
Assignment 4:
Control Flow in the C-machine

15-312: Foundations of Programming Languages
Joshua Dunfield (joshuad@cs.cmu.edu)

Out: Thursday, September 26, 2002
Due: Thursday, October 10, 2002 (11:59 pm)

100 points total + 25 points extra credit

1 Introduction

In this assignment, you will extend the parser from Assignment 2, and the continuation-based
C-machine evaluator shown in lecture, to support unit, pairs, first-class continuations, and named
exceptions.

In the assignment directory you’ll find several files with support code; you will only need to
fill in the missing code in parse.sml , typing.sml , and c-mach.sml . (For named exceptions,
you will also need to change two lines in minml.sml .) You will rarely, if ever, need to write long
or complicated functions to complete this assignment. Hence, you should strive for elegance. You
may wish to (re)read through the provided code to gain an understanding of the setup. All of the
necessary SML files are listed in the sources.cm file, and you can build the project in SML/NJ
by typing CM.make() .

Note: In the .sml files, most changes from Assignment 2 are indicated like this:

(* new asst4 code: *)
...
(* end asst4 code *)

2 Parser and Concrete Syntax

The concrete syntax for this assignment is shown in Figure 1, and the tokens are listed in Figure 2.
The grammar differs from Assignment 2 as follows:

• There are now unit and pair (product) types τ1* τ2. The type constructor * has higher
precedence than -> , just as in SML. Unlike SML, there are only pairs, not arbitrary n-
tuples. For example, int * int * int is not syntactically correct; you have to write
either (int * int) * int or int * (int * int) . (Since there’s no obvious associa-
tivity, we require parentheses.)

• There are also types τcont (for any type τ) and exn , the type of exceptions.

1

• The remaining changes are all to FactorA . We’ll show examples of the new constructs later
in the assignment.

Here are some examples along with their translation into MinML abstract syntax (type MinML.exp).

Concrete Syntax Lexer Tokens Abstract Syntax
(1,2) LPAREN NUMBER(1) COMMA

NUMBER(2) RPAREN
Pair(Int(1), Int(2))

fst x FST VAR("x") Fst(Var("x"))

letcc[unit] k in 0
end

LETCC LBRACKET
UNITTYPE RBRACKET
VAR("k") IN NUMBER(0)
END

Letcc(UNIT, ("k",
Int(0)))

throw[int] x to k THROW LBRACKET INT
RBRACKET VAR("x") TO
VAR("k")

Throw(INT, Var("x"),
Var("k"))

exception x in ()
end

EXCEPTION VAR("x") IN
LPAREN RPAREN END

Exception(Var("x"),
Unit)

raise[int*int] ex RAISE LBRACKET INT
TIMES INT RBRACKET
VAR("ex")

Raise(PAIR(INT,INT),
Var("ex"))

Just as in Assignment 2, abstract syntax groups binders with their scope, in the style of higher-
order abstract syntax, and variables are represented via their name as a string.

To play around with the parser and become familiar with MinML, type

Top.loop_print_noDB ();

or
Top.file_print_noDB "test_file.mml";

These will print the program (with some redundant parentheses) in the named-variable form.

Task: Parsing (15 points)
Extend the implementation in parse.sml to handle all the new expression forms: unit, pairs,
fst , snd , letcc , throw , exception , raise , and try . Hint: Focus your attention on parse_factora .
The new type constructors * , cont , and exn have been implemented for you.

3 DeBruijn Translation

DeBruijn translation of the new constructs has been implemented for you. Except for the parser
(which emits an abstract syntax tree in named form), all of your code will operate with programs
in deBruijn form.

