
Supplementary Notes on
Type Safety

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 6
September 12, 2002

In this lecture we discuss and prove several language properties of
MinML that connect the type system to the operational semantics. In partic-
ular, we will show

1. (Preservation) If · ` e : τ and e 7→ e′ then · ` e′ : τ

2. (Progress) If · ` e : τ then either

(i) e 7→ e′ for some e′, or

(ii) e value

3. (Determinism) If · ` e : τ and e 7→ e′ and e 7→ e′′ then e = e′′.

Usually, preservation and progress together are called type safety. Not
all these properties are of equal importance, and we may have perfectly
well-designed languages in which some of these properties fail. However,
we want to clearly classify languages based on these properties and under-
stand if they hold, or fail to hold.

Preservation. This is the most fundamental property, and it would be dif-
ficult to see how one could accept a type system in which this would fail.
Failure of this property amounts to a missing connection between the type
system and the operational semantics, and it is unclear how we would even
interpret the statement that e : τ . If preservation holds, we can usually
interpret a typing judgment as a partial correctness assertion about the ex-
pression:

SUPPLEMENTARY NOTES SEPTEMBER 12, 2002



L6.2 Type Safety

If expression e has type τ and e evaluates to a value v, then v also has
type τ .

Progress. This property tells us that evaluation of an expression does not
get stuck in any unexpected way: either we have a value (and are done), or
there is a way to proceed. If a language is to satisfy progress it should not
have any expressions whose operational meaning is undefined. For exam-
ple, if we added division to MinML we could simply not specify any transi-
tion rule that would apply for the expression divide (num(k), num(0)). Not
specifying the results of such a computation, however, is a bad idea because
presumably an implementation will do something, but we can no longer
know what. This means the behavior is implementation-dependendent
and code will be unportable. To describe the behavior of such partial ex-
pressions we usually resort to introducing error states or exceptions into
the language.

There are other situations where progress may be violated. For exam-
ple, we may define a non-deterministic language that includes failure (non-
deterministic choice between zero alternatives) as an explicit outcome.

Determinism. There are many languages, specifically those with concur-
rency or explicit non-deterministic choice, for which determinism fails, and
for which it makes no sense to require it. On the other hand, we should al-
ways be aware whether our languages is indeed deterministic or not. There
are also situations where the language semantics explicitly violates deter-
minism in order to give the language implementor the freedom to choose
convenient strategies. For example, the Revised5 Definition of Scheme1 states
that the arguments to a function may be evaluated in any order. In fact, the
order of evaluation for every single procedure call may be chosen differ-
ently!

While every implementation conforming to such a specification is pre-
sumably deterministic (and the language satisfies both preservation and
progress), code which accidentally or consciously relies on the order of
evaluation of a particular compiler will be non-portable between Scheme
implementations. Moreover, the language provides absolutely no help in
discovering such inadvisable implementation-dependence. While one is
easily willing to accept this for concurrent languages, where different in-
terleavings of computation steps are an unavoidable fact of life, it is un-

1http://www.swiss.ai.mit.edu/˜jaffer/r5rs_toc.html

SUPPLEMENTARY NOTES SEPTEMBER 12, 2002



Type Safety L6.3

fortunate for a language which could quite easily be deterministic, and is
intended to be used deterministically.

Preservation. For the proof of preservation we need two properties about
the substitution operation as it occurs in the cases of let -expressions and
function application. We state them here in a slightly more general form
than we need, but a slightly less general form than what is possible.

Theorem 1 (Properties of Typing)
(i) (Weakening) If Γ1,Γ2 ` e′ : τ ′ the Γ1, x:τ,Γ2 ` e′ : τ ′.

(ii) (Value Substitution)
If Γ1, x:τ,Γ2 ` e′ : τ ′ and · ` v : τ then Γ1,Γ2 ` {v/x}e′ : τ ′.

Proof: Property (i) follows directly by rule induction on the given deriva-
tion: we can insert the additional hypothesis in every hypothetical judg-
ment occuring in the derivation without invalidating any rule applications.

Property (ii) allso follows by a rule induction on the given derivation of
Γ1, x:τ,Γ2 ` e′ : τ ′. Since typing and substitution are both compositional
over the structure of the term, the only interesting cases is where e′ is the
variable x.

