
Supplementary Notes on
Parametric Polymorphism

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 11
October 1, 2002

After an excursion into advanced control constructs, we return to the
basic questions of type systems in the next couple of lectures. The first one
addresses a weakness of the language we have presented so far: every ex-
pression has exactly one type. Some functions (such as the identity function
fun f(x) is x end) should clearly be applicable at more than one type.
We call such function polymorphic. We later distinguish two principal forms
of polymorphism, namely parameteric and ad hoc polymorphism. Besides
pure functions, there are many data structure (such as lists) whose element
types should be arbitrary. We achieved this so far by making lists primi-
tive in the language, but this trick does not extend when we try to write
interesting programs over lists. For example, the following map function is
clearly too specalized.

fun map (f:int -> bool):int list -> bool list is
fun (l:int list):bool list is

case l
of nil => nil[bool]

| cons(x,l’) => cons(f(x),map f l’)
end

end

It should work for any f : τ → σ, l : τ list and return a result of type
σ list . The importance of this kind of generic programming varies from
language to language and application to application. It has always been

SUPPLEMENTARY NOTES OCTOBER 1, 2002

L11.2 Parametric Polymorphism

considered central in functional programming in order to avoid unneces-
sary code duplication. In objected oriented programming it does not ap-
pear as critical, because subtyping and the class hierarchy allow some form
of polymorphic programming. Nonetheless, the Java language has recently
decided to add “generics” to its next revision—we will discuss later how
this relates to parametric polymorphism as we present it here.

There are different ways to approach polymorphism. In its intrinsic
form we allow polymorphic functions, but we are careful to engineer the
language so that every function still has a unique type. This may sound
contradictory, but it is in fact possible with a suitable extension of the ex-
pression language. In its extrinsic form, we allow an expresson to have
multiple types, but we ensure that there is a principal type that subsumes
(in a suitable sense) all other types an expression might have. The poly-
morphism of ML is extrinsic; nonetheless, we present it in its intrinsic form
first.

The idea is to think of the map function above not only takes f and l
as arguments, but also the type τ and σ. Fortunately, this does not mean
we actually have to pass them at run-time, as we discuss later. We write
Fun t in e end for a function that take a type as an argument. The (bound)
type variable t stands for that argument in the body, e. The type of such
a function is written a ∀t.τ , where τ is the type of the body. To apply a
function e to a type argument τ (called instantiation), we write e [τ] . We
also introduce a short, mathematical notation for functions that are not re-
cursive, called λ-abstraction.

Concrete Abstract Mathematical

All t. τ All (t.τ) ∀t.τ
Fun t in e end Fun(t.e) Λt.e
e [τ] Inst (e, τ) e[τ]

fun f (x: τ1) : τ2 is e end fun (τ1, τ2, f.x.e) µf :τ1 → τ2. λx:τ1. e
fun (x: τ1) : is e end fun (τ1, , .x.e) λx:τ1. e
fn x: τ1 => e

Using this notation, we can rewrite the example above.

SUPPLEMENTARY NOTES OCTOBER 1, 2002

Parametric Polymorphism L11.3

Fun t in Fun s in
fun map (f:t -> s):t list -> s list is

fun (l:t list):s list is
case l

of nil => nil[s]
| cons(x,l’) => cons(f(x),map f l’)

end
end
end end

In order to formalize the typing rules, recall the judgment τ type. So far,
this judgment was quite straightforward, with rules such as

τ1 type τ2 type

arrow (τ1, τ2) type

τ type

list (τ) type int type

Now, types may contain type variables. An example is the type of the
identity function, which is ∀t.t → t, or the type of the map function, which
is ∀t.∀s.(t → s) → list (t) → list (s). So the typing judgment becomes
hypothetical, that is, we may reason from assumption t type for variables t.
In all the rules above, they are simply propagated (we show the example of
the function type). In addition, we have new rule for universal quantifica-
tion.

τ1 type τ2 type

arrow (τ1, τ2) type

Γ, t type ` τ type

Γ ` All (t.τ) type

In addition, the notion of hypothetical judgments yields the rule for
type variables

Γ1, t type,Γ2 ` t type

and a substitution property.

Lemma 1 (Type Substitution in Types)
If Γ1 ` τ type and Γ1, t type,Γ2 ` σ type then Γ1, {τ/t}Γ2 ` {τ/t}σ type.

This is the idea behind higher-order abstract syntax and hypothetical
judgments, applied now to the language of types. Note that even though
we wrote Γ above, only assumptions of the form t type will actually be
relevant to the well-formedness of types.

