Supplementary Notes on
Records

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 18
October 29, 2002

A common generalization of the notion of a product is a record. A record
is like a tuple, except that the components are named explicitly by a record
label. All labels in a record must be distinct. Records can also be used
as the foundation for object-oriented programming idioms in a functional
language. In the case, an object would be represented as a record, and a
record label would be either a field name or a method name.

We begin by studying records in themselves; later we consider how to
model some features of objects. We extend the type system by record types
that we denote by p; we use [ to denote record labels.!

Types 7 ::= ... |{p}
Record Types p ::= .|l p

We extend expressions to allow the formation of records, denoted by r,
and also the selection of a field from a record, written as e.l for a record
label 1.

Expressions e ::= ...|{r}|el
Records r ::= -|l=e,r

We sometimes use parentheses to enclose record types or record so the
scope of the ‘,’ is more clearly visible. Such parentheses are not properly
part of the syntax of the language. We have a new typing judgment r : p,
used in the following rules.

'Not to be confused with memory locations that we use to study mutable references.

SUPPLEMENTARY NOTES OCTOBER 29, 2002



L18.2 Records

'kr:p Trke:{p} p=p1,lit,p2
r'-{r}:{p} Fkel:T

'kFe:7 T'kr:p
L=():() 't (I=e,r) : (L1, p)

Note that the field selection operation e.l will always yield a unique
answer on well-typed records. This is because labels in a record must be
unique. The order of the fields in a record is significant, although we dis-
cuss below how this can be relaxed using exchange subtyping for records.

In this notation, the empty record expression corresponds to the unit
type. Note that there is a minor ambiguity in that the empty record and its
type are both denoted by ‘-, thatis, - {-} : {-}. As usual, we omit a leading
‘in a record.

A pair pair (e, ez) can represented by the record {1=e;,2=e2}. Then
the first and second projection are defined by fst (e) = e.1 and snd (e) =
e.2, respectively. This is the approach taking in Standard ML, using the
notation #I(e) instead of e.l.

Records in this form may make code more readable, because instead
of writing fst (e), we write e.l, where [ is presumably a meaningful label.
However, a much greater advantage can be derived from records if we add
rules of subtyping. Before we describe this, we give the operational seman-
tics for records. There are two new judgments, » value and r — . A
record is a value if all fields are values, and we evaluate the components of
a record from left to right.

r—r
{r} = {r'}

v value 7 value
(1) value (I=v,r) value
e— e ri—r

(I=e,r) — (I=€,r) (I=v,7) — (I=v,7’)
e ¢ r value 7= (ry,l=v,ry)
el el {r}l—w

The progress and type preservation theorems now also have to account
for the new judgment, but this is entirely straightforward and omitted here.

SUPPLEMENTARY NOTES OCTOBER 29, 2002



Records L18.3

There are three forms of subtyping that can be considered together or
in isolation: depth subtyping, width subtyping and exchange subtyping.

The general rule passes from ordinary types to record types and is com-
mon to all forms of subtyping.

p<p
{p} < {0’}

<record

Depth subtyping. This is the idea we used for product subtyping, applied
to records. Subtyping is co-variant in all fields of a record.

<7 p</y
(L1, p) < (L7, )

<(field <gqempty

(=<0

We do not show formally how to construct coercions, but consider the
following sample coercion.

Ar{z=itof (r.z), y=itof (r.y) } : {z:int, y:int} < {z:float, y:float}

Width subtyping. The idea of width subtyping is that we can always co-
erce from a record with more fields to a record with fewer by dropping
some extra fields. We separate out the idea of exchange and allow fields to
be dropped only at the end of a record.

p=p
(Ir,p) < (L7, )

<y field <wempty

p<()

Note that the <, field rule does not allow any subtyping on the field itself—
this would require the combination of width and depth subtyping.

We can give width subtyping both a subset and a coercion interpreta-
tion. The subset interpretation would say that a value of type {p} can be
any extension of {p, p'}: the additional fields p’ are simply ignored. This is
common in object-oriented languages. It requires a so-called boxed repre-
sentation where every object is simply a pointer to the actual object, so that
for the purpose of argument passing, every record has the same size.

The coercion interpretation would explicitly shorten the object, which
is not usually practical. Nonetheless, under this interpretation we might
have a coercion such as

Ardz=r.z,y=r.y} : {z:float, y:float, c:int} < {x:float, y:float}

SUPPLEMENTARY NOTES OCTOBER 29, 2002



L18.4 Records

Exchange subtyping. This means we can reorder the fields. We formalize
this by allowing corresponding fields to be picked out from anywhere in
the middle of the record.

