
x86-64 Machine-Level Programming∗

Randal E. Bryant
David R. O’Hallaron

September 9, 2005

Intel’s IA32 instruction set architecture (ISA), colloquially known as “x86”, is the dominant instruction
format for the world’s computers. IA32 is the platform of choice for most Windows and Linux machines.
The ISA we use today was defined in 1985 with the introduction of the i386 microprocessor, extending the
16-bit instruction set defined by the original 8086 to 32 bits. Even though subsequent processor generations
have introduced new instruction types and formats, many compilers, including GCC, have avoided using
these features in the interest of maintaining backward compatibility.

A shift is underway to a 64-bit version of the Intel instruction set. Originally developed by Advanced Micro
Devices (AMD) and named x86-64, it is now supported by high end processors from AMD (who now call it
AMD64) and by Intel, who refer to it as EM64T. Most people still refer to it as “x86-64,” and we follow this
convention. Newer versions of Linux and GCC support this extension. In making this switch, the developers
of GCC saw an opportunity to also make use of some of the instruction-set features that had been added in
more recent generations of IA32 processors.

This combination of new hardware and revised compiler makes x86-64 code substantially different in form
and in performance than IA32 code. In creating the 64-bit extension, the AMD engineers also adopted some
of the features found in reduced-instruction set computers (RISC) [7] that made them the favored targets for
optimizing compilers. For example, there are now 16 general-purpose registers, rather than the performance-
limiting eight of the original 8086. The developers of GCC were able to exploit these features, as well as
those of more recent generations of the IA32 architecture, to obtain substantial performance improvements.
For example, procedure parameters are now passed via registers rather than on the stack, greatly reducing
the number of memory read and write operations.

This document serves as a supplement to Chapter 3 of Computer Systems: A Programmer’s Perspective
(CS:APP), describing some of the differences. We start with a brief history of how AMD and Intel arrived
at x86-64, followed by a summary of the main features that distinguish x86-64 code from IA32 code, and
then work our way through the individual features.

∗Copyright c© 2005, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1

1 History and Motivation for x86-64

Over the twenty years since the introduction of the i386, the capabilities of microprocessors have changed
dramatically. In 1985, a fully configured, high-end personal computer had around 1 megabyte of random-
access memory (RAM) and 50 megabytes of disk storage. Microprocessor-based “workstation” systems
were just becoming the machines of choice for computing and engineering professionals. A typical micro-
processor had a 5-megahertz clock and ran around one million instructions per second. Nowadays, a typical
high-end system has 1 gigabyte of RAM, 500 gigabytes of disk storage, and a 4-gigahertz clock, running
around 5 billion instructions per second. Microprocessor-based systems have become pervasive. Even to-
day’s supercomputers are based on harnessing the power of many microprocessors computing in parallel.
Given these large quantitative improvements, it is remarkable that the world’s computing base mostly runs
code that is binary compatible with machines that existed 20 years ago.

The 32-bit word size of the IA32 has become a major limitation in growing the capacity of microprocessors.
Most significantly, the word size of a machine defines the range of virtual addresses that programs can use,
giving a 4-gigabyte virtual address space in the case of 32 bits. It is now feasible to buy more than this
amount of RAM for a machine, but the system cannot make effective use of it. For applications that involve
manipulating large data sets, such as scientific computing, databases, and data mining, the 32-bit word size
makes life difficult for programmers. They must write code using out-of-core algorithms1 , where the data
reside on disk and are explicitly read into memory for processing.

Further progress in computing technology requires a shift to a larger word size. Following the tradition of
growing word sizes by doubling, the next logical step is 64 bits. In fact, 64-bit machines have been available
for some time. Digital Equipment Corporation introduced its Alpha processor in 1992, and it became
a popular choice for high-end computing. Sun Microsystems introduced a 64-bit version of its SPARC
architecture in 1995. At the time, however, Intel was not a serious contender for high-end computers, and
so the company was under less pressure to switch to 64 bits.

Intel’s first foray into 64-bit computers were the Itanium processors, based on the IA64 instruction set.
Unlike Intel’s historic strategy of maintaining backward compatibility as it introduced each new generation
of microprocessor, IA64 is based on a radically new approach jointly developed with Hewlett-Packard.
Its Very Large Instruction Word (VLIW) format packs multiple instructions into bundles, allowing higher
degrees of parallel execution. Implementing IA64 proved to be very difficult, and so the first Itanium chips
did not appear until 2001, and these did not achieve the expected level of performance on real applications.
Although the performance of Itanium-based systems has improved, they have not captured a significant
share of the computer market. Itanium machines can execute IA32 code in a compatibility mode but not
with very good performance. Most users have preferred to make do with less expensive, and often faster,
IA32-based systems.

Meanwhile, Intel’s archrival, Advanced Micro Devices (AMD) saw an opportunity to exploit Intel’s misstep
with IA64. For years AMD had lagged just behind Intel in technology, and so they were relegated to
competing with Intel on the basis of price. Typically, Intel would introduce a new microprocessor at a
price premium. AMD would come along 6 to 12 months later and have to undercut Intel significantly to
get any sales—a strategy that worked but yielded very low profits. In 2002, AMD introduced a 64-bit

1The physical memory of a machine is often referred to as core memory, dating to an era when each bit of a random-access
memory was implemented with a magnetized ferrite core.