Case: (Rule VarTyp) with e′ = x. Then τ ′ = τ and {v/x}e′ = {v/x}x = v.
So we have to show Γ1,Γ2 ` v : τ . But our assumption is · ` v : τ so we can
conclude this by weakening (Property (i)). �

Both the weakening and value substitution properties arise directly from
the nature of reasoning from assumption. They are special cases of very
general properties of hypothetical judgments.

Weakening is a valid principle, because when we reason from assump-
tion nothing compels us to actually use any given assumption. Therefore
we can always add more assumptions without invalidating our conclusion.

Substitution is a valid principle, because we can always replace the use
of an assumption by its derivation.

Theorem 2 (Preservation)
If · ` e : τ and e 7→ e′ then · ` e′ : τ .

Proof: By rule induction on the derivation of e 7→ e′. In each case we
apply inversion to the given typing derivation and then apply either the
induction hypothesis or directly construct a typing derivation for e′.

SUPPLEMENTARY NOTES SEPTEMBER 12, 2002



L6.4 Type Safety

Critical in this proof is the syntax-directed nature of the typing rules: for
each construct in the language there is exactly one typing rule. Preservation
is significantly harder for languages that do not have this property, and
there are many advanced type systems that are not a priori syntax-directed.

We only show the cases for booleans and functions, leaving integers
and let -expressions to the reader.

Case

e1 7→ e′
1

if (e1, e2, e3) 7→ if (e′
1, e2, e3)

This case is typical for search rules, which compute on some subexpression.

e1 7→ e′
1 Subderivation

· ` if (e1, e2, e3) : τ Assumption
· ` e1 : bool and · ` e2 : τ and · ` e3 : τ By inversion
· ` e′

1 : bool By i.h.
· ` if (e′

1, e2, e3) : τ By rule

Case

if (true , e2, e3) 7→ e2

· ` if (true , e2, e3) : τ Assumption
· ` true : bool and · ` e2 : τ and · ` e3 : τ By inversion
· ` e2 : τ In line above

Case

if (false , e2, e3) 7→ e3

Symmetric to the previous case.

Case

e1 7→ e′
1

apply (e1, e2) 7→ apply (e′
1, e2)

e1 7→ e′
1 Subderivation

· ` apply (e1, e2) : τ Assumption
· ` e1 : arrow (τ ′, τ) and · ` e2 : τ ′ for some τ ′ By inversion
· ` e′

1 : arrow (τ ′, τ) By i.h.
· ` apply (e′

1, e2) : τ By rule

SUPPLEMENTARY NOTES SEPTEMBER 12, 2002



Type Safety L6.5

Case

v1 value e2 7→ e′
2

apply (v1, e2) 7→ apply (v1, e
′
2)

Analogous to the previous case.

Case

(v1 = fun (τ1, τ2, f.x.e1)) v2 value

apply (v1, v2) 7→ {v1/f}{v2/x}e1

· ` apply (v1, v2) : τ Assumption
· ` v1 : arrow (τ ′, τ) and · ` v2 : τ ′ for some τ ′ By inversion
· ` fun (τ1, τ2, f.x.e1) : arrow (τ ′, τ) By definition of v1

f :arrow (τ ′, τ), x:τ ′ ` e1 : τ and τ1 = τ ′ and τ2 = τ By inversion
f :arrow (τ ′, τ) ` {v2/x}e1 : τ By value substitution property
· ` {v1/f}{v2/x}e1 : τ By value substitution property

�

In summary, in MinML preservation comes down to two observations:
(1) for the search rules, we just use the induction hypothesis, and (2) for re-
duction rules, the interesting cases rely on the value substitution property.
The latter states that substuting a (closed) value of type τ for a variable of
type τ in an expression of type τ ′ preserves the type of that expression as
τ ′.

