
Supplementary Notes on Abstract Syntax

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 3
September 3, 2002

Grammars, as we have discussed them so far, define a formal language
as a set of strings. We refer to this as the concrete syntax of a language. While
this is necessary in the complete definition of a programming language, it
is only the beginning. We further have to define at least the static semantics
(via typing rules) and the dynamic semantics (via evaluation rules). Then
we have to reason about their relationship to establish, for example, type
soundness. Giving such definitions and proofs on strings is extremely te-
dious and inappropriate; instead we want to give it a more abstract form of
representation. We refer to this layer of representation as the abstract syntax
of a language. An appropriate representation vehicle are terms [Ch. 1.2.1].

Given this distinction, we can see that parsing is more than simply rec-
ognizing if a given string lies within the language defined by a grammar.
Instead, parsing in our context should translate a string, given in concrete
syntax, into an abstract syntax term. The converse problem of printing
(or unparsing) is to translate and abstract syntax term into a string rep-
resentation. While the grammar formalism is somewhat unwieldy when
it comes to specifying the translation into abstract syntax, we see that the
mechanism of judgments is quite robust and can specify both parsing and
unparsing quite cleanly.

We begin by reviewing the arithmetic expression language in its con-
crete [Ch. 3] and abstract [Ch. 4.1] forms. First, the grammar in its unam-
bigous form.1 We implement here the decision that addition and multipli-
cation should be left-associative (so 1+2+3 is parsed as (1+2) +3) and that

1We capitalize the non-terminals to avoid confusion when considering both concrete and
abstract syntax in the same judgment. Also, the syntactic category of Terms (denoted by T)
should not be confused with the terms we use to construct abstract syntax.

SUPPLEMENTARY NOTES SEPTEMBER 3, 2002

L3.2 Abstract Syntax

multiplication has precedence over addition. Such choices are somewhat
arbitrary and dictated by convention rather than any scientific criteria.2

Digits D : : = 0 | · · · | 9
Numbers N : : = D | N D
Expressions E : : = T | E+T
Terms T : : = F | T * F
Factors F : : = N | (E)

Written in the form of five judgments.

0 D · · · 9 D

s D
s N

s1 N s2 D
s1 s2 N

s T
s E

s1 E s2 T
s1+s2 E

s F
s T

s1 T s2 F
s1* s2 T

s N
s F

s E
(s) F

The abstract syntax of the language is much simpler. It can be speci-
fied in the form of a grammar, where the universe we are working over
are terms and not strings. While natural numbers can also be inductively
defined in a variety of ways [Ch 1.1.1], we take them here as primitive
mathematical objects.

nat : : = 0 | 1 | · · ·
expr : : = num(nat) | plus (expr, expr) | times (expr, expr)

Presented as two judgments, we have k nat for every natural number k
and the following rule for expressions

2The grammar given in [Ch. 3.2] is slightly different, since there addition and multipli-
cation are assumed to be right associative.

SUPPLEMENTARY NOTES SEPTEMBER 3, 2002

Abstract Syntax L3.3

k nat
num(k) expr

t1 expr t2 expr

plus (t1, t2) expr

t1 expr t2 expr

times (t1, t2) expr

Now we specify the proper relation between concrete and abstract syn-
tax through several simultaneously inductive judgments. Perhaps the eas-
iest way to generate these judgments is to add the corresponding abstract
syntax terms to each of the inference rules defining the concrete syntax.

0 D←→ 0 nat · · · 9 D←→ 9 nat

s D←→ k nat
s N←→ k nat

s1 N←→ k1 nat s2 D←→ k2 nat
s1 s2 N←→ 10k1 + k2 nat

s T←→ t expr

s E←→ t expr

s1 E←→ t1 expr s2 T←→ t2 expr

s1+s2 E←→ plus (t1, t2) expr

s F←→ t expr

s T←→ t expr

s1 T←→ t1 expr s2 F←→ t2 expr

s1* s2 T←→ times (t1, t2) expr

s N←→ k nat
s F←→ num(k) expr

s E←→ t expr

(s) F←→ t expr

When giving a specification of the form above, we should verify that
the basic properties we expect, actually hold. In this case we would like
to check that related strings and terms belong to the correct (concrete or
abstract, respectively) syntactic classes.

Theorem 1
(i) If s E←→ t expr then s E and t expr.

(ii) If s E then there exists a t such that s E←→ t expr.

Proof: For each part, by rule induction on the given derivation. In each
case we can immediately appeal to the induction hypothesis on all sub-
derivations and construct a derivation of the desired judgment from the

SUPPLEMENTARY NOTES SEPTEMBER 3, 2002

L3.4 Abstract Syntax

results. �

When implementing such a specification, we generally make a commit-
ment as to what is considered our input and what is our output. As mo-
tivated above, parsing and unparsing (printing) are specifed by this judg-
ment.