2

microprocessor based on its “x86-64” instruction set. As the name implies, x86-64 is an evolution of the
Intel instruction set to 64 bits. It maintains full backward compatibility with IA32, but it adds new data
formats, as well as other features that enable higher capacity and higher performance. With x86-64, AMD
has sought to capture some of the high-end market that had historically belonged to Intel. AMD’s recent
generations of Opteron and Athlon 64 processors have indeed proved very successful as high performance
machines. Most recently, AMD has renamed this instruction set AMD64, but “x86-64” persists as the
favored name.

Intel realized that its strategy of a complete shift from IA32 to IA64 was not working, and so began sup-
porting their own variant of x86-64 in 2004 with processors in the Pentium 4 Xeon line. Since they had
already used the name “IA64” to refer to Itanium, they then faced a difficulty in finding their own name for
this 64-bit extension. In the end, they decided to describe x86-64 as an enhancement to IA32, and so they
refer to it as IA32-EM64T for “Enhanced Memory 64-bit Technology.”

The developers of GCC steadfastly maintained binary compatibility with the i386, even though useful fea-
tures had been added to the IA32 instruction set. The PentiumPro introduced a set of conditional move
instructions that could greatly improve the performance of code involving conditional operations. More
recent generations of Pentium processors introduced new floating point operations that could replace the
rather awkward and quirky approach dating back to the 8087, the floating point coprocessor that accompa-
nied the 8086 and is now incorporated within the main microprocessors chips. Switching to x86-64 as a
target provided an opportunity for GCC to give up backward compatibility and instead exploit these newer
features.

In this document, we use “IA32” to refer to the combination of hardware and GCC code found in traditional,
32-bit versions of Linux running on Intel-based machines. We use “x86-64” to refer to the hardware and
code combination running on the newer 64-bit machines from AMD and Intel. In the Linux world, these
two platforms are referred to as “i386” and “x86 64,” respectively.

2 Finding Documentation

Both Intel and AMD provide extensive documentation on their processors. This includes general overviews
of the assembly language programmer’s view of the hardware [2, 4], as well as detailed references about
the individual instructions [3, 5, 6]. The organization amd64.org has been responsible for defining the
Application Binary Interface (ABI) for x86-64 code running on Linux systems [8]. This interface describes
details for procedure linkages, binary code files, and a number of other features that are required for object
code programs to execute properly.

Warning: Both the Intel and the AMD documentation use the Intel assembly code notation. This differs
from the notation used by the Gnu assembler GAS. Most significantly, it lists operands in the opposite order.

3 An Overview of x86-64

The combination of the new hardware supplied by Intel and AMD, as well as the new version of GCC

targeting these machines makes x86-64 code substantially different from that generated for IA32 machines.

3

C declaration Intel data type GAS suffix x86-64 Size (Bytes)
char Byte b 1
short Word w 2
int Double word l 4
unsigned Double word l 4
long int Quad word q 8
unsigned long Quad word q 8
char * Quad word q 8
float Single precision s 4
double Double precision d 8
long double Extended precision t 16

Figure 1: Sizes of standard data types with x86-64 Both long integers and pointers require 8 bytes, as
compared to 4 for IA32.

The main features include:

• Pointers and long integers are 64 bits long. Integer arithmetic operations support 8, 16, 32, and 64-bit
data types.

• The set of general-purpose registers is expanded from 8 to 16.

• Much of the program state is held in registers rather than on the stack. Integer and pointer procedure
arguments (up to 6) are passed via registers. Some procedures do not need to access the stack at all.

• Conditional operations are implemented using conditional move instructions when possible, yielding
better performance than traditional branching code.

• Floating-point operations are implemented using a register-oriented instruction set, rather than the
stack-based approach supported by IA32.

3.1 Data Types

Figure 1 shows the sizes of different C data types for x86-64. Comparing these to the IA32 sizes (CS:APP
Figure 3.1), we see that pointers (shown here as data type char *) require 8 bytes rather than 4. In
principal, this gives programs the ability to access 16 exabytes of memory (around 18.4 × 1018 bytes).
That seems like an astonishing amount of memory, but keep in mind that 4 gigabytes seemed astonishing
when the first 32-bit machines appeared in the late 1970s. In practice, most machines do not really support
the full address range—the current generations of AMD and Intel x86-64 machines support 256 terabytes
(248) bytes of virtual memory—but allocating this much memory for pointers is a good idea for long term
compatibility.

We also see that the prefix “long” changes integers to 64 bits, allowing a considerably larger range of
values. Whereas a 32-bit unsigned value can range up to 4,294,967,295 (CS:APP Figure 2.8), increasing
the word size to 64 bits gives a maximum value of 18,446,744,073,709,551,615.

4

As with IA32, the long prefix also changes a floating point double to use the 80-bit format supported
by IA32 (CS:APP Section 2.4.6.) These are stored in memory with an allocation of 16 bytes for x86-64,
compared to 12 bytes for IA32. This improves the performance of memory read and write operations, which
typically fetch 8 or 16 bytes at a time. Whether 12 or 16 bytes are allocated, only the low-order 10 bytes are
actually used.