Progress. We now turn our attention to the progress theorem. This asserts
that the computation of closed well-typed expressions will never get stuck,
although it is quite possible that it does not terminate. For example,

apply (fun (int , int , f.x.apply (f, x)), num(0))

reduces in one step to itself.
The critical observation behind the proof of the progress theorem is that

a value of function type will indeed be a function, a value of boolean type
will indeed by either true or false , etc. If that were not the case, then we
might reach an expression such as

apply (num(0), num(1))

SUPPLEMENTARY NOTES SEPTEMBER 12, 2002



L6.6 Type Safety

which is a stuck expression because num(0) and num(1) are values, so nei-
ther any of the search rules nor the reduction rule for application can be
applied. We state these critical properties as an inversion lemmas, because
they are not immediately syntactically obvious.

Lemma 3 (Value Inversion)
(i) If · ` v : int and v value then v = num(n) for some integer n.

(ii) If · ` v : bool and v value then v = true or v = false .

(iii) If · ` v : arrow (τ1, τ2) and v value then v = fun (τ1, τ2, f.x.e) for some
f.x.e.

Proof: We distinguish cases on v value and then apply inversion to the
given typing judgment. We show only the proof of property (ii).

Case: v = num(n). Then we would have · ` num(n) : bool , which is
impossible by inspection of the typing rules.

Case: v = true . Then we are done, since, indeed v = true or v =
false .

Case: v = false . Symmetric to the previous case.

Case: v = fun (τ1, τ2, f.x.e). As in the first case, this is impossible by in-
spection of the typing rules. �

The preceding value inversion lemmas is also called the canonical forms
theorem [Ch. 9.2]. Now we can prove the progress theorem.

Theorem 4 (Progress)
If · ` e : τ then

(i) either e 7→ e′ for some e′,

(ii) or e value.

Proof: By rule induction on the given typing derivation. Again, we show
only the cases for booleans and functions.

SUPPLEMENTARY NOTES SEPTEMBER 12, 2002



Type Safety L6.7

Case
x:τ ∈ ·
· ` x : τ

VarTyp

This case is impossible since the context is empty.

Case

· ` true : bool
TrueTyp

Then true value.

Case

· ` false : bool
FalseTyp

Then false value.

Case

· ` e1 : bool · ` e2 : τ · ` e3 : τ

· ` if (e1, e2, e3) : τ
IfTyp

In this case it is clear that if (e1, e2, e3) cannot be a value, so we have to
show that if (e1, e2, e3) 7→ e′ for some e′.

Either e1 7→ e′
1 for some e′

1 or e1 value By i.h.

e1 7→ e′
1 First subcase

if (e1, e2, e3) 7→ if (e′
1, e2, e3) By rule

e1 value Second subcase
e1 = true or e1 = false By value inversion

e1 = true First subsubcase
if (true , e2, e3) 7→ e2 By rule

e1 = false Second subsubcase
if (false , e2, e3) 7→ e3 By rule

Case

f :arrow (τ1, τ2), x:τ1 ` e : τ2

· ` fun (τ1, τ2, f.x.e) : arrow (τ1, τ2)
FunTyp

Then fun (τ1, τ2, f.x.e) value.

SUPPLEMENTARY NOTES SEPTEMBER 12, 2002



L6.8 Type Safety

Case

· ` e1 : arrow (τ2, τ) · ` e2 : τ2

· ` apply (e1, e2) : τ
AppTyp

Either e1 7→ e′
1 for some e′

1 or e1 value By i.h.

e1 7→ e′
1 First subcase

apply (e1, e2) 7→ apply (e′
1, e2) By rule

e1 value Second subcase
Either e2 7→ e′

2 for some e′
2 or e2 value By i.h.

e2 7→ e′
2 First subsubcase

apply (e1, e2) 7→ apply (e1, e
′
2) By rule (since e1 value)

e2 value Second subsubcase
e1 = fun (τ1, τ2, f.x.e′

1) By value inversion
apply (e1, e2) 7→ {e1/f}{e2/x}e′

1 By rule (since e2 value)

�

Determinism. We will leave the proof of determinism to the reader—it is
not difficult given all the examples and techniques we have seen so far.

