Assignment 6:
Subtyping and Bidirectional Typing

15-312: Foundations of Programming Languages
Joshua Dunfield (joshuad@cs.cmu.edu)

Out: Thursday, October 24, 2002
Due: Thursday, November 7 (11:59:59 pm)

100 points total + (up to) 20 points extra credit

1 Introduction

In this assignment, you will implement a bidirectional typechecker for MinML
with —, %, +, 1, 0,V, 3, and subtyping with base types int and float

Note: In the .sml files, most changes from Assignment 4 are indicated like
this:

(* new asst6 code: *)

(* end assté code *)

2 New in this assignment

e Some things have become obsolete (and have either been removed or left
in a semi-supported state). Exceptions and continuations are no longer
“officially” supported.

e One can now (and sometimes must!) write type annotations e: 7. The
abstract syntax constructor is called Anno.

o The lexer supports shell-style comments in .mml source files: any line
beginning with # is ignored.

o There are now two valid syntaxes for functions, the old syntax fun f (x:t1):t2 is e end
and a new syntax fun f(x) is e end . Note the lack of type anno-
tations. The definition of the abstract syntax constructor Fun has been
changed; its arguments are now just bindings for f and x and the body.
It no longer takes two types.

The old syntax fun f(x:t1):t2 is e end is now just syntactic sugar,
transformed by the parser into fun f(x) is e end : t1 -> t2

o There are floating point numbers, written as in SML. There is a new set of
arithmetic operators +. ,-. ,*. , . for use with floating point numbers.
= and < take either integers or floats.

o There is now a void type with concrete syntax void . Of course, there is
no way to construct a value of type void .

e There are now sum types with concrete syntax 7| + 7. A sum type can
be constructed via inl(e) orinr(e) , and taken apart via a case :

case e of

inl(x1) => el
| inr(x2) => e2
end

o There are now polymorphic types. The type syntax is All t. 7. Un-
like SML, type variables are written the same as ordinary variables; t,
X, etc. are all valid type variables. The construct Fun t in e end al-
lows one to create an expression of a polymorphic type. In minml.sml ,
its constructor in the abstract syntax is called Typefun .! A polymorphic
expression e can be instantiated at a type 7 by writing e[7] . The con-
structor in minml.sml is called Inst

See ok/polyl.mml , ok/poly2.mml , and ok/polyvoid.mml for ex-
amples.

e Because we have type variables, the structure T that declared the type
T.typ has become two structures: NamedTin which type variables are
stored as strings, and DBTin which type variables are stored in deBruijn
form. translate.sml translates the types as well as the program into
deBruijn form. You will work exclusively with programs and types in
deBruijn form.

o There are now existential types. The type syntax is Exists t. 7. The
construct pack tau in e end allows one to create something of ex-
istential type. In minml.sml , its constructor in the abstract syntax is
called Pack. Client code can open up an existential called module with
open module as t with impl in e end ; this binds the type vari-
able standing for the opaque type tot and the implementation (the body
of the pack) to impl in e. The constructor in minml.sml is called Open.

See ok/exisl.mml and bad/exis2.mml for examples.

ust to make this “clear”: The constructor Fun corresponds to an expression fun The
constructor Typefun corresponds to an expression Fun. I apologize for the inconvenience.

= (Refl)

int < float (IF)

©)

void <71

01<11 02< T 71 <01 02< Ty 01 <11 02< Ty

o1+02 <71 +7

(%) (=)

()

01%02 S TL % T 01— 02<T| =T

{u/s}o <A{u/t}r w¢ FTV(o)UFTV(r)
t<t ®) Vs.o < Vt.r (¥)

{u/t}r <{u/s}oc w¢ FTV(c)UFTV(r)
ds.oc < Jt.7

€)

Figure 1: Subtyping rules. FT'V (7) denotes the free type variables of 7.

A sad fact: Unfortunately, I didn’t have time to update the evaluator so you
could actually run programs with the new features. So you can’t run most of
the examples.

Task: Subtyping (30 points)
Implement the function subtyping in subtyping.sml according to the rules
given.

Note: This is supposed to be relatively easy.

Task: Bidirectional Typing (70 points)

Implement the bidirectional typing system in Figure 2.