3.2 Assembly Code Example

Section 3.2.3 of CS:APP illustrated the IA32 assembly code generated by GCC for a function simple.
Below is the C code for simple l, similar to simple, except that it uses long integers:

long int simple_l(long int *xp, long int y)
{

long int t = *xp + y;
*xp = t;
return t;

}

When GCC is run on an x86-64 machine with the command line

unix> gcc -O2 -S -m32 code.c

it generates code that is compatible with any IA32 machine:

IA32 version of function simple_l.

Arguments in stack locations 8(%ebp) (xp) and 12(%ebp) (y)

1 simple_l:
2 pushl %ebp Save frame pointer

3 movl %esp, %ebp Create new frame pointer

4 movl 8(%ebp), %edx Get xp

5 movl (%edx), %eax Retrieve *xp

6 addl 12(%ebp), %eax Add y to get t (and return value)

7 movl %eax, (%edx) Store t at *xp

8 leave Restore stack and frame pointers

9 ret Return

This code is almost identical to that shown in CS:APP, except that it uses the single leave instruction
(CS:APP Section 3.7.2), rather than the sequence movl %ebp, %esp and popl %ebp to deallocate the
stack frame.

When we instruct GCC to generate x86-64 code

unix> gcc -O2 -S -m64 code.c

(on most machines, the flag -m64 is not required), we get very different code:

x86-64 version of function simple_l.

Arguments in registers %rdi (xp) and %rsi (y)

5

1 simple_l:
2 addq (%rdi), %rsi Add *xp to y to get t

3 movq %rsi, %rax Set t as return value

4 movq %rsi, (%rdi) Store t at *xp

5 ret Return

Some of the key differences include

• Instead of movl and addl instructions, we see movq and addq. The pointers and variables declared
as long integers are now 64 bits (quad words) rather than 32 bits (long words).

• We see the 64-bit versions of the registers, e.g., %rsi, %rdi. The procedure returns a value by
storing it in register %rax.

• No stack frame gets generated in the x86-64 version. This eliminates the instructions that set up (lines
2–3) and remove (line 8) the stack frame in the IA32 code.

• Arguments xp and y are passed in registers %rdi and %rsi, rather than on the stack. These registers
are the 64-bit versions of registers %edi and %esi. This eliminates the need to fetch the arguments
from memory. As a consequence, the two instructions on lines 2 and 3 can retrieve *xp, add it to y,
and set it as the return value, whereas the IA32 code required three lines of code: 4–6.

The net effect of these changes is that the IA32 code consists of 8 instructions making 7 memory refer-
ences, while the x86-64 code consists of 4 instructions making 3 memory references. Running on an Intel
Pentium 4 Xeon, our experiments show that the IA32 code requires around 17 clock cycles per call, while
the x86-64 code requires 12 cycles per call. Running on an AMD Opteron, we get 9 and 7 cycles per call,
respectively. Getting a performance increase of 1.3–1.4X on the same machine with the same C code is a
significant achievement. Clearly x86-64 represents a important step forward.

4 Accessing Information

Figure 2 shows the set of general-purpose registers under x86-64. Compared to the registers for IA32
(CS:APP Figure 3.2), we see a number of differences:

• The number of registers has been doubled to 16. The new registers are numbered 8–15.

• All registers are 64 bits long. The 64-bit extensions of the IA32 registers are named %rax, %rcx,
%rdx, %rbx, %rsi, %rdi, %rsp, and %rbp. The new registers are named %r8–%r15.

• The low-order 32 bits of each register can be accessed directly. This gives us the familiar registers
from IA32: %eax, %ecx, %edx, %ebx, %esi, %edi, %esp, and %ebp, as well as eight new 32-bit
registers: %r8d–%r15d.

• The low-order 16 bits of each register can be accessed directly, as is the case for IA32. The word-size
versions of the new registers are named %r8w–%r15w.

6

63 31 15 8 7 0

Return value%rax %eax %ax %ah %al

Callee saved%rbx %ebx %ax %bh %bl

4th argument%rcx %ecx %cx %ch %cl

3rd argument%rdx %edx %dx %dh %dl

2nd argument%rsi %esi %si %sil

1st argument%rdi %edi %di %dil

Callee saved%rbp %ebp %bp %bpl

Stack pointer%rsp %esp %sp %spl

5th argument%r8 %r8d %r8w %r8b

6th argument%r9 %r9d %r9w %r9b

Callee saved%r10 %r10d %r10w %r10b

Used for linking%r11 %r11d %r11w %r11b

Unused for C%r12 %r12d %r12w %r12b

Callee saved%r13 %r13d %r13w %r13b

Callee saved%r14 %r14d %r14w %r14b

Callee saved%r15 %r15d %r15w %r15b

Figure 2: Integer registers. The existing eight registers are extended to 64-bit versions, and eight new
registers are added. Each register can be accessed as either 8 bits (byte), 16 bits (word), 32 bits (double
word), or 64 bits (quad word).

7

• The low-order 8 bits of each register can be accessed directly. This is true in IA32 only for the first 4
registers (%al, %cl, %dl, %bl). The byte-size versions of the other IA32 registers are named %sil,
%dil, %spl, and %bpl. The byte-size versions of the new registers are named %r8b–%r15b.