Now we can present the typing rules proper.

SUPPLEMENTARY NOTES OCTOBER 1, 2002

L11.4 Parametric Polymorphism

Γ, t type ` e : σ

Γ ` Fun(t.e) : All (t.σ)

Γ ` e : All (t.σ) Γ ` τ type

Γ ` Inst (e, τ) : {τ/t}σ

Let us consider the example of the polymorphic identity function to
understand the substitution taking place in the last rule. You should read
this derivation bottom-up to understand the process of type-checking.

t type, f :arrow (t, t), x:t ` x : t
t type ` fun (t, t, f.x.x) : arrow (t, t)

· ` Fun(t.fun (t, t, f.x.x)) : All (t.arrow (t, t))

If we abbreviate the identity function by id then it must be instantiated
by (apply to) a type before it can be applied to an expression argument.

· ` id : ∀t.t → t
· ` id [int] : int → int
· ` id [int] 3 : int

· ` id : ∀t.t → t
· ` id [bool] : bool → bool
· ` id [bool] true : bool

· ` id : ∀t.t → t
· ` id [int] : int → int
· 6` id [int] true : int

Using mathematical notation and the short form for a non-recursive
function:

t type, x:t ` x : t
t type ` λx:t. x : t → t

· ` Λt. λx:t. x : ∀t.t → t

As should be clear from these rules, assumptions of the form t type
also must appear while typing expression, since expressions contain types.
Therefore, we need a second substitution property:

Lemma 2 (Type Substitution in Expressions)
If Γ1 ` τ type and Γ1, t type,Γ2 ` e : σ then Γ1, {τ/t}Γ2 ` {τ/t}e : {τ/t}σ.

SUPPLEMENTARY NOTES OCTOBER 1, 2002

Parametric Polymorphism L11.5

Note that we must substitution into Γ2, because the type variable t may
occur in some declaration x:σ in Γ2.

In the operational semantics we have a choice on whether to declare a
type abstraction Fun t in e end to be a value, or to reduce e. Intuitively,
the latter cannot get stuck because t is a type variable not an ordinary vari-
able, and therefore is never needed in evaluation. Even though it seems
consistent, we know if now language that supports such evaluation in the
presence of free type variables. This decision yields the following rules:

Fun(t.e) value

Inst (Fun(t.e), τ) 7→ {τ/t}e
e 7→ e′

Inst (e, τ) 7→ Inst (e′, τ)

From this it is routine to prove the progress and preservation theorems.
For preservation, we need the type substitution lemmas stated earlier in
this lecture. For progress, we need a new value inversion property.

Lemma 3 (Polymorphic Value Inversion)
If · ` v : All (t.τ) and v value then v = Fun(t.e′) for some e′.

Theorem 4 (Preservation)
If · ` e : τ and e 7→ e′ then · ` e′ : τ .

Proof: By rule induction on the transition derivation for e. In the case of
the reduction of a polymorphic function to a type argument, we need the
type substitution property. �

Theorem 5 (Progress)
If · ` e : τ then either

(i) e value, or

(ii) e 7→ e′ for some e′

Proof: By rule induction on the typing derivation for e. We need poly-
morphic value inversion to show that all cases for a type instantiation are
covered. �

In our language the polymorphism is parametric, which means that the
operation of a polymorphic function is independent of the type that it is ap-
plied to. Formalizing this observation requires some advanced technique
that we may not get to in this course.

SUPPLEMENTARY NOTES OCTOBER 1, 2002

L11.6 Parametric Polymorphism

This can be contrasted with ad hoc polymorphism, in which the func-
tion may compute differently at different types. For example, if the func-
tion + is overloaded, so it has type int × int → int and also type
float × float → float , then we need to have two different implemen-
tations of the function. Another example may be a toString function
whose behavior depends on the type of the argument.

Parametric polymorphism can often be implemented in a way that avoids
carrying types at run-time. This is important because we do not want poly-
morphic functions to be inherently less efficient than ordinary functions.
ML has the property that all polymorphic functions are parametric with
polymorphic equality as the only exception. Ignoring polymorphic equal-
ity, this means we can avoid carrying type information at run-time. In prac-
tice, some time information is usually retained in order to support garbage
collection or some optimization. How to best implement polymorphic lan-
guages is still an area of active research.

ML-style polymorphism is not quite as general as the one described
here. This is so that polymorphic type inference remains decidable and has
principal types. See [Ch 20.2] for a further discussion. We may return to the
issue of type inference later in this course.

SUPPLEMENTARY NOTES OCTOBER 1, 2002

