
Supplementary Notes on
Objects

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 19
October 31, 2002

In this lecture we extend the encoding of objects using records and sub-
typing from the previous lecture to allow open recursion through self. We
still follow Chapter 18 of Benjamin C. Pierce: Types and Programming Lan-
guages, MIT Press, 2002.

Classes with Self. First, we show how “self”, that is, invoking of methods
part of the current objects, can be encoded directly. This technique does not
model open recursion (also called late binding of self).

The basic idea of this first approach is to use a fixed point construct in
order to allow the methods of in an object to refer to the object itself. The
fixpoint operator is orthogonal to all other operators in the language and
can be defined with

Γ, f :τ ` e : τ

Γ ` fix f.e : τ fix f.e 7→ {fix f.e/x}e

There are no new values. Type preservation requires that all three types
involved in the definition of fix be the same.

Now we take a slight modification of the previous example, extending
the class to allow get , set , and inc methods. Internally, the inc method
refers to set and get instead of accessing the private fields directly.

SUPPLEMENTARY NOTES OCTOBER 31, 2002

L19.2 Objects

CounterRep = {x:int ref };
SetCounter = {get:1 -> int, set:int -> 1, inc:1 -> 1 };
setCounterClass : CounterRep -> SetCounter =

λr:CounterRep.
fix self:SetCounter.
{get = λ :1. !(r.x),

set = λi:int. r.x := i,
inc = λ :1. self.set (self.get() + 1) };

newSetCounter : 1 -> SetCounter =
λ :1. let r = {x = ref 1 } in setCounterClass r end;

To see this representation in action, we apply the operational semantics
to newSetCounter().inc() in the empty store. Each line constitutes a
state of the machine, although we skip several intermediate steps.

<., newSetCounter().inc()>
<., let r = {x=ref 1 } in setCounterClass r end.inc()>
<c=1, (setCounterClass {x=c }).inc()>
<c=1, (fix self.

{..., inc= λ :1. self.set(self.get()+1) }).inc()>

At this point we abbreviate

s = fix self. {..., inc = λ :1. self.set(self.get()+1) }

and continue execution with

<c=1, {...,inc= λ :1. s.set(s.get()+1) }.inc()>
<c=1, λ :1. s.set(s.get()+1)()>
<c=1, s.set(s.get()+1)>
<c=1, s.set((λ :1. !({x=c }.x))()+1)>
<c=1, s.set(!({x=c }.x)+1)>
<c=1, s.set(2)>
<c=2, ()>

Open Recursion through Self. The previous encoding is perfectly ade-
quate, yet it does not model a feature available in many object-oriented
languages, namely open recursion. This feature means that in a subclass of
SetCounter that overrides set but not inc , the references to self will
be to the set and get methods of the subclass. This feature is somewhat
unfortunate, because it breaks encapsulation: as we will see after we have

SUPPLEMENTARY NOTES OCTOBER 31, 2002

Objects L19.3

modeled the feature, client code will depend on internals of the implemen-
tation of a superclass.

To model this feature we move the recursion outside the object itself to
the place where it is created.

setCounterClass : CounterRep -> SetCounter -> SetCounter =
λr:CounterRep.

λself:SetCounter.
{get = λ :1. !(r.x),

set = λi:int. r.x := i,
inc = λ :1. self.set (self.get() + 1) };

newSetCounter : 1 -> SetCounter =
λ :1. let r = {x = ref 1 }

in fix self. setCounterClass r self end;
InstrCounterRep = {x:int ref, a:int ref }
InstrCounter =
{get:1 -> int, set:int -> 1,

inc:1 -> 1, accesses:1 -> int }
instrCounterClass :

InstrCounterRep -> InstrCounter -> InstrCounter =
λr:InstrCounterRep.

λself:InstrCounter.
let super = setCounterClass r self

in
{get = super.get,

set = λi:int. (r.a := !(r.a)+1; super.set i),
inc = super.inc,
accesses = λ :1. !(r.a) }

end;

The previous problem has now been solved, yet a new problem has
arisen, because creating objects of type instrCounterClass By using the
standard technique of unit-abstractions, we can overcome this problem (see
Chapter 18.11 of Pierce’s book). We will not go into those details here.