• For backward compatibility, the second byte of registers %rax, %rcx, %rdx, and %rbx can be
directly accessed by instructions having single-byte operands.

As with IA32, most of the registers can be used interchangeably, but there are some special cases. Register
%rsp has special status, in that it holds a pointer to the top stack element. Unlike in IA32, however, there
is no frame pointer register; register %rbp is available for use as a general-purpose register. Particular
conventions are used for passing procedure arguments via registers and for how registers are to be saved
and restored registers during procedure calls, as is discussed in Section 6. In addition, some arithmetic
instructions make special use of registers %rax and %rdx.

For the most part, the operand specifiers of x86-64 are just the same as those in IA32 (see CS:APP Fig-
ure 3.3). One minor difference is that some forms of PC-relative operand addressing are supported. With
IA32, this form of addressing is only supported for jump and other control transfer instructions (see CS:APP
Section 3.6.3). This mode is provided to compensate for the fact that the offsets (shown in CS:APP Fig-
ure 3.3 as Imm) are only 32 bits long. By viewing this field as a 32-bit, two’s complement number, instruc-
tions can access data within a window of around ±2.15× 109 relative to the program counter. With x86-64,
the program counter is named %rip.

As an example of PC-relative data addressing, consider the following procedure, which calls the function
call simple l examined earlier:

long int gval1 = 567;
long int gval2 = 763;

long int call_simple_l()
{

long int z = simple_l(&gval1, 12L);
return z + gval2;

}

This code references global variables gval1 and gval2. When this function is compiled, assembled, and
linked, we get the following executable code (as generated by the disassembler objdump)

1 0000000000400500 <call_simple_l>:
2 400500: be 0c 00 00 00 mov $0xc,%esi Load 12 as 1st argument

3 400505: bf 08 12 50 00 mov $0x501208,%edi Load &gval1 as 2nd argument

4 40050a: e8 b1 ff ff ff callq 4004c0 <simple_l> Call simple_l

5 40050f: 48 03 05 ea 0c 10 00 add 1051882(%rip),%rax Add gval2 to result

6 400516: c3 retq

The instruction on line 3 stores the address of global variable gval1 in register %rdi. It does this by simply
copying the constant value 0x501208 into register %edi. The upper 32 bits of %rdi are then automat-
ically set to zero. The instruction on line 5 retrieves the value of gval2 and adds it to the value returned

8

Instruction Effect Description
movq S, D D ← S Move quad word
movabsq I , R R ← I Move quad word
movslq S, R R ← SignExtend(S) Move sign-extended double word
movsbq S, R R ← SignExtend(S) Move sign-extended byte
movzbq S, R R ← ZeroExtend(S) Move zero-extended byte
pushq S R[%rsp] ← R[%rsp]− 8; Push

M[R[%rsp]] ← S

popq D D ← M[R[%rsp]]; Pop
R[%rsp] ← R[%rsp] + 8

Figure 3: Data movement instructions. These supplement the movement instructions of IA32. The
movabsq instruction only allows immediate data (shown as I) as the source value. Others allow, immediate
data, a register, or memory (shown as S). Some instructions require the destination to be a register (shown
as R), while others allow both register and memory destinations (shown as D).

by the call to simple l. Here we see PC-relative addressing—the immediate value 1051882 (hexadec-
imal 0x100cea) is added to the address of the following instruction to get 0x100cea + 0x400516 =
0x501200.

Figure 3 documents some of the data movement instructions available with x86-64, beyond those found in
IA32 (see CS:APP Figure 3.4). Some instructions require to the destination to be a register, indicated by
R. The instructions shown include different variations of the mov instruction to move data into a 64-bit
register or memory destination. Moving immediate data to a 64-bit register can be done either with the
movq instruction, which will sign extend a 32-bit immediate value, or with the movabsq instruction, when
a full 64-bit immediate is required.

Moving from a smaller data size to 64 bits can involve either sign extension (movsbq, movslq) or zero
extension (movzbq). Perhaps unexpectedly, instructions that move or generate 32-bit register values also set
the upper 32 bits of the register to zero. Consequently there is no need for an instruction movzlq. Similarly,
the instruction movzbq has the exact same behavior as movzbl when the destination is a register—both
set the upper 56 bits of the destination register to zero. This is in contrast to instructions that generate 8
or 16-bit values, such as movb; these instructions do not alter the other bits in the register. The new stack
instructions pushq and popq allow pushing and popping of 64-bit values.

