
Supplementary Notes on
A Functional Language

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 5
September 10, 2002

In this lecture we first show the equivalence of the two styles of opera-
tional semantics: a substitution semantics and an environment semantics. We
then proceed to extend our expression language to include booleans and
functions.

We first recall the environment semantics, presented here as a particular
form of evaluation semantics [Ch. 7.2]. The basic judgment is

x1⇓v1, . . . , xn⇓vn ` e ⇓ v.

Recall that this is a hypothetical judgment with assumptions xi⇓vi. We call
x1⇓v1, . . . , xn⇓vn an environment and denote an environment by η. It is im-
portant that all variables xi in an environment are distinct so that the value
of a variable is uniquely determined. Here we assume some primitive op-
erators o (such as plus and times) and their mathematical counterparts
fo. For simplicity, we just write binary operators here.

x⇓v ∈ η

η ` x ⇓ v
e.var

η ` num(k) ⇓ num(k)
e.num

η ` e1 ⇓ num(k1) η ` e2 ⇓ num(k2) (fo(k1, k2) = k)
η ` o(e1, e2) ⇓ num(k)

e.o

η ` e1 ⇓ v1 η, x⇓v1 ` e2 ⇓ v2

η ` let (e1, x.e2) ⇓ v2
e.let (x not declared in η)

The alternative semantics uses substitution instead of environments.
For this judgment we evaluate only closed terms, so no hypothetical judg-

SUPPLEMENTARY NOTES SEPTEMBER 10, 2002

L5.2 A Functional Language

ment is needed.

No rule for variables x num(k) ⇓ num(k)
s.num

e1 ⇓ num(k1) e2 ⇓ num(k2) (fo(k1, k2) = k)
o(e1, e2) ⇓ num(k)

s.o

e1 ⇓ v1 {v1/x}e2 ⇓ v2

let (e1, x.e2) ⇓ v2
s.let

We show each direction of the translation between the two systems sep-
arately. In the first direction we assume · ` e ⇓ v and we want to show
e ⇓ v. A direct proof by induction is suspect, because the environment will
in general not be empty in the derivation of · ` e ⇓ v. In particular, the
second premise of e.let adds a new assumption, which prevents us from
using the induction hypothesis.

In order to generalize the induction hypothesis, we need to figure out
what corresponds to η ` e ⇓ v in the substitution semantics. From the def-
inition of the semantics we can see that an environment is a “postponed”
substitution: rather than carrying out the substitution for each variable as
we encounter it, we look up the variable at the end when we see it. Formal-
izing this intuition is the key to the proof. We define the translation from
an environment to a simultaneous substitution [Ch. 5.3]

(x1⇓v1, . . . , xn⇓vn)∗ = (v1/x1, . . . , vn/xn)

Then we generalize to account for environments.

Lemma 1
If η ` e ⇓ v then {η∗}e ⇓ v.

Proof: By rule induction on the given derivation. Recall that values v al-
ways have the form num(k) for some k, so v ⇓ v for any value v by rule
s.num.

Case: (Rule e.var) Then e = x.

x⇓v ∈ η Condition of e.var
v/x ∈ η∗ By definition of η∗

{η∗}x = v By definition of substitution
v ⇓ v By definition of v and rule s.num

SUPPLEMENTARY NOTES SEPTEMBER 10, 2002

A Functional Language L5.3

Case: (Rule e.num) Then e = num(k) = v.

num(k) ⇓ num(k) By rule s.num

Case: (Rule e.o) Then e = o(e1, e2).

η ` e1 ⇓ num(k1) Subderivation
η ` e2 ⇓ num(k2) Subderivation
fo(k1, k2) = k Given condition
{η∗}e1 ⇓ num(k1) By i.h.
{η∗}e2 ⇓ num(k2) By i.h.
o({η∗}e1, {η∗}e2) ⇓ num(k) By rule s.o
{η∗}o(e1, e2) ⇓ num(k) By definition of substitution

Case: (Rule e.let) Then e = let (e1, x.e2) and v = v2.

η ` e1 ⇓ v1 Subderivation
η, x⇓v1 ` e2 ⇓ v2 Subderivation
{η∗}e1 ⇓ v1 By i.h.
(η, x⇓v1)∗ = (η∗, v1/x) By definition of ()∗

{η∗, v1/x}e2 ⇓ v2 By i.h.
{v1/x}({η∗}e2) ⇓ v2 By properties of simultaneous substitution
let ({η∗}e1, x.{η∗}e2) By rule s.let
{η∗}let (e1, x.e2) By definition of substitution

�

In the last case we need two properties that connects simultaneous sub-
stitution and the “single” substitution {v1/s}. They are (a) that the order of
the definition of variables in a simultaneous substitution does not matter,
and (b) that

{v1/x1}({v2/x2, . . . , vn/xn}e) = {v1/x1, v2/x2, . . . , vn/xn}e.

