Supplementary Notes on
Dynamic Typing

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 20
November 5, 2002

So far, we have been working with type systems were all checking was
static, and types were not needed at run-time. In this lecture we investigate
the consequences of loosening this assumption. A language in which types
are used at run-time is called dynamically typed. Examples of dynamically
typed languages are Lisp, Scheme, and Java. There is an excellent treatment
of dynamic types in [Ch. 24]. We emphasize a few complementary points
here.

We begin with the extreme point of no static type-checking at all. We
simply take a program written in MinML and run it without type-checking
it first. Clearly, this would violate progress since a term such as apply (1,1)
is neither a value, nor can it make a step. In order to obtain a sensible
language, we need to extend our computational rules to check for such
stuck states and raise a run-time type error. We show here only the rules
for function application. First, the usual rules, written (implicitly) under
the assumption of type-correctness.

e1— €} vy value ey — €

apply (er,e2) — apply (ej,e2) apply (v1,e2) — apply (vi,e5)

(v1 =fun (f.z.e1)) wvo value
apply (vi,v2) = {va/x}{v1/f}es

Next, the rules to handle the case of a run-time type error. The first one
signals the actual error, the others propagate the error outward.

SUPPLEMENTARY NOTES NOVEMBER 5, 2002

L20.2 Dynamic Typing

vy value (vp #fun (f.z.e1)) wvo value

apply (vi,v2) — error

v1 value
apply (error,ey) +— error apply (vi,error) +— error

The rest of the operational semantics should be extended in a similar
way. In particular, there need to be additional rules for primitive operations
and other elimination forms (conditionals, projections, case expressions,
etc.) in the case of a dynamic type error.

In the resulting language, we can write and execute expressions such as

if true then 1 else AX. X — 1
[1, true, AX. X] value
(hd (tl (tl [1, true, AX. X]))) 3 —* 3

where we used ML-style notations for lists.

With these additions, we can recover preservation and progress. We
assume here that we still want to statically compile the program, so free
variables are still not permitted (e must be closed, that is, FV(e) = {}).
Preservation is somewhat trivialized.

Theorem 1 (Preservation)
If e is closed and e — €’ then €’ is closed.

It is also posssible to talk about expressions e that happen to be well-
typed. In that case, evaluation preserves types, since we have only added
rules to the operational semantics in a conservative way.

Theorem 2 (Progress)
If e is closed then either

(i) e value, or
(ii) e = error, or
(iii) e +— €' for somee’.

The main conceptual cost of dynamic typing is the inability to discover
errors early: code that does not happen to be executed can have lurking
bugs that would be obvious to a type-checker. However, there is also an

SUPPLEMENTARY NOTES NOVEMBER 5, 2002

Dynamic Typing L20.3

implementation cost. We cannot simply compile a program with the same
strategy as may be possible for a statically typed language, because we
must be able to perform the run-time type checks. Fortunately, this is not
as bad as it sounds, since we do not need to have the precise type of a
function, we only need to know where it is in fact a function or not.

In order to make tags explicit, we can change the syntax of our lan-
guage; see [Ch. 24] for the details. Here we show that we can make such
tags explicit in a statically typed language. The small price we pay for this
is that now the user program or library will have to do some tag-checking.
But this means we can tag-check precisely where necessary, instead of ev-
erywhere in the program.

In ML, we would write such a tagged datatype as

datatype tagged =
Int of int
| Bool of bool
| Fun of tagged -> tagged -> tagged

Note that we do not explicitly represent bound variables, as they are mapped
to bound variables in ML. This is an application of the idea of higher-order
abstract syntax.

As a reminder, here is how we would write this type using plain recur-
sive types instead.

tagged = pt.int 4+ bool + (t — t —)

Instead of named tags, as in the datatype declaration above, we use com-
positions of inl and inr as tags.