Practice Problem 1:

The following C function converts an argument of type src t to a return value of type dst t, where
these two types are defined using typedef:

dest_t cvt(src_t x)
{

return (dest_t) x;
}

Assume argument x is in the appropriately named portion of register %rdi (i.e., %rdi, %edi, %di, or
%dil), and that some form of move instruction is to be used to perform the type conversion and to copy

9

Instruction Effect Description
leaq S, D D ← &S Load effective address
incq D D ← D + 1 Increment
decq D D ← D - 1 Decrement
negq D D ← -D Negate
notq D D ← ˜D Complement
addq S, D D ← D + S Add
subq S, D D ← D - S Subtract
imulq S, D D ← D * S Multiply
xorq S, D D ← D ˆ S Exclusive-or
orq S, D D ← D | S Or
andq S, D D ← D & S And
salq k, D D ← D << k Left shift
shlq k, D D ← D << k Left shift (same as salq)
sarq k, D D ← D >> k Arithmetic right shift
shrq k, D D ← D >> k Logical right shift

Figure 4: Integer 64-bit arithmetic operations. They resemble their 32-bit counterparts (CS:APP Fig-
ure 3.7).

the value to the appropriately named portion of register %rax. Fill in the following table indicating the
instruction, the source register, and the destination register for the following combinations of source and
destination type:

Tx Ty Instruction S D
long long movq %rdi %rax
int long
char long

unsigned int unsigned long
unsigned char unsigned long

long int
unsigned long unsigned

As shown in Figure 4, the arithmetic and logical instructions for 64-bit data resemble their 32-bit counter-
parts (see CS:APP Figure 3.7). For example, we find the instruction addq in addition to addl, and leaq
in addition to leal. As mentioned earlier, instructions that generate 32-bit register results, such as addl,
also set the high-order bits of the register to 0.

When mixing 32 and 64-bit data, GCC must make the right choice of arithmetic instructions, sign extensions,
and zero extensions. These depend on subtle aspects of type conversion and the interactions between the 32
and 64-bit instructions. This is illustrated by the following C function:

1 long int gfun(int x, int y)
2 {

10

3 long int t1 = (long) x + y; /* 64-bit addition */
4 long int t2 = (long) (x + y); /* 32-bit addition */
5 return t1 | t2;
6 }

Assuming integers are 32 bits and long integers are 64, the two additions in this function proceed as follows.
Recall that type conversion has higher precedence than addition, and so line 3 calls for x to be converted to
64 bits, and by operand promotion y is also converted. Value t1 is then computed using 64-bit addition.
On the other hand, t2 is computed in line 4 by performing 32-bit addition and then extending this value to
64 bits.

The assembly code generated for this function is as follows

x86-64 version of function gfun

Arguments in registers %rdi (x) and %rsi (y)

1 gfun:
2 movslq %edi,%rax Convert x to long

3 movslq %esi,%rdx Convert y to long

4 addl %esi, %edi lower bits of t2 (32-bit addition)

5 addq %rdx, %rax t1 (64-bit addition)

6 movslq %edi,%rdi Sign extend to get t2

7 orq %rdi, %rax Return t1 | t2

8 ret

Local value t1 is computed by first sign extending the arguments. The movslq instructions on lines 2–3
take the lower 32 bits of the arguments in registers %rdi and %rsi and sign extend them to 64 bits in
registers %rax and %rdx. The addq instruction on line 5 then performs 64-bit addition to get t1. Value
t2 is computed by performing 32-bit addition on the lower 32 bits of the two operands (line 4). This value
is sign extended to 64 bits on line 6 (within a single register) to get t2.

Practice Problem 2:

A C function arithprob with arguments a, b, c, and d has the following body:

return a*b + c*d;

Itcompiles to the following x86-64 code:

Arguments: a in %edi, b in %sil, c in %rdx, d in %ecx

1 arithprob:
2 movslq %ecx,%rcx
3 movsbl %sil,%esi
4 imulq %rdx, %rcx
5 imull %edi, %esi
6 leal (%rsi,%rcx), %eax
7 ret

The arguments and return value are all signed integers of various lengths. Based on this assembly code,
write a function prototype describing the return and argument types for arithprob.

11

Instruction Effect Description
imulq S R[%rdx]:R[%rax] ← S × R[%rax] Signed full multiply
mulq S R[%rdx]:R[%rax] ← S × R[%rax] Unsigned full multiply
cltq R[%rax] ← SignExtend(R[%eax]) Convert %eax to quad word
cqto R[%rdx]:R[%rax] ← SignExtend(R[%rax]) Convert to oct word
idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S; Signed divide

R[%rax] ← R[%rdx]:R[%rax]÷ S

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] ← R[%rdx]:R[%rax]÷ S

Figure 5: Special arithmetic operations. These operations support full 64-bit multiplication and division,
for both signed and unsigned numbers. The pair of registers %rdx and %rax are viewed as forming a single
128-bit oct word.

4.1 Special Arithmetic Instructions

Figure 5 show instructions used to generate the full 128-bit product of two 64-bit words, as well as ones to
support 64-bit division. They are similar to their 32-bit counterparts (CS:APP Figure 3.9). Several of these
instructions view the combination of registers %rdx and %rax as forming a 128-bit oct word. For example,
the imulq and mulq instructions store the result of multiplying two 64-bit values—the first as given by
the source operand, and the second from register %rax.

The two divide instructions idivq and divq start with %rdx:%rax as the 128-bit dividend and the source
operand as the 64-bit divisor. They then store the quotient in register %rax and the remainder in register
%rdx. Preparing the dividend depends on whether unsigned (divq) or signed (idivq) division is to be
performed. In the former case, register %rdx is simply set to 0. in the latter case, the instruction cqto is
used to perform sign extension, copying the sign bit of %rax into every bit of %rdx.2

Figure 5 also shows an instruction cltq to sign extend register %eax to %rax 3. This instruction is just a
shorthand for the instruction movslq %eaxreg,%raxreg.

