Supplementary Notes
Lecture 17: Bidirectional Typing

15-312: Foundations of Programming Languages
Joshua Dunfield (joshuad@cs.cmu.edu)

24 October 2002

1 Type Inference: The Good, The Bad

So far (as formulated in Assignments 2 and 4, for instance), the typing prob-
lem has always been:

Given a context I' and term e, produce its type 7 (or fail if it has
no type).

This is the same problem as type inference in core SML (SML without mod-
ules). It’s possible to annotate any SML expression with a type; this is often
highly desirable, given SML/NJ’s suboptimal type error reporting, since
it tends to produce type error messages in which the claimed error site
actually is the error site. But it is never necessary (again, without modules—
we’ve already seen how existential types make type inference impossible).
We haven't really tried to do this in MinML; while the form of the prob-
lem is the same, we have always required certain types to be explicitly
annotated, in particular, on function declarations. As we expanded the
language, this became increasingly annoying; the type annotation on raise,
for example, seems particularly gratuitous.

It’s well understood how to do full type inference, SML-style: generate
constraints and unify the variables. Why haven’t we done this, since it
would allow us to get rid of the type annotations on raise and so forth?
There are two reasons:

1. It's somewhat complicated. It would probably be a full programming
assignment, and there are more interesting things to do.

2. After a while, it stops working.

What do I mean by that? If you add existentials to your language, you can’t
infer all types. If you add sums, you can’t infer all types—what is the type
of

inl(5)

? If you add something more exotic, like intersection types or refinement
types, you can’t infer all types. Most relevantly, you can’t do subtyping.
Consider the subsumption typing rule

I'kFe:oco o<~
I'kFe:r

What does this say? To infer type 7 for e, we must infer type o for e and
show o < 7. Right away there’s a problem: there’s nothing to keep us from
recursing forever. But hey, infinite recursion is silly. We can just agree to
not apply the subsumption rule twice in a row. (Why is this complete?)

Unfortunately, that was the least of our problems. We have e : ¢. But
we have to show ¢ < 7. What is 7? We have no idea. We have to guess a 7
that will make the rest of the typing derivation work.!

Life would be so much easier if we were given the type, instead of hav-
ing to infer it.

(Sub)

2 No Type Inference: The Ugly

Instead of inferring types, let’s check them. The problem of typing becomes

Given a context I, a term e, and a type 7, return true iff e checks
against 7.

Now everything is very easy. There’s just one little problem: if we do this
everywhere, we have to write so many type annotations that the language
becomes unusable.

(2 :int) + (2 :int) : int

3 Some Type Inference

In practice, languages use some mixture of inferred types and checked
types. C? and Java are examples: types have to be given with all functions

!This is similar to the problem with implementing the transitivity rule, discussed in
recitation.
20f course, C’s type system is almost meaningless, but that’s beside the point.

and variable declarations, but not for things like 2 + 2. SML is another
example: inference suffices for the core language but not the module lan-
guage, since modules correspond to existential types. Saying that structure
FOO ascribes to signature Foo amounts to writing an annotation on an ex-
istential type.

Likewise, intersection types o & 7 can’t be inferred because in the rule

I'rv:o Thw:T
'Fov:0& T

one has to guess both ¢ and 7 (and in fact there are an infinite number of
intersection types for any well-typed term: 0 & 0, (60 & 0) & 0, ...).

We would like a system that is

(&Intro)

1. Practical (not just decidable, but efficient too);

2. Usable (needing only a reasonable number of type annotations, easy
to understand, predictable, good error reporting, ...?);

3. Aesthetically pleasing.

4 Bidirectional Typing

The idea is to have both inference and checking judgments in the same
system. In the inference judgment

I'elrT

one is given I' and e and must produce a 7 (or fail). In the checking judg-
ment
I'kelT

one is given everything—I, ¢, and 7—and must simply return true iff the
judgment is derivable.

We can move between the two judgments as follows. First we introduce
a new syntactic form, the type annotation, written

e T Anno (e, T)

If we need to infer a type for a term, but no type can be inferred (for exam-
ple, if the term is a pack), the user has to give a type annotation. Then we
can check against the annotation. The rule is

I'telT

TF(c: 7) 17 A0

So we can move from inferring a type for an annotated term to checking
the term against a type. How can we move in the other direction? If we can
infer type 7 for e, e certainly should check against 7.

I'kelr

I'kelr
However, the subsumption rule subsumes?® this rule. The bidirectional
subsumption rule is

(AlmostSub)

I'telo o
I'kelT

Now (AlmostSub) is derivable from (Sub) using reflexivity of subtyping.

These are the only rules where we move between inference and check-
ing of the entire term e; in the other rules, we will variously check or infer
subterms of the term e whose type is being inferred or checked against.

In general, for each syntactic form in MinML, we have a rule concluding
... T Tor... | 7. Insome cases, it's easy to see which is appropriate. The
types of free variables can always be found in the context I', so we can
always infer a type for a variable, and we can always infer a type for a num

=7 (Sub)

I'=Ty,z:7,T

W (Var) num(k) 1 int (Int)

To type a function (without type annotations), we might try
Izxiokel T

I'Ffun f(x)is eend 1o —

But this would require us to guess both o and 7. What we want is

(bad-Fun)
-

I, fioor,xcokFe| T
I'tfun f(x)is eend | o — 7
(Note about new vs. old syntax for annotating functions.) The rule for
lambdas is just the same but without f:
I'zobkel] T
I'Xe.elo—r
To type an application e;es:

I'FegTo—=71 TFelo
Ff—elegTT (App)

(Fun)

(Lam)

Example: (Az.z*2):int —int

S0ow.

