, x=v, η2 ` e⇐⇒ {v′/x′}e′.

Proof: By induction on the derivation of η1, x=x′, η2 ` e⇐⇒ e′. �

For a more general language, we also need the easy property that e ⇓ e
iff e value in the substitution semantics.

Theorem 3 (Simulation1)
If η ` e ⇐⇒ e′ and η ` e ⇓ v then there exists a v′ such that e′ ⇓ v′ and
v ←→ v′.

SUPPLEMENTARY NOTES DECEMBER 3, 2002

Environments L26.7

Proof: By induction on the derivation of η ` e ⇓ v and inversion on
η ` e⇐⇒ e′ in each case. �

Theorem 4 (Simulation2)
If η ` e ⇐⇒ e′ and e′ ⇓ v′ then there exists a v such that η ` e ⇓ v and
v ←→ v′.

Proof: By induction on the derivation of e′ ⇓ v′ and inversion on η ` e⇐⇒
e′ in each case. �

There is a compile-time analogue to the closures that are generated in
our operational semantics at run-time. This is the so-called closure conver-
sion. To see the need for that, consider the simple program (shown in SML
syntax)

let val x = 1
val y = 2

in fn w => x + w + 1 end

How do we compile the function fn w => x + w + 1 ? The difficulty
here is the reference to variable x defined in the ambient environment.

The solution is to close the code by abstracting over an environment,
and pairing it up with the environment. This way we obtain

let val x = 1
val y = 2

in (fn env => fn w => (#x env) + w + 1, {x = x }) end

If this transformation is carried out systematically, all functions are closed
and can be compiled to a piece of each. Each of them expect and envi-
ronment as an additional argument. This environment contains only the
bindings of variables that actually occur free in the body of the function.
An application of the function now also applies the function to the envi-
ronment. For example,

let val x = 1
val y = 2
val f = fn w => x + w + 1

in f 3 end

SUPPLEMENTARY NOTES DECEMBER 3, 2002

L26.8 Environments

is translated to

let val x = 1
val y = 2
val f = (fn env => fn w => (#x env) + w + 1,

{x = x })
in (#1 f) (#2 f) 3 end

The problem with this transformation is that its target is generally not
well typed. This is because functions with different sets of free variables
will sometimes have different type. For example, the code

let val x = 1
in if true then fn w => w + x

else fn w => w + 2
end : int -> int

becomes

let val x = 1
in if true

then (fn env => fn w => w + (#x env), {x = x })
else (fn env => fn w => w + 2, {})

end

which is not well-typed because the two branches of the conditional have
different type: the first has type ({x:int } -> int -> int) * {x:int }
and the second has type ({} -> int -> int) * {}. We can repair the
situation by using existential types. Since SML does not have first-class ex-
istential type, we just use the syntax pack[t](e) for pack(τ, e). Then the
example above can be written as

let val x = 1
in if true

then pack [{x:int }]
(fn env => fn w => w + (#x env), {x = x })

else pack [{}] (fn env => fn w => w + 2, {})
end

SUPPLEMENTARY NOTES DECEMBER 3, 2002

Environments L26.9

which now has type
∃t.(t→ int→ int)× t.

An application of a function before the translation is now translated to use
open . For example,

let val x = 1
val y = 2
val f = pack [{x:int }]

(fn env => fn w => (#x env) + w + 1,
{x = x })

in open f as ’a => g => (#1 g) (#2 g) 3 end

where we wrote open e1 as t => g => e2 for open(e1, t.g.e2).
The above discussion can be summarized by closures have existential type.

When we apply this idea to objects in our encoding, we find that objects in a
functional language are also become closures and therefore have existential
type. Reconsider the simple example of a counter.

Counter = {get:1 -> int, inc:1 -> 1 };
c : Counter =

let x = ref 1
in
{get = λ :1. !x,

inc = λ :1. x := !x+1 }
end;

After closure conversion, we obtain

c : Counter =
let x = ref 1

in
pack [{x:int }]
(λr.
{get = λ :1. !r.x,
inc = λ :1. r.x := !r.x+1 },
{x=x })

end;

SUPPLEMENTARY NOTES DECEMBER 3, 2002

L26.10 Environments

which has type

∃t.(t→ {get : 1→ int, inc : 1→ 1)× t

Here, the existential type hides the private fields of the record. This justifies
the slogan that objects have existential type.

SUPPLEMENTARY NOTES DECEMBER 3, 2002