2

(* new or changed in asst4: *)
BaseType ::= INT | BOOL | UNIT | EXN | LPAREN Type RPAREN
ContType ::= BaseType | BaseType CONT
PairType ::= ContType | ContType TIMES ContType
Type ::= BaseType | PairType ARROW Type
(* end asst4 *)
ExpSeq ::= Exp | Exp COMMA ExpSeq
Var ::= VAR(s)
AddOp ::= PLUS | MINUS
MulOp ::= TIMES
RelOp ::= EQUALS | LESSTHAN
UnaryOp ::= NEGATE
FactorA ::= LPAREN Exp RPAREN

| NUMBER(n)
| Var
| TRUE
| FALSE
| IF Exp THEN Exp ELSE Exp FI
| LET Var EQUALS Exp IN Exp END
| FUN Var LPAREN Var COLON Type RPAREN COLON Type IS Exp END
| UnaryOp Factor

(* new in asst4: *)
(* Unit value *)

| LPAREN RPAREN
(* Pairs *)

| LPAREN Exp COMMA Exp RPAREN
| FST FactorA
| SND FactorA

(* First-class continuations *)
| LETCC LBRACKET Type RBRACKET Var IN Exp END
| THROW LBRACKET Type RBRACKET Exp TO Exp

(* Exceptions *)
| EXCEPTION Var IN Exp END
| RAISE LBRACKET Type RBRACKET FactorA
| TRY Exp CATCH Exp WITH Exp END

(* end *)
Factor ::= FactorA

| Factor Exp
Term ::= Factor

| Factor MulOp Term
Exp’ ::= Term

| Term AddOp Exp
Exp ::= Exp’

| Exp’ RelOp Exp
Program ::= Exp SEMICOLON

Figure 1: MinML concrete syntax.

3

Symbol Lexer.token
int INT
bool BOOL
-> ARROW
true TRUE
false FALSE
fun FUN
is IS
end END
if IF
then THEN
else ELSE
fi FI
let LET
in IN
, COMMA
(LPAREN
) RPAREN
; SEMICOLON
˜ NEGATE
= EQUALS
< LESSTHAN
* TIMES
- MINUS
+ PLUS
: COLON
n NUMBER(n)
new in asst4:
[LBRACKET
] RBRACKET
fst FST
snd SND
letcc LETCC
throw THROW
to TO
exception EXCEPTION
try TRY
catch CATCH
with WITH
raise RAISE
end asst4
any other string s VAR(s)

Figure 2: MinML tokens.

4

4 Unit and Pairs

Γ ` unitel : unit
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` pair (e1, e2) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2

Γ ` fst (e) : τ1

Γ ` e : τ1 ∗ τ2

Γ ` snd (e) : τ2

k > unitel 7→c k < unitel

k > pair (e1, e2) 7→c k . pair (�, e2) > e1

k . pair (�, e2) < v1 7→c k . pair (v1,�) > e2

k . pair (v1,�) < v2 7→c k < pair (v1, v2)

k > fst (e) 7→c k . fst (�) > e
k . fst (�) < pair (v1, v2) 7→c k < v1

k > snd (e) 7→c k . snd (�) > e
k . snd (�) < pair (v1, v2) 7→c k < v2

Task: Unit and Pairs: Typing and Evaluation (15 points)
Following the rules above, extend (1) the typing function in typing.sml to and (2) the eval
function in c-mach.sml to handle unit and pairs.

5 First-Class Continuations

Let’s add first-class continuations to MinML. The type of a continuation that expects a value of
type τ is τ cont ; the letcc construct binds the current continuation and the throw construct
passes a value to a continuation. Refer to the lecture notes and Chapter 12 of Harper’s book for
thorough coverage of these constructs.

Γ, x:τ cont ` e : τ
Γ ` letcc (τ, x.e) : τ

Γ ` e1 : τ ′ Γ ` e2 : τ ′ cont
Γ ` throw (τ, e1, e2) : τ

k > letcc (τ, x.e) 7→c k > {cont (k)/x}e

k > throw (τ, e1, e2) 7→c k � throw (e1, e2) > e1

k � throw (e1, e2) < v1 7→c k � throw (v1,2) > e2

k � throw (v1,2) < cont (k′) 7→c k′ < v1

A continuation k is represented by the MinML constructor Cont : exp -> exp . Note that
such expressions have no concrete syntax; they only arise during evaluation. The type-checker
which is part of the front end must therefore disallow them. This means that there will be no way
to typecheck some intermediate machine state in your implementation.