We close the lecture by exhibiting that this form of late binding of self
breaks encapsulation and is extremely dangerous when writing a library. It
means that the behavior of a subclass can depend on specifics of the (sup-
posedly invisible!) internal of the library class. The example we show here
is taken from Item 14 of Joshua Bloch: Effective Java, Addison-Wesley, 2001,

SUPPLEMENTARY NOTES OCTOBER 31, 2002

L19.4 Objects

The following code uses inheritance inappropriately, as the example at
the end shows.

// Broken - Inappropriate use of inheritance!
public class InstrumentedHashSet extends HashSet {

// The number of attempted element insertions
private int addCount = 0;
public InstrumentedHashSet () {
}
public InstrumentedHashSet(Collection c) {

super(c);
}
public boolean add(Object o) {

addCount++;
return super.add(o);

}
public boolean addAll(Collection c) {

addCount += c.size();
return super.addAll(c);

}
public int getAddCount() {

return addCount;
}

}

Now the following sequence

InstrumentedHashSet s = new InstrumentedHashSet();
s.addAll(Arrays.asList(new String[]

{"Snap", "Crackle", "Pop" }));
s.getAddCount();

may return either 3 or 6, depending on whether the library implementation
of addAll has internal calls to add or not.

To the writer of this library this means he must either fully document
the internal call patterns of the library, or risk breaking a lot of client code
when improving internal data structures. Bloch suggests that it is often
better to prohibit inheritance, for example, making constructors private,
and using composition instead of inheritance. Precisely the same technique
would be used in Standard ML’s module system to obtain the effect by in-
heritance. First, the corresponding Java code.

SUPPLEMENTARY NOTES OCTOBER 31, 2002

Objects L19.5

// Wrapper class - uses composition in place of inheritance
public class InstrumentedSet implements Set {

private final Set s;
private in addCount = 0;
public InstrumentedSet(Set s) {

this.s = s;
}
public boolean add(Object o) {

addCount++;
return s.add(o);

}
public boolean addAll(Collection c) {

addCount += c.size();
return s.addAll(c);

}
public int getAddCount() {

return addCount;
}
// Forwarding methods
public void clear() { s.clear (); }
public boolean contains(Object o) { return s.contains(o); }
public boolean isEmpty() { return s.isEmpty(); }
// ...
public String toString () { return s.toString(); }

}

In the place of // ... all the relevant public methods of s are exported
again. In ML we would use a wrapper functor instead (assuming we really
wanted the implementation of Set to be ephemeral):

SUPPLEMENTARY NOTES OCTOBER 31, 2002

L19.6 Objects

signature InstrumentedSet =
sig

include Set
val getAddCount : unit -> int

end;
functor InstrumentWrapper (structure S : Set)

: InstrumentedSet =
struct

val addcount = ref 0
open S
fun add(o) = (addcount := !addcount+1; S.add(o))
fun addAll(c) = (addcount := !addcount+List.length(c); S.addAll(c))
fun getAddCount() = !addCount

end;
structure InstrumentedSet = InstWrapper (structure S = Set);

We would like to emphasize that open recursion is indeed an anti-modularity
feature that breaks encapsulation. Any programmer that prepares libraries
in a language like Java should be aware of this, and know how to avoid its
pitfalls that are sometime difficult to detect.

There are many other features of object-oriented languages that we have
not yet modeled. We return to some of them in the next lecture. Here we
would like to discuss overloading. In Java it refers to the fact that a method
name can be reused, as long as all its argument types are different. We
only discuss it on simpler examples, namely the overloading of addition.
Assume we have two internal functions, +int and +float that add integers
and floating point numbers.

In the concrete syntax of the language, we would like to use + and let
the type checker sort out which of the two versions of addition should be
used. Intersection types, in conjunction with subtyping, allow precisely
that. We write τ ∧ σ for the intersection between τ and σ. We have the
following rules:

Γ ` v : τ1 Γ ` v : τ2 v value
Γ ` v : τ1 ∧ τ2

∧I

Γ ` e : τ1 ∧ τ2

Γ ` e : τ1
∧E1

Γ ` e : τ1 ∧ τ2

Γ ` e : τ2
∧E2

The restriction of the intersection introduction rule to values is necessary
for soundness in the presence of mutable references. The counterexample
(which we do not show here) echoes the related counterexample that re-
quires the value restriction in Standard ML.