Hints

e Idecided to benice and give you a function typesubst (in typing.sml)
for substituting types for type variables. Use it. If you find a bug in it,
please let me know immediately.

o The inference and checking judgments are defined in terms of each other.
Think about this before you start coding.

o Our type system is no longer syntax-directed—the subsumption rule can
be applied anywhere, so think carefully about when it should be applied.

o If you get stuck, ask me. If your question doesn’t give something away,

ask on the bboard and Cc it to me.

Task: Continuation Typing (up to 20 points EXTRA CREDIT)

Formulate whatever subtyping and bidirectional typing rules are correct and

I'telr T F7type I'telo o<rT
A
k(e:7n)1r (Anno) I'kelrT (Sub)
I'=T4,2:7m,T9
TTrzir O

— (Int) Fl_eilgi OhaStYPeal*"'*O'n—)T

Pri
T+ num(k) T int TFo(er,....en) 17 (Primop)

Tkelbool Tre |7 Thesl|r

Bool - If
'+ Bool (...) 1 bool (Bool) CHif (e,er,e2) | T aH
FFQ funt (0N
[, fio—m,x:oke| T 'teyfo—7 Tleylo
F Appl
Lkfun f(z)is eend | o — 71 (Fun) Thee 7 (Apply)
I'teiyTo T,xiobe| T
Let
tlet (eq,z.e2) | 7 (Let)
I'kteylm Thelmn . I'Felm*m F'Felmsm
P — = (Fst) ———— = (Snd
Tk (e1,e2) | 71 %7 (Pair) I' - fst (e)TTl(S) F}—Shd(e)TTQ(n)
I'telrn+m Dyzymbe|lo T,zombey|o (Case)
I't- case (e,x1.€1,x2.€2) | 0
I'ktelmn T'kelmn
Inl - I
T Finl (e)iﬁ—kTQ(n) T Finr (6)i71+7'2(nr)
[ttypete | {t/s}o I'kelVto TFr1type
Typef Inst
T Typefun (te) | Vs.o (P s e) 1 {rjtte Y
F'kotype Tkel{o/t}r T'kel3dtr T,ttype,x:ithe | o Tk otype

(Pack)

(Open)

'+ pack (o,e) | 3t.7 '+ open (e, t.x.e’) | o

Figure 2: Bidirectional typing rules

appropriate for the continuation type 7 cont and the constructs letcc and
throw (see Assignment 4). Then find the appropriate coercion(s) for the sub-
typing rule(s).

Turn in the rules as a file extra.ps or extra.pdf , or on paper by mid-
night Thursday in WeH 1313. You do not need to implement anything.

WARNING: Right now, I have no idea if this question is easy or hard. If it
turns out to be easy, I won’t give more than 10 points even for a 100% correct
answer. If it turns out to be tricky, then a complete and correct answer could
get 20 points.

Test Cases

You are encouraged to submit test cases to us. We will test everyone’s code
against a subset of the submitted test cases, in addition to our own. So, even
though you will not receive any points specifically for handing in test cases,
it’s in your interest to send us tests that your code handles correctly. See below
for submission instructions.

If you like, use the astounding new support for comments in .mml source
to describe what your tests do.

3 Hand-in Instructions

Turn in the files subtyping.sml and typing.sml by copying them to your
handin directory

/afs/andrew/scs/cs/15-312/students/ Andrew user ID/asst6/

by 11:59 pm on the due date. Immediately after the deadline, we will run a
script to sweep through all the handin directories and copy your files else-
where. We will also sweep 24, 48, and 72 hours after the deadline, for anyone
using late days on this assignment.

WARNING: In the past, I have allowed a few minutes leniency, considering
files turned in a few minutes after midnight to be “on time”. I will no longer
do so. If any .sml file was not in the directory at midnight, I will consider
your assignment late.

WARNING: MAKE SURE YOUR TABS ARE SET TO 8 SPACES, or replace
tabs with spaces before submitting. I am sick of reading code with messed-up
indentation.

Also, please turn in any test cases you'd like us to use by copying them to
your handin directory. To ensure that we notice the files, make sure they have
the suffix . mml. You are welcome to turn these in as late as you like (though I
won’t notice any files turned in more than 72 hours late).

For more information on handing in code, refer to

http://www.cs.cmu.edu/ fp/courses/312/assignments.html