Aside: What if 64-bit arithmetic isn’t good enough?
GCC running on x86-64 supports arithmetic using 128-bit signed and unsigned arithmetic, via data types int128 t

and uint128 t. For example, the following C code computes the 128-bit product of two 64-bit integers and
stores the result in a 128-bit global variable. It also returns the lower 64 bits as the function result. It implements
this function using the single-operand version of the imull instruction.

/* Global variable for 128-bit integer */
__int128_t prod;
/* Compute 128-bit product of two 64-bit integers */
long int oct_mul(long int x, long int y)
{

prod = (__int128_t) x * y;
return (long) prod;

2GAS instruction cqto is called cqo in Intel and AMD documentation.
3Instruction cltq is called cdqe in Intel and AMD documentation.

12

}

Integers of this size can represent numbers in the range ±1.7 × 1038 , nearly the range of what can be represented
as a aingle-precision floating-point number. End Aside.

5 Control

The control instructions and methods of implementing control transfers in x86-64 are essentially the same
as those in IA32 (CS:APP Section 3.6). Two new instructions cmpq and testq are added to compare and
test quad words, augmenting those for byte, word, and double word sizes (CS:APP Section 3.6.1):

Instruction Based on Description
cmpq S2, S1 S1 - S2 Compare quad words
testq S2, S1 S1 & S2 Test quad word

5.1 Conditional Move Instructions

Starting with the PentiumPro in 1995, recent generations of IA32 processors have had conditional move
instructions that either do nothing or copy a value to a register depending on the values of the condition
codes. These provide an alternate way of implementing conditional operations that can be substantially
faster than using branching code. For years, these instructions have been largely unused. GCC did not
generate code that used them, because that would prevent backward compatibility. The advent of x86-64
allowed the compiler writers to forgo this compatibility requirement, and so we now find conditional moves
in compiled x86-64 code. This section describes conditional moves and how they are used.

We saw in the IA32 code generated by GCC that conditional statements (using if) and conditional ex-
pressions (using ? :) were always implemented with conditional jumps, where the condition code values
determine whether or not a jump is taken.

As an example, consider the following general form of assignment and conditional expression

v = test-expr ? then-expr : else-expr;

The compiler generates code having a form shown by the following abstract code

if (!test-expr)
goto else;

v = then-expr;
goto done;

else:
v = else-expr;

done:

This code contains two code sequences—one evaluating then-expr and one evaluating else-expr. A combi-
nation of conditional and unconditional jumps is used to ensure that just one of the sequences is evaluated.

13

As noted in the discussion of branch prediction and mispredication penalties (CS:APP Section 5.12), modern
processors can execute code of the style shown above efficiently only in the case where they can predict the
outcome of the test with high probability. The processor uses a deep pipeline that follows the predicted
branch direction, executing the chosen code sequence, a process known as speculative execution. If it
predicted the test outcome correctly, then it commits any speculative results and proceeds with no loss of
efficiency. If the prediction is incorrect, it must discard the speculative results and restart execution with
the other code sequence. This can incur a significant delay, perhaps 10–40 clock cycles. Processors employ
sophisticated branch prediction hardware that attempt to detect any regular pattern for a given branch being
taken or not taken.

As an extreme example of this inefficiency, consider the following C function for computing the maximum
of two values

int max(int x, int y)
{

return (x < y) ? y : x;
}

In a typical application, the outcome of the test x < y is highly unpredictable, and so even the most
sophisticated branch prediction hardware will guess correctly only around 50% of the time. In addition,
the computations performed in each of the two code sequences require only a single clock cycle. As a
consequence, the branch misprediction penalty dominates the performance of this function. Running on an
Intel Pentium 4 Xeon, we find the function requires around 10 cycles per call when the outcome is easily
predictable, but around 31 cycles per call when the outcome is random. From this we can infer that the
branch misprediction penalty is around 42 clock cycles.

Aside: How did you determine this penalty?
Assume the probability of misprediction is p, the time to execute the code without mispredication is TOK , and the
misprediction penalty is TMP . Then the average time to execute the code is Tavg = (1−p)TOK+p(TOK+TMP) =
TOK + pTMP . So for p = 0.5, TOK = 10, and Tavg = 31, we get TMP = 42. End Aside.

An alternate method of implementing some forms of conditional operations is to use conditional move
instructions. With this approach, both the then-expr and the else-expr are evaluated, with the final value
chosen based on the evaluation test-expr. This can be described by the following abstract code:

vt = then-expr;
v = else-expr;
if (test-expr) v = vt;

The final statement in this sequence illustrates a conditional move—value vt is moved to v only if the tested
condition holds.

