Supplementary Notes on
Concurrent Processes

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 23
November 14, 2002

We have seen in the last lecture that by investigating the reactive be-
havior of systems, we obtain a very different view of computation. Instead
of termination and the values of expressions, it is the interactions with the
outside world that are of interest. As an example, we showed an important
notion of program equivalence, namely strong bisimulation and contrasted
it with observational equivalence of computation with respect to values.

The processes we have considered so far were non-deterministic, but
sequential. In this lecture we generalize this to allow for concurrency and
also name restriction to obtain a form of abstraction.

In order to model concurrency we allow process composition, P | P,. In-
tuitively, this means that processes P; and P, execute concurrently. Such
concurrent processes can interact in a synchronous fashion when one pro-
cess wants to perform an input action and another process wants to per-
form a matching output action. As a very simple example, consider two
processes A and B plugged together in the following way. A performs in-
put action a and then wants to perform output action b, returning to state
A. Process B performs an input action b followed by an output action ¢,
returning to state B upon completion.

A Y apAa

B ¥ peB

We assume we start with A and B operating concurrently, that is, in state
A|B

SUPPLEMENTARY NOTES NOVEMBER 14, 2002

L23.2 Concurrent Processes

Now we can have the following sequence of transitions:

A|B-“Db.A|beB— A|cB->A|B

We have explicitly unfolded B after the first step to make the interaction
between b and b clear. Note that this synchronization is not an external
event, so the transition arrow is unadorned. We call this an internal action
or silent action are write 7.

The second generalization from the sequential processes is to permit
name hiding (abstraction). In the example above, we plugged processes A
and B together, intuitively connecting the output b from A with the input
b from B. However, it is still possible to put another process in parallel
with A and B that could interact with both of them using b. In order to
prohibit such behavior, we can locally bind the name b. We write new a.P
for a process with a locally bound name a. Names bound with new a.P
are subject to a-conversion (renaming of bound variables) as usual. In the
example above, we would write

newb.A | B.

However, we have created a new problem: the name b is bound in this
expression, but the scope of b does not include the definitions of A and B. In
order to avoid this scope violation we parameterize the process definitions
by all names that they use, and apply uses of the process identifier with the
appropriate local names. We can think of this as a special form of parameter
passing or renaming.

A(a,b) = a.b.Ala,b)
B(b,c) = bc.B(b,c)
The process expression can now hygienically refer to locally bound names.
new b.A(a,b) | B(b,c)

This leads to the following language of concurrent process expressions.

Process Exps P ::= Aai,...,an) | N | (P | P)|newa.P
Sums N ::= a.P|N; +Ny|0
Action Prefix o ::= alal|r

In order to describe the possible transitions we use a structural congru-
ence, written P = () that allows us rearrange the pieces of a process expres-
sion in a meaning-preserving way. It is given by the following laws, which

SUPPLEMENTARY NOTES NOVEMBER 14, 2002

Concurrent Processes L23.3

can be applied anywhere in a process expression. We write FN for the free
names in process expression.

PIQ=Q|P PIQIR=(P|QIR PlO=P
M+N=N+M M+ (N+N)=(M+N)+N M+0=M
newa.(P| Q)= P | (newa.Q) provided a ¢ FN(P)

newa.P =P provided a ¢ FN(P)

new a.new b.P = new b.new a.P

A<b1,... ,bn> = {bl/al,...,bn/an}PA provided A(al,...,an) = PA

Renaming of variables by new is implicit here. With this definition we can
transform any process expression into a standard form

newas....neway,.(Mj | --- | My)

where we write 0 if £ = 0.

In order to define the operational semantics we take advantage of struc-
tural congruence to put the expressions that have to interact into proximity.
In this semantics, all transitions are silent.

P+ M —p u @P+M)|@Q+N) — p| g React
P— P P P— P N
P|lQ—P|Q ar newa.P — newa.P "

P=Q Q—Q Q=P

P p Struct

If we want to examine the interaction of a system with its environment
we consider the environment as another testing process that is run concur-
rently with the system whose behavior we wish to examine. As example
for the above rules, consider the following process expression.

P = (new a.((a.Q1 + bQQ) | 5.0)) | (ERl +5.R2)
Note that the output action before R, is a different name than a used as
the input action to ()1, the latter being locally quantified. This means there

are only two possible transitions.

P — (newa.(@Q
P — (newa.(Q

SUPPLEMENTARY NOTES NOVEMBER 14, 2002

L23.4 Concurrent Processes

We next present an alternative semantics in which we do not need to
resort to structural equivalence, except reassociating the terms in a sum.
In this semantics an action is made explicit in a transition, but matching
input/output actions become silent. We use A to stand for either a or a and
A for a or a, respectively.

PP QA
m; p= React;
PlQ—P|Q

M+a.P+N-5P

PP |, Q-5 qQ
o -larg > - R-Par;
PlQ—rFlQ PlQ-%5P|Q
PP (a¢{aa})
o Res;
new a.P — new a.P’
{b1/ay,...,by/an}Ps — P (A(ay,...,a) défPA)
Ident;

Alby, ..., by) = P!

As another example of this form of concurrent processes, consider two
two-way transducers of identical structure.

def

A(a,d’,bt) a.b.A(a,a’,b,V') +b'.a’. Ala,ad’,b, V)

We now compose to instances of this process concurrently, hiding the
internal connection between.

new b.new b'.(A{a,a’, b, b’y | A(b,b,c,c))

At first one might suspect this is bisimilar with A(a,d’,¢c,¢’), which
shortcircuits the internal synchronization along b and ¢'. While we have
not formally defined bisimilarity in this new setting, this new composition
is in fact buggy: it can deadlock when put in parallel with a.P, c.P’, ¢'.Q,
a’.qQ’

aPl|cP|cd.Q|a.Q | newbnewb'.(Ala,da’,b,b) | Ab, b, c,c))

— P|c.P'|d.Q|a.Q" | newb.newt . (b.A{a,a’,b,b') | Alb,V, c,c))

— P |c.P|Q|a.Q | newb.newd'.(b.Ala,a’, b,t') | b/.A(b,V ¢, c'))

At this point all interactions are blocked and we have a deadlock. This

can not happen with the process A(a,d’,c,). It can evolve in different
ways but not deadlock in the manner above; here is an example.

SUPPLEMENTARY NOTES NOVEMBER 14, 2002

Concurrent Processes L23.5

a.P|cP |cd.Q|a.qQ | Ala,d, cc)
—>P|cP’|€Q| Q|cA<aa e, d)
— PP |TQ| Q| Ala,de,d)
— P|P|Q|a. ’\7’A(a,a’,c,c’>

—>P|P'|Q|Q’\A<a,a’,c,c’>

The reader should make sure to understand these transition and re-

design the composed two-way buffer so that this deadlock situation cannot
occur.

The two forms of semantics we have given are equivalent in the follow-
ing way:

(i) If P — P'then P —— P” and P" = P’ for some P".
(ii) If P - P'then P — P'.

These theorems are proving after appropriate generalization, by inductions
over the given derivations. We do not give the proof here.

SUPPLEMENTARY NOTES NOVEMBER 14, 2002