Definition 2 (Parsing)
Given a string s, find a term t such that s E ←→ t expr or fail, if no such t
exists.

Obvious analogous definitions exist for the other syntactic categories.
Now we can refine our notion of ambiguity to take into account the abstract
syntax that is constructed. This is slightly more relaxed that requiring the
uniqueness of derivations, because different derivations could still lead to
the same abstract syntax term.

Definition 3 (Ambiguity of Parsing)
A parsing problem is ambiguous if for a given string s there exist two dis-
tinct terms t1 and t2 such that s E←→ t1 expr and s E←→ t2 expr.

Unparsing is just the reverse of parsing: we are given a term t and have
to find a concrete syntax representation for it. Unparsing is usually total
(every term can be unparsed) and inherently ambiguous (the same term
can be written as several strings). An example of this ambiguity is the in-
sertion of additional redundant parentheses. Therefore, any unparser must
use heuristics to choose among different alternative string representations.

Definition 4 (Unparsing)
Given a term t such that t expr, find a string s such that s E←→ t expr.

The ability to use judgments as the basis for implementation of different
tasks is evidence for their flexibility. Often, it is not difficult to “translate”
a judgment into an implementation in a high-level language such as ML,
although in some cases it might require significant ingenuity and some ad-
vanced techniques.

Our little language of arithmetic expressions serves to illustrate various
ideas, such as the distinction between concrete syntax and abstract syntax,
but it is too simple to exhibit various other phenomena and concepts. One
of the most important one is that of a variable, and the notion of variable
binding and scope. In order to discuss variables in isolation, we extend

SUPPLEMENTARY NOTES SEPTEMBER 3, 2002

Abstract Syntax L3.5

our language by a new form of expression to name preliminary results. For
example,

let x be 2* 3 in x+x end

should evaluate to 12, but only compute the value of 2* 3 once.
First, the concrete syntax, showing only the changed or new cases.

Variables X : : = (any identifier)
Factors F : : = N | (E) | let X be E in E end | X

We ignore here the question what constitutes a legal identifier. Presum-
ably it should avoid keywords (such as let , b), special symbols, such as +,
and be surrounded by whitespace. In an actual language implementation a
lexer breaks the input string into keywords, special symbols, numbers, and
identifiers that are the processed by the parser.

The first approach to the abstract syntax would be to simply introduce a
new abstract syntactic category of variable [Ch. 5.1] and a new operator let
with three arguments, let (x, e1, e2), where x is a variable and e1 and e2 are
terms representing expressions. Furthermore, we allow an occurrence of a
variable x as a term. However, this approach does not clarify which occur-
rences of a variable are binding occurrences, and to which binder a variable
occurrence refers. For example, to see that

let x be 1 in let x be x+1 in x+x end end

evaluates to 4, we need to know which occurrences of x refer to which val-
ues. Rules for scope resolution [Ch. 5.1] dictate that it should be interpreted
the same as

let x1 be 1 in let x2 be x1+1 in x2+x2 end end

where there is no longer any potential ambiguity. That is, the scope of the
variable x in

let x be s1 in s2 end

is s2 but not s1.
A uniform technique to encode the information about the scope of vari-

ables is called higher-order abstract syntax [Ch. 5]. We add to our language of
terms a construct x.t which binds x in the term t. Every occurrence of x in t
that is not shadowed by another binding x.t′, refers to the shown top-level
abstraction. Such variables are a new primitive concept, and, in particular,
a variable can be used as a term (in addition to the usual operator-based

SUPPLEMENTARY NOTES SEPTEMBER 3, 2002

L3.6 Abstract Syntax

terms). We would extend our judgment relating concrete and abstract syn-
tax by

x X s1 E←→ t1 expr s2 E←→ t2 expr

let x be s1 in s2 end ←→ let (t1, x.t2) expr
x X

x E←→ x expr

and allow for expressions

x expr

t1 expr t2 expr

let (t1, x.t2) expr

Note that we translate an identifier x to an identically named variable
x in higher-order abstract syntax. Moreover, we view variables in higher-
order abstract syntax as a new kind of term, so we do not check explicitly
the x’s are in fact variables—it is implied that they are.

We emphasize again that the laws for scope resolution of let -expressions
are directly encoded in the higher-order abstract representation. We inves-
tigate the laws underlying such representations in Lecture 4 [Ch. 5.3].

We can formulate the language of abstract syntax for arithmetic expres-
sions in a more compact notation as a grammar.

nat : : = 0 | 1 | · · ·
expr : : = num(nat) | plus (expr, expr) | times (expr, expr)

| x | let (expr, x.expr)

As a concrete example, consider the string

let x1 be 1 in let x2 be x1+1 in x2+x2 end end

which, in abstract syntax, would be represented as

let (num(1), x1.let (plus (x1, num(1)), x2.plus (x2, x2)))

SUPPLEMENTARY NOTES SEPTEMBER 3, 2002