< / /
(p1,p2) = (P, P5) < empty

<,field
(or. 7 p2) < (P Erply) =

()=()

An implementation that allows exchange subtyping would typically
sort the fields alphabetically by field name.

It is straightforward to construct type systems for record that combine

depth, width, and exchange subtyping. We will see what is needed in or-
der to model some object-oriented features, following Chapter 18 of Ben-
jamin C. Pierce: Types and Programming Languages, MIT Press, 2002. We
only sketch the rationale and implementation below; for more detail see
the above reference.
Objects. As a very first approximation we think of an object as a record
with some internal state. This internal state is encapsulated in that it can
only be accessed through the visible fields of the method. We use a simple
counter as an example.

Counter = {get:1 -> int, inc:i1 -> 1 h
c . Counter =
let x = ref 1
in
{get = A_1l. Ix,
inc = A2l x = Ix+1  }
end;

In the terminology of object-oriented languages, X is a private field, acces-
sible only to the methods get and inc .

We can increment and then read the counter by sending messages to C.
This is accomplished by calling the functions in the fields of c.

(c.inc(); c.inc(); c.get()); —* 3

Object Generators. We can package up the capability of creating a new
counter object.

SUPPLEMENTARY NOTES OCTOBER 29, 2002



Records L18.5

newCounter : 1 -> Counter =
Azl
let x = ref 1 in
{get = A_1. Ix,
inc = A2l x = Ix+1 }
end;

Subtyping. We can easily create an object with more methods. Width sub-
typing allows us to use the object with more methods in any place the the
object with fewer methods is required.

ResetCounter =

{get:1 -> int, inc:1 -> 1, reset:l -> 1 b
newResetCounter : 1 -> ResetCounter =

Aol

let x = ref 1 in
{get = A_1. Ix,
inc = A.l. x = Ix+1,
reset = A:l. x =1 }
end;

Grouping Instance Variables. The instance variable z was just a single
variables; it is more consistent with the approach to group them into a
record. The modification is completely straightforward.

Counter = {get:l -> int, inc:1 -> 1 h
newCounter : 1 -> Counter =
Azl
let r = {x =ref 1 } in
{get = A_:1. I(r.x),
inc = A1l rx = I(rx)+1 }
end;

Simple Classes. We can extract the instance variables and make them a
parameter of the instance creation mechanism. This will allow us to give a
simple model of subclassing and inheritence.

SUPPLEMENTARY NOTES OCTOBER 29, 2002



L18.6 Records

CounterRep = {x : int ref  };
Counter = {get:l -> int, inc:i1 -> 1 h
CounterClass : CounterRep -> Counter =

Ar:CounterRep.

{get = A_1. I(rx),

inc = Azl rx = I(r.x)+1 h

newCounter : 1 -> Counter =

Azl let r = x=ref 1 in counterClass r end;

The possibility of a shared representation allows us to create an instance
of the ResetCounter subclass by first constructing a Counter .

ResetCounterClass : CounterRep -> ResetCounter =
Ar:CounterRep.
let super = counterClass r in
{get = super.get,
inc = super.inc,

reset = A:l.rx =1 }
end,
newResetCounter : 1 -> ResetCounter
Azl let r = {x=ref 1 } in resetCounterClass r end;

Adding Instance Variables. So far, subtyping only allows us to use in-
stances of a subclass where instances of a superclass are required. When
we add instance variables, we need it in another place, namely where the
representation of the instance of the superclass is created.

SUPPLEMENTARY NOTES OCTOBER 29, 2002



Records L18.7

BackupCounter =
{get:1 -> int, intt1 -> 1, reset:l -> 1,
backup:l -> 1 };
BackupCounterRef =
{x:int ref, b:int ref h
backupCounterClass =
Ar:BackupCounterRep.
let super = resetCounterClass r in % subtyping here
{get = super.get,
inc = super.inc,
reset = A_l. r.x = I(r.b),
backup = A:1. r.b = I(r.x) }
end;

As we can see, references to instances of the superclass are easy. But ref-
erences to the methods of the class itself within the method are somewhat

tricker, but an essential technique in object-oriented languages. We discuss
this in the next lecture.

SUPPLEMENTARY NOTES OCTOBER 29, 2002