SUPPLEMENTARY NOTES OCTOBER 31, 2002

Objects L19.7

Together with the introduction and elimination rules, we also have three
subtyping rules, working on the left or the right hand side.

τ ≤ σ1 τ ≤ σ2

τ ≤ σ1 ∧ σ2
∧R

τ1 ≤ σ
τ1 ∧ τ2 ≤ σ

∧L1
τ2 ≤ σ

τ1 ∧ τ2 ≤ σ
∧L1

With these concepts, we can now declare

+ : (int → int → int) ∧ (float → float → float)

Below are several judgments that check with these declarations.

3 + 4 : int
3.0 + 4 : float
3 + 4.0 : float

3.0 + 4.0 : float

We use the ∧E1 rule in the first case, and ∧E2 to extract the appropriate
type for + in each judgment. As before, we also need to coerce the integer
arguments to floating point numbers, in the middle two examples.

Since we are using a coercion interpretation of subtyping here, we have
to show how to interpret intersection types. From the primitive function
+ we can see that a constant of intersection type actually corresponds to a
pair of two functions

pair (+int,+float) : (int → int → int)× (float → float → float)

From this we can extend interpretation through the whole type hierar-
chy. We achieve this by annotating a type derivation by the fully explicit
expression it generates. We also extend the annotation of the subtyping
rules to account for the new coercion. The judgment is Γ ` e : τ =⇒ e′

where e′ is an explicit term without any uses of subtyping or intersection
types. It has type τ ′ which is generated from τ by replacing intersections
(∧) by products. We write τ for this operation.

Γ ` v : τ1 =⇒ v1 Γ ` v : τ2 =⇒ v2 v value

Γ ` v : τ1 ∧ τ2 =⇒ pair (v1, v2)
∧I

Γ ` e : τ1 ∧ τ2 =⇒ e′

Γ ` e : τ1 =⇒ fst (e′)
∧E1

Γ ` e : τ1 ∧ τ2 =⇒ e′

Γ ` e : τ2 =⇒ snd (e′)
∧E2

SUPPLEMENTARY NOTES OCTOBER 31, 2002

L19.8 Objects

For most other constructs the propagation of the explicitly typed term
is straightforward. We show only a few further cases

(Γ = Γ1, x:τ,Γ2)
Γ ` x : τ =⇒ x

var
Γ ` e : τ =⇒ e′ f : τ ≤ σ

Γ ` e : σ =⇒ f(e′) sub

Subtyping introduces no new ideas.

f1 : τ ≤ σ1 f2 : τ ≤ σ2

λx.pair (f1(x), f2(x)) : τ ≤ σ1 ∧ σ2
∧R

f1 : τ1 ≤ σ

λx.f1(fst (x)) : τ1 ∧ τ2 ≤ σ
∧L1

f2 : τ2 ≤ σ

λx.f2(snd (x)) : τ1 ∧ τ2 ≤ σ
∧L2

Recall that τ replaces intersections by products. We extend this opera-
tion to context by applying it to each type declaration.

Theorem 1 (Coercions)
(i) If τ ≤ σ then f : τ ≤ σ for some f .

(ii) If Γ ` e : τ then Γ ` e : τ =⇒ e′ for some e′ with Γ ` e′ : τ .

Proof: By rule induction on the given derivations. �

Note that we also want f and e′ to be unique. However, this can only
be true extensionally, since subtyping derivations (and therefore typing
derivations) are not uniquely determined. In other words, we do not for-
malize here the all-important property of coherence.

We cannot execute or define the operational semantics directly on a
source expression e, because the process of inserting the coercions performs
the overloading resolution. As in Java, this process is completely static,
that is, happens before the program is ever executed. The above should
therefore be considered a reasonable model for the kind of overloading
present in object-oriented languages. Other languages, such as Haskell,
permit overloading, but overloading is not resolved until run-time—this
requires different techniques for both proving progress and preservation
than we discuss here.

SUPPLEMENTARY NOTES OCTOBER 31, 2002