These properties hold under the assumption that all the xi are distinct and
that all v1, v2, . . . , vn are closed, which is known in our case.

In lecture we proceeded slightly differently. Although the essential idea
we were converging on was the same, we were getting to a lemma which
asserted that η ` e ⇓ v then · ` {η∗}e ⇓ v with a derivation of equal length.
The above proof is somewhat more economical.

The other direction is quite a bit tricker to generalize correctly.

SUPPLEMENTARY NOTES SEPTEMBER 10, 2002

L5.4 A Functional Language

Lemma 2
If e ⇓ v and e = {η∗}e′ then η ` e′ ⇓ v.

Proof: The proof is by rule induction on the derivation of e ⇓ v

Case: (Rule s.num) Then we have to consider two subcases, depending
on whether e′ = x for some variable x, or e′ = num(k) for some k.

Subcase: (Rule s.num and e′ = x) Then x⇓v ∈ η in order for e = {η∗}x ⇓
v and hence η ` x ⇓ v by rule e.var.

Subcase: (Rule s.num and e′ = num(k)) In that case v = num(k), so we
can use rule e.num.

Case: (Rule s.o) Then e = o(e1, e2) = {η∗}e′.

e′ = o(e′
1, e

′
2) with

e1 = {η∗}e′
1 and e2 = {η∗}e′

2 By definition of substitution
e1 ⇓ num(k1) Subderivation
e2 ⇓ num(k2) Subderivation
fo(k1, k2) = k Given condition
η ` e′

1 ⇓ num(k1) By i.h.
η ` e′

2 ⇓ num(k2) By i.h.
η ` o(e′

1, e
′
2) ⇓ k By rule e.o

Case: (Rule s.let) Then e = let (e1, x.e2) = {η∗}e′ and v = v2.

e′ = let (e′
1, x.e′

2) with
e1 = {η∗}e′

1 and e2 = {η∗}e′
2 and

x not defined in η By definition of substitution
e1 ⇓ v1 Subderivation
η ` e′

1 ⇓ v1 By i.h.
{v1/x}e2 ⇓ v2 Subderivation
{v1/x}e2 = {v1/x}({η∗}e′

2) = {η∗, v1/x}e′
2 Property of substitution

{(η, x⇓v1)∗}e′
2 ⇓ v2 By definition of ()∗

η, x⇓v1 ` e′
2 ⇓ v2 By i.h.

η ` let (e′
1, x.e′

2) ⇓ v2 By rule e.let

�

Now we can prove our main theorem.

SUPPLEMENTARY NOTES SEPTEMBER 10, 2002

A Functional Language L5.5

Theorem 3 (Equivalence of Environment and Substitution Semantics)
(i) If · ` e ⇓ v then e ⇓ v

(ii) If e ⇓ v then · ` e ⇓ v.

Proof: Part (i) follows immediately from the first lemma with η = ·, the
empty environment.

Part (ii) follows from the second lemma by using the empty environ-
ment for η and e for e′, which is correct since e = {·}e. �

We now proceed with the introduction of MinML. The treatment here is
somewhat cursory; see [Ch. 8] for additional material. Roughly speaking,
MinML arises from the arithmetic expression language by adding booleans
and recursive functions. These recursive functions are (almost) first-class
in the sense that they can occur anywhere in an expression, rather than just
at the top-level as in other languages such as C. This has profound con-
sequences for the required implementation techniques (to which we will
return later), but it does not affect typing in an essential way.

First, we give the grammar for the higher-order abstract syntax. For the
concrete syntax, please refer to Assignment 2.

Types τ : : = int | bool | arrow (τ1, τ2)

Integers n : : = . . . | −1 | 0 | 1 | . . .

Primops o : : = plus | minus | times | negate
| equals | lessthan

Expressions e : : = num(n) | o(e1, . . . , en)
| true | false | if (e, e1, e2)
| let (e1, x.e2)
| fun (τ1, τ2, f.x.e) | apply (e1, e2)
| x

Note that, unlike ML, the fun -expression binds both f (the function)
and x (the argument). It does not define f in the rest of the program, only
in the function body e in order to allow a recursive call. For example, the
concrete syntax function

fun p(x:int):int is if x = 0
then 1
else 2 * p(x-1) fi end

SUPPLEMENTARY NOTES SEPTEMBER 10, 2002

L5.6 A Functional Language

is represented by

fun (int , int , p.x.if (equals (x, num(0))
num(1),
times (num(2), apply (p, minus (x, num(1)).))))