Task: First-Class Continuations: Typing and Evaluation (20 points)
Following the rules above, extend (1) the typing function in typing.sml to and (2) the eval
function in c-mach.sml to handle letcc and throw .

5

6 Named Exceptions

Γ ` v : exn v value
Γ ` raise (τ, v) : τ

Γ, x:exn ` e : τ
Γ ` exception (x.e) : τ

Γ ` e1 : τ Γ ` v2 : exn v2 value Γ ` e3 : τ
Γ ` try (e1, v2, e3) : τ

Task: Named Exceptions: Typing (5 points)
Following the rules above, extend the typing function in typing.sml to handle the exception ,
raise , and try constructs. Note that inside a program, a variable always stands for a value, so
x value holds for any variable x.

Task: Named Exceptions: Transition Rules (15 points)
Formulate all the C-machine transition rules needed for exception , raise , and try . As in
lecture, use the notation

k � v

to denote a state in which the exception v has been raised with stack k. Your rules (and your
implementation) should allow exceptions to escape (non-escaping exceptions are extra credit; see
below). Moreover, your rules need to work correctly only in programs that do not use letcc or
throw (whether this actually makes a difference is for you to determine).

Submit the rules on paper or as a file rules.txt .

Task: Named Exceptions: Implementation (30 points)
Implement your rules in c-mach.sml . You will need to figure out a suitable representation for
exceptions and change the definition (in minml.sml) of the Exn constructor accordingly.

Task: Escaping Exceptions: Transition Rules (EXTRA CREDIT, 5 points)

Modify your transition rules above so that, if an exception is about to escape its scope—either
by being raised, or by being returned as part of the body of the exception block—the machine
enters the escape state:

. . . 7→c escape

As before, your rules need to work correctly only in programs that do not use letcc /throw .
Submit the rules as a file extra-1.txt or on paper.

Task: Escaping Exceptions: Implementation (EXTRA CREDIT, 10 points)

Implement your rules that prevent exceptions from escaping, and submit the file as

c-mach-no-escape.sml

If you need a different definition of the Exn constructor, make the appropriate changes to minml.sml
and submit it as

minml-no-escape.sml

Task: Escaping Exceptions: Real Implementation (EXTRA CREDIT, 10 points)

Would it be practical to keep exceptions from escaping in actual compiled code? Identify and
discuss the issues that arise.

Submit your answer as a file extra-2.txt or on paper.

6

Test Cases

You are encouraged to submit test cases to us. We will test everyone’s code against a subset of
the submitted test cases, in addition to our own. So, even though you will not receive any points
specifically for handing in test cases, it’s in your interest to send us tests that your code handles
correctly. See below for submission instructions.

7 Hand-in Instructions

Turn in the files minml.sml , parse.sml , typing.sml , and c-mach.sml by copying them to
your handin directory

/afs/andrew/scs/cs/15-312/students/ Andrew user ID/asst4/

by 11:59 pm on the due date. Immediately after the deadline, we will run a script to sweep through
all the handin directories and copy your files elsewhere. We will also sweep 24, 48, and 72 hours
after the deadline, for anyone using late days on this assignment.

Turn in non-programming questions as text files in the handin directory. Or, if you wish, you
may turn in answers on paper, due in WeH 1313 by 11:59 pm on the due date. If you are using
late days, paper handin is by arrangement only (send mail and we’ll figure something out).

Also, please turn in any test cases you’d like us to use by copying them to your handin direc-
tory. To ensure that we notice the files, make sure they have the suffix .mml .

For more information on handing in code, refer to

http://www.cs.cmu.edu/˜fp/courses/312/assignments.html

7