Figure 6 illustrates some of the conditional move instructions added to the IA32 instruction set with the in-
troduction of the PentiumPro microprocessor. Each of these instructions has two operands: a source register
or memory location S, and a destination register D. As with the different set (CS:APP Section 3.6.2) and
jump instructions (CS:APP Section 3.6.3), the outcome of these instructions depend on the values of the

14

Instruction Synonym Move condition Description
cmove S, D cmovz ZF Equal / zero
cmovne S, D cmovnz ˜ZF Not equal / not zero
cmovs S, D SF Negative
cmovns S, D ˜SF Nonnegative
cmovg S, D cmovnle ˜(SF ˆ OF) & ˜ZF Greater (signed >)
cmovge S, D cmovnl ˜(SF ˆ OF) Greater or equal (signed >=)
cmovl S, D cmovnge SF ˆ OF Less (signed <)
cmovle S, D cmovng (SF ˆ OF) | ZF Less or equal (signed <=)
cmova S, D cmovnbe ˜CF & ˜ZF Above (unsigned >)
cmovae S, D cmovnb ˜CF Above or equal (Unsigned >=)
cmovb S, D cmovnae CF Below (unsigned <)
cmovbe S, D cmovna CF | ZF below or equal (unsigned <=)

Figure 6: The cmov instructions. These instructions copy the source value S to its destination D when
the move condition holds. Some instructions have “synonyms,” alternate names for the same machine
instruction.

condition codes. The source value is read from either memory or the source register, but it is copied to the
destination only if the specified condition holds.

The source and destination values can be 16, 32, or 64 bits long. Single byte conditional moves are not
supported. Unlike the unconditional instructions, where the operand length is explicitly encoded in the
instruction name (e.g., movw, movl, movq), conditional move operand lengths can be inferred from the
names of the destination registers, and so the same instruction name can be used for all operand lengths.

As an example, GCC generates the following code for function max

x86-64 code generated for function max

x in register %edi, y in %esi

1 max:
2 cmpl %esi, %edi Compare x:y

3 cmovge %edi, %esi if >=, then y=x

4 movl %esi, %eax set y as return value

5 ret

This code uses a conditional move to overwrite the register containing y with x when x ≥ y (line 3).

The conditional move can be implemented with no need to predict the outcome of the test. The processor
simply evaluates the code and then either updates the destination register or keeps it the same. Running the
code on the same Intel Pentium 4 Xeon, we find it requires around 10 cycles per call regardless of the test
outcome.

Practice Problem 3:

In the following C function, OP is some C operator declared earlier with #define.

int arith(int x)

15

{
return x OP 4;

}

When compiled, GCC generates the following x86-64 code:

x86-64 implementation of arith

x in register %edi

1 arith:
2 leal 3(%rdi), %eax
3 cmpl $-1, %edi
4 cmovle %eax, %edi
5 sarl $2, %edi
6 movl %edi, %eax return value in %eax

7 ret

A. What operation is OP?

B. Annotate the code to explain how it works.

Not all conditional expressions can be compiled using conditional moves. Most significantly, the abstract
code shown earlier evaluates both then-expr and else-expr regardless of the test outcome. If one of those two
expressions could possibly generate an error condition or a side effect, this could lead to invalid behavior.
As an illustration, consider the following C function

int cread(int *xp)
{

return (xp ? *xp : 0);
}

At first, this seems like a good candidate to compile using a conditional move to read the value designated
by pointer xp, as shown in the following assembly code:

Invalid implementation of function cread

xp in register %rdi

1 cread:
2 xorl %eax, %eax Set 0 as return value

3 testq %rdi, %rdi Test xp

4 cmovne (%rdi), %eax if !0, dereference xp to get return value

5 ret

This implementation is invalid, however, since the dereferencing of xp by the cmovne instruction (line 4)
occurs even when the test fails, causing a null pointer dereferencing error. Instead, this code must be
compiled using branching code.

A similar case holds when either of the two branches causes a side effect, as illustrated by the following
function

16

int lcount = 0;
int se_max(int x, int y)
{

return (x < y) ? (lcount++, y) : x;
}

This function increments global variable lcount as part of then-expr. Thus, branching code must be used
to ensure this side effect only occurs when the test condition holds.

Using conditional moves also does not always improve code efficiency. For example, if either the then-expr
or the else-expr evaluation requires a significant computation, then this effort is wasted when the corre-
sponding condition does not hold. Our experiments with GCC indicate that it only uses conditional moves
when the two expressions can each be computed with a single instruction. This is being too conservative for
current processors, given their high branch misprediction penalties.

5.2 Looping Constructs

In CS:APP Section 3.6.5, we found that the three looping constructs of C: do-while, while, and for,
were all compiled for IA32 using a common template based on the structure of do-while. The other loop
forms were transformed into do-while as illustrated in CS:APP Figure 3.14.

With x86-64, we find a richer variety of loop templates. The template for do-while remains the same,
and some while and for statements are implemented in this form. For example, the code generated for
fib w and fib f shown in CS:APP Section 3.6.5 follows the same pattern as that shown for IA32. In
some cases, however, while and for loops are translated using a different template. Let us examine these
two different loop templates.