This is a naive implementation of p(x) = 2x for x ≥ 0. If x < 0, it will
simply not terminate.

Below are the typing rules for the language. We show only the case of
one operator—the others are analogous.

x:τ ∈ Γ
Γ ` x : τ

VarTyp
Γ ` num(n) : int

NumTyp

Γ ` e1 : int Γ ` e2 : int
Γ ` equals (e1, e2) : bool

EqualsTyp

Γ ` true : bool
TrueTyp

Γ ` false : bool
FalseTyp

Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if (e, e1, e2) : τ
IfTyp

Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2

Γ ` let (e1, x.e2) : τ2
LetTyp

Γ, f :τ1 → τ2, x:τ1 ` e : τ2

Γ ` fun (τ1, τ2, f.x.e) : arrow (τ1, τ2)
FunTyp

Γ ` e1 : arrow (τ2, τ) Γ ` e2 : τ2

Γ ` apply (e1, e2) : τ
AppTyp

We specify the operational semantics as a structured operational semantics
also called a small-step semantics. The reason for this style of specification
is that the evaluation semantics (also called big-step semantics) we used so
far makes it difficult to talk about non-termination and the individual steps
during evaluation, because it is slightly too abstract.

So we define two basic judgments

SUPPLEMENTARY NOTES SEPTEMBER 10, 2002

A Functional Language L5.7

(i) e 7→ e′ which expresses that e steps to e′, and

(ii) e value which expresses that e is a value (written v)

The idea is that, given a closed, well-typed expression e1, computation pro-
ceeds step-by-step until it reaches a value:

e1 7→ e2 7→ · · · 7→ v

where v value. We will eventually prove the following three important
properties, which guide us in the design of the rules

1. (Progress) If · ` e : τ then either

(i) e 7→ e′ for some e′, or

(ii) e value

2. (Preservation) If · ` e : τ and e 7→ e′ then · ` e′ : τ

3. (Determinism) If · ` e : τ and e 7→ e′ and e 7→ e′′ then e = e′′.

Note that for all three properties we are only interested in closed, well-
typed expressions.

When presenting the operational semantics, we proceed type by type.

Integers This is straightforward. First, integers themselves are values.

num(k) value

Second, we evaluate the arguments to a primitive operation from left to
right, and apply the operation once all arguments have been evaluated.

e1 7→ e′
1

equals (e1, e2) 7→ equals (e′
1, e2)

v1 value e2 7→ e′
2

equals (v1, e2) 7→ equals (v1, e
′
2)

(k1 = k2)
equals (num(k1), num(k2)) 7→ true

(k1 6= k2)
equals (num(k1), num(k2)) 7→ false

We refer to the first two as search rules, since they traverse the expression
to “search” for the subterm where the actual computation step takes place.
The latter two are reduction rules.

SUPPLEMENTARY NOTES SEPTEMBER 10, 2002

L5.8 A Functional Language

Booleans First, true and false are values.

true value false value

For if-then-else we have only one search rule for the condition, since we
never evaluate in the branches before we know which one to take.

e 7→ e′

if (e, e1, e2) 7→ if (e′, e1, e2)

if (true , e1, e2) 7→ e1 if (false , e1, e2) 7→ e2

Definitions We proceed as in the expression language with the substitu-
tion semantics. There are no new values, and only one search rule.

e1 7→ e′
1

let (e1, x.e2) 7→ let (e′
1, x.e2)

v1 value

let (v1, x.e2) 7→ {v1/x}e2

Functions It is often claimed that functions are “first-class”, but this is not
quite true, since we cannot observe the structure of functions in the same
way we can observe booleans or integers. Therefore, there is no need to
evaluate the body of a function, and in fact we could not since it is not
closed and we would get stuck when encountering the function parameter.
So, any (recursive) function by itself is a value.

fun (τ1, τ2, f.x.e) value

Applications are evaluated from left-to-right, until both the function and its
argument are values. This means the language is a call-by-value language
with a left-to-right evaluation order.

e1 7→ e′
1

apply (e1, e2) 7→ apply (e′
1, e2)

v1 value e2 7→ e′
2

apply (v1, e2) 7→ apply (v1, e
′
2)

(v1 = fun (τ1, τ2, f.x.e)) v2 value

apply (v1, v2) 7→ {v1/f}{v2/x}e

SUPPLEMENTARY NOTES SEPTEMBER 10, 2002