zint Fax*x2 | int
FAx.z*x2]int —int
We type the body of the A as follows: the body is an application, so we
want to use the (App) rule, but (App) is an inference judgment and we are
trying to derive a checking judgment. So we use the subsumption rule.

xint Fax*x27 <int
zint Fax*x2 |int
FAr.xx2 |int —int

Then we use a rule for % (write it!), which infers its result and checks its
arguments, analogous to (App).

x:int F x:int x:int F 2:int
xint Fxx27int int <int
ziint Fx*x2 | int
FAx.z*2]int —int

Example:
fun mapdouble(¢)is intmap (Az.x +2) fend: intlist — intlist

LetI' =intmap : (int —int) — intlist — intlist, ¢:intlist.
I'Fintmap (A\z.x %2) £] < intlist
& intmap (Az. x x2) £ | intlist

The next step is to use (App). The function is intmap (A\z. x * 2) and we're
applying it to ¢, so we need to infer a type for intmap (A\z. x * 2).
I'Fintmap (Az.x*2) T re=¢]
I'Fintmap (Mz.x%2) £] < intlist
I' - intmap (Ax. x % 2) £ | intlist

But intmap (A\z. x * 2) is also an application, so we use (App) again.

I' F intmap 1 ' (A\z.z%x2) |
I'Fintmap (Az.x*2) T re=¢]
I'Fintmap (Az.x*2) €7 < intlist
I'Fintmap (Ax. x *2) ¢ | intlist
Now we have to infer a type for intmap, but we can always infer a type for a
variable by using (Var). The first argument to intmap has type int — int ,

so we must check Az. x x 2 against int — int —which we just did in the
preceding example.

Printmap ... T'F(Az.xz=*2)]int —int
I' Fintmap (Ax. x *2) T intlist—intlist r=¢]
I'Fintmap (Az.x*2) €7 < intlist
I'Fintmap (Ax. x *2) ¢ | intlist

Fkintmap ... TF(Az.z%2)|int —int
I'Fintmap (Az. x * 2)] intlist—intlist I'F /| intlist
I'Fintmap (Ax. x *2) £ 1 intlist intlist < intlist
'+ intmap (Az. z*2) £ | intlist

4.1 Let

I'Feg o T,xiokey|T
I'klet (e, z.e) | T

(Let)

4.2 Sums

So it seems to work nicely for functions. Let’s look at sums, which were an-
noying without bidirectional typing because (for example) inl (5) doesn’t
have a unique type. Since it doesn’t have a unique type, we need to check
it against a type rather than try to infer a type.

I'telmn (Inl) I'ktelmn
THinl (e) | 71+ 7 FEinr (e) | 1+

(Inr)

I'teln+7mn TDazimbelo Taxembey|o
I' - case (e, zy.e1,22.€2) | 0

(Case)

A peculiarity of bidirectional typing is that it doesn’t work for many con-
trived programs. For example, case (inl (5),21.0,z2.1) 1int is not well-
typed unless we annotate inl (5). But no real program would create a sum
and immediately take it apart. In practice, one almost always does a case
on a variable, or on some function application—in which cases we can infer
the type, and need no annotation.

Moreover, whenever an expression appears as the body of a function,
we check it against the (usually annotated) result type of the function. So
we can return an injection from a function with no additional type annota-
tions, beyond the type annotation for the function. And, as we saw in the
intmap example, sometimes we don’t even need to annotate the function.

6

Before looking at how bidirectional typing behaves with other types,
let’s consider the formal properties of the system.

4.3 Soundness and Completeness

When we examine bidirectionality in connection with the dynamic seman-
tics, several questions arise. The first is: How should preservation and
progress be formulated? Perhaps we could formulate preservation as

(1) IftefrTande— ¢ thenk¢€ T 7
Q) Ifte] Tand e e thenk¢ | T

But this becomes very messy; even proving that (A\z.e)v — {v/z}e pre-
serves types is nasty. The type 7 of (Az.e)v is inferred, so we have case
(1), but the premise of (Lam) is a checking judgment, so we don’t have
x:0 e T 7 which would lead (by substitution) to {v/x}e T 7.

Besides, e may have type annotations. While we can certainly write a
rule

(e: 7)—e

it doesn’t remotely correspond to any reasonable model of computation.
The formulation

Ifrelrtorke|Tander € thenke' T Torke | 7

might be correct, but it suggests that we don’t actually care about the di-
rection. Which is indeed the case: we use bidirectionality so we can write
the typechecker; it has nothing to do with running the program. Indeed,
since type annotations are (in some cases) essential to bidirectional typing,
and types should not matter at runtime, there seems to be a gulf between
bidirectional typing and dynamic semantics.

Since we know how to state (and prove) preservation and progress for
a non-bidirectional type system, why not have a non-bidirectional system
as well, and show that we can get from a bidirectional typing to a typing
in that system? The non-bidirectional system I have in mind is simply the
bidirectional system without (Anno) and with all T, | changed to :. For-
mally:

Theorem 1 (Soundness). If-e | Torte | 7 thent |e| : T where |e| is e with
all type annotations erased.

Proving this is straightforward (after generalizing to an arbitrary con-
text I'). I call it soundness because it says that the bidirectional system is

7

sound with respect to the non-bidirectional system: anything derivable in
the first is derivable in the second (after erasing type annotations).
Do we have completeness? No. As a counterexample,

case (inl (5),21.0,22.1)

is well-typed in the non-bidirectional system, but not in the bidirectional
system.

4.4 Polymorphism

T',ttypekFelo
'k Fun(t.e) | Vt.o

Exercise: derive

I'telVto T Fr1type
CklInst (e,7) 1 {7/t}o

(Typefun) (Inst)

FFun(t.\x.z) | Vtt —t

4.5 Other Type Constructors

See the Assignment 6 handout.