Now the elimination forms become functions on tagged representa-
tions. We show one primitive operator, conditional, and application.

exception TypeError

fun checkedMult (Int(n), Int(m)) = Int(n*m)
| checkedMult _ = raise TypeError

fun checkedIf (Bool(true), el, e2) = el ()
| checkedIf (Bool(false), el, e2) = e2 ()

| checkedIf _ = raise TypeError
fun checkedApply (v1 as Fun(g), v2) = g vl v2
| checkedApply _ = raise TypeError

SUPPLEMENTARY NOTES NOVEMBER 5, 2002

L20.4 Dynamic Typing

Heterogeneous lists now become lists of tagged data. This is in fact
exactly the same as the representation in a purely dynamically typed lan-
guage, except that the tagging is visible to the programmer. For example,
the following are all well-typed and execute as expected:

val hetList : tagged list =

[Int 1, Bool true, Fun (fn _=> fn x = X)];
val f : tagged = hd(tl(ti(hetList)));
val x : tagged = checkedApply (f, Int(3));

The non-terminating self-application example can also be written quite
easily using checked application. Note that even though functions can in
principal be recursive in our encoding, we do not use this feature here to
give a correct implementation of the dynamically typed (Az.xz x) (Az.x x).

val omega : tagged =
Fun (fn _ => fn x => checkedApply (X, X));
checkedApply (omega, omega);

As expected, this last expression diverges.

It is also interesting to consider if we can perhaps use subtyping to al-
low us to write heterogenous lists. For example, if we had a universal type
T that includes all values, one might expect

[1, true, AX. X] T list

In order to see if this is indeed the case, we consider the laws that T
should satisty. First, every value should have type T. Second every type
should be a subtype of T.

v value
I'Fo:T T<T

There are no other rules regarding T. Clearly, it is necessary to require v to
be a value in the first rule in order to save the progress theorem.
Now, indeed, we have

[1, true, X, X] T list

SUPPLEMENTARY NOTES NOVEMBER 5, 2002

Dynamic Typing L20.5

However, we find we cannot use such a list in a non-trivial way. For exam-

ple

val hetList : T list = [1, true, AX. X];
val f: T = hd(ti(ti(hetList)));

Now the application f 3 would not be well-typed, because f is not known
to be a function, only a value of type T.

In order to use f, we must introduce a downcast operator into the lan-
guage, that allows us to check explicitly at run-time if a given value has a
specified type, and raise an error otherwise. We could then write

((int -> inH)f) 3

and it would type-check. Of course, at this point we realize we haven't
made any progress, because the function still must be tagged with its type
in order to verify the correctness of the downcast at run-time. In fact, we
would need to keep more information to verify the precise form of the func-
tion’s type, rather than just the information that it is a function.

Note that his form of downcast is very different from an unsafe version
of cast where (7)e will be treated as if it has type 7, regardless of the actual
type of the value of v. In a language like C this cannot be repaired, because
data are not tagged and no run-time checking of tags is possible.

What would be the coercion interpretation of the T type? Recall that
intersection types are interpreted as pairs. If we think of T as a 0-ary inter-
section, it should logically be interpretated as a 0-ary product, namely the
unit type.

Ar.():T7<T

Intuitively, this is also meaningful: the coercion from any type to T is
unique (the constant function) and coherence is preserved. Knowing that
v : T carries no information.

This points out an important property of the coercion interpretation of
subtyping: since we run the program after all coercions have been applied,
any term that was assigned type T via a subtyping coercion may not be
executed at all! This is nonetheless consistent since essentially only values
have type T directly. But this means that we cannot implement down-
casting in a coercion interpretation of subtyping. Again, intuitively this
make sense: since a coercion from 7 to o where 7 < o loses information,

SUPPLEMENTARY NOTES NOVEMBER 5, 2002

L20.6 Dynamic Typing

we cannot in general recover an element of the original type 7 if we try to
downcast a value of type o.

On the other hand, under the subset interpretation of subtyping, a co-
ercion is useless, since all coercions will be the identity: if a value of type 7
is a value of type o then there is no need to apply a coercion. In that case
downcasting as a run-time operation that may fail makes sense: in a down-
cast (7)e for e : 0 we evaluate e, and then verify if it has type 7. The latter
operation will, of course, require tags or some other method to check that
a given value has a specified type at run-time.

These observations help to explain why objected-oriented languages
such as Java, which rely heavily on downcasting, have a subset interpre-
tation of subtypes that arise from subclassing. In such languages objects
are tagged with their class, which makes it quite efficient to implement
downcasts or the related instanceOf operation. Of course, it is critical
that viewing an object of a class as an element of the superclass does not
apply a coercion, dropping extra fields, because later downcasts could not
undo this damage.

Also, in Java there is a class Object which is a superclass of any other
class. This almost corresponds to T, except that Java also has primitive
types such as int or float . Given that Java performs coercions on int
and float we could summarize the situation as coercive subtyping on
primitive types and subset subtyping on objects.

SUPPLEMENTARY NOTES NOVEMBER 5, 2002