Call-by-Value vs. Call-by-Name. The MinML language as described so
far is a call-by-value language because the argument of a function call is
evaluated before passed to the function. This is captured the following
rules.

e1 7→ e′
1

apply (e1, e2) 7→ apply (e′
1, e2)

cbv.1

v1 value e2 7→ e′
2

apply (v1, e2) 7→ apply (v1, e
′
2)

cbv.2

(v1 = fun (τ1, τ2, f.x.e)) v2 value

apply (v1, v2) 7→ {v1/f}{v2/x}e cbv.r

We can create a call-by-name variant by not permitting the evaluation of
the argument (rule cbv.2 disappears), but just passing it into the function

SUPPLEMENTARY NOTES SEPTEMBER 12, 2002



Type Safety L6.9

(replace cbv.r by cbn.r). The first rule just carries over.

e1 7→ e′
1

apply (e1, e2) 7→ apply (e′
1, e2)

cbn.1

(v1 = fun (τ1, τ2, f.x.e))
apply (v1, e2) 7→ {v1/f}{e2/x}e cbn.r

Evaluation Order. Our specification of MinML requires the we first eval-
uate e1 and then e2 in application apply (e1, e2). We can also reduce from
right to left by switching the two search rules. The last one remains the
same.

e2 7→ e′
2

apply (e1, e
′
2) 7→ apply (e1, e

′
2)

cbvr.1

e1 7→ e′
1 v2 value

apply (e1, v2) 7→ apply (e′
1, v2)

cbvr.2

(v1 = fun (τ1, τ2, f.x.e)) v2 value

apply (v1, v2) 7→ {v1/f}{v2/x}e cbvr.r

The O’Caml dialect of ML indeed evaluates from right-to-left, while Stan-
dard ML evaluates from left-to-right. There does not seem to be an intrinsic
reason to prefer one over the other, except perhaps that evaluating a term
in the order it is written appears slightly more natural.

Unspecified Evaluation Order. The specification of Scheme, when trans-
lated into our setting is more difficult to model accurately. There are two
conditions:

(1) In any application apply (e1, e2), either or argument may be evaluated
first.

(2) There can be no interleaving of the evaluation of the two arguments.
In other words, the constituent we pick to evaluate first must be com-
pletely evaluated before picking the other.

As discussed before, such an underspecification has obvious disadvantages
with respect to portability, since the code exhibits spurious non-determinism.
While modelling part (1) is quite straightforward by simply including the
left and right search rules, part (2) does not fit into the form of the rules that

SUPPLEMENTARY NOTES SEPTEMBER 12, 2002



L6.10 Type Safety

we have specified so far. It seems that one would need either an auxiliary
judgment or some auxiliary abstract syntax constructors. We show here the
latter. We introduce three forms of application: uncommitted apply , left-
to-right apply 1 and right-to-left apply 2. The first two rules commit to the
choice between the two constructs.

apply (e1, e2) 7→ apply 1(e1, e2)
cbvs.dl

apply (e1, e2) 7→ apply 2(e1, e2)
cbvs.dr

The second and third set of rules step according to the left-to-right order
for apply 1 and according to the right-to-left order for apply 2.

e1 7→ e′
1

apply 1(e1, e2) 7→ apply 1(e′
1, e2)

cbvs.l1

v1 value e2 7→ e′
2

apply 1(v1, e2) 7→ apply 1(v1, e
′
2)

cbvs.l2

e2 7→ e′
2

apply 2(e1, e
′
2) 7→ apply 2(e1, e

′
2)

cbvs.r1

e1 7→ e′
1 v2 value

apply 2(e1, v2) 7→ apply 2(e′
1, v2)

cbvs.r2

The final set of rules carries out the identical reductions for the two com-
mitted forms of application.

(v1 = fun (τ1, τ2, f.x.e)) v2 value

apply 1(v1, v2) 7→ {v1/f}{v2/x}e cbvs.lr

(v1 = fun (τ1, τ2, f.x.e)) v2 value

apply 2(v1, v2) 7→ {v1/f}{v2/x}e cbvs.rr

For this to work properly we must enforce that the constructors apply 1

and apply 2 are only used internally in the semantics, but are not accessible
through the concrete syntax of the language. This is because the language
does not actually provide the programmer with the explicit choice: his or
her program should be correct no matter which order of evaluation is ap-
plied. Nonetheless, we need to write the (obvious) typing rules for them in
order to prove progress and preservation, since all the intermediate states
during evaluation must be typable.

SUPPLEMENTARY NOTES SEPTEMBER 12, 2002