As an illustration, consider the following C function for computing factorial using a do-while loop

int fact_dw(int x)
{

int result = 1;
do {

result *= x;
x--;

} while (x > 0);
return result;

}

GCC generates the following code for x86-64

x86-64 implementation of fact_dw

x in register %edi

1 fact_dw:
2 movl $1, %eax result = 1

3 .L2: loop:

4 imull %edi, %eax result *= x

5 decl %edi x--

17

6 testl %edi, %edi Test x

7 jg .L2 if >0 goto loop

8 rep ; ret else return

This code follows the loop template seen earlier. Within the loop, the imull and decl instructions imple-
ment the body, while the testl and jg instructions implement the test. The loop is always entered from
the top. The general form of this implementation is

loop:
body-statement
t = test-expr;
if (t)
goto loop;

Aside: Why is there a rep instruction in this code?
On line 8 of the x86-64 code for fact dw, we see that the procedure ends with the instruction combination
rep; ret, rather than simply ret. Looking at the Intel and AMD documentation for the rep instruction, we see
that it is normally used to implement a repeating string operation [3, 6]. It seems completely inappropriate here.
The answer to this puzzle can be seen in AMD’s guidelines to compiler writers [1]. They recommend this particular
combination to avoid making the ret instruction be the target of a conditional jump instruction. This is the case
here, because it is preceded by a a jg instruction, and in the event the jump condition does not hold, the program
“falls through” to the return. According to AMD, the processor does a better job predicting the outcome of the
branch if it does not have a ret instruction as a target. This rep instruction will have no effect, since it is not
followed by a string manipulation instruction. Its only purpose is to serve as a branch target. End Aside.

Now consider a factorial function based on a while loop:

int fact_while(int x)
{

int result = 1;
while (x > 0) {

result *= x;
x--;

}
return result;

}

(These two functions yield different results when x ≤ 0.) GCC generates the following code for x86-64

x86-64 implementation of fact_while

x in register %edi

1 fact_while:
2 movl $1, %eax result = 1

3 jmp .L12 goto middle

4 .L13: loop:

5 imull %edi, %eax result *= x

6 decl %edi x--

18

7 .L12: middle:

8 testl %edi, %edi Test x

9 jg .L13 if >0 goto loop

10 rep ; ret else return

In this loop, we see the exact same four instructions, but we also see a second entry point into the loop,
labeled middle in the comments. When entering at this point, only the instructions implementing the loop
test are executed. The program enters via this point at the start of the loop, providing the initial loop test.
This code has the following general form:

goto middle
loop:

body-statement
middle:
t = test-expr;
if (t)
goto loop;

Comparing this form to the form based on translating while into do-while, we see that this new code
requires an additional unconditional jump at the beginning, but it then avoids having duplicate copies of the
test code. On a modern machine, unconditional jumps have negligible performance overhead, and so this
new form would seem better in most cases.

Practice Problem 4:

For the following C function, the expressions EXPR1–EXPR5 were specified using #define:

long int puzzle(int a, int b)
{

int i;
long int result = EXPR1;
for (i = EXPR2; i > EXPR3; i -= EXPR4)

result *= EXPR5;
return result;

}

GCC generates the following x86-64 code:

x86-64 implementation of puzzle

a in register %edi, b in register %esi

return value in register %rax

1 puzzle:
2 movslq %esi,%rdx
3 jmp .L60
4 .L61:
5 movslq %edi,%rax
6 subl %esi, %edi
7 imulq %rax, %rdx

19

8 .L60:
9 testl %edi, %edi

10 jg .L61
11 movq %rdx, %rax
12 ret

A. What register is being used for local variable result?

B. What register is being used for local variable i?

C. Give valid definitions for expressions EXPR1–EXPR5

6 Procedures

We have already seen in our code samples that the x86-64 implementation of procedure calls differs sub-
stantially from that of IA32. By doubling the register set, programs need not be so dependent on the stack
for storing and retrieving procedure information. This can greatly reduce the overhead for procedure calls
and returns.

Here are some of the highlights of how procedures are implemented with x86-64:

• Arguments (up to the first six) are passed to procedures via registers, rather than on the stack. This
eliminates the overhead of storing and retrieving values on the stack.

• The call instruction stores a 64-bit return pointer on the stack.

• Many functions do not require a stack frame. Only functions that cannot keep all local variables in
registers need to allocate space on the stack.

• Functions can access storage on the stack up to 128 bytes beyond (i.e., at a lower address than) the
current value of the stack pointer. This allows some functions to store information on the stack without
incrementing or decrementing the stack pointer.

• There is no frame pointer. Instead, references to stack locations are made relative to the stack pointer.
Typical functions allocate their total stack storage needs at the beginning of the call and keep the stack
pointer at a fixed position.

• As with IA32, some registers are designated as callee-save registers. These must be saved and restored
by any procedure that modifies them.

6.1 Argument Passing

Up to six integral (i.e., integer and pointer) arguments can be passed via registers. The registers are used in
a specified order, and the name used for a register depends on the size of the data type being passed. These
are shown in Figure 7. Arguments are allocated to these registers according to their ordering in the argument

20

Argument Operand Size (bits)
Number 64 32 16 8

1 %rdi %edi %di %dl
2 %rsi %esi %si %sil
3 %rdx %edx %dx %dl
4 %rcx %ecx %cx %cl
5 %r8 %r8d %r8w %r8b
6 %r9 %r9d %r9w %r9b

Figure 7: Registers for passing function arguments The registers are used in a specified order and
named according to the argument sizes.

list. Arguments smaller than 64 bits can be accessed using the appropriate subsection of the 64-bit register.
For example, if the first argument is 32 bits, it can be accessed as %edi.

As an example of argument passing, consider the following C function having eight arguments

void proc(long a1, long *a1p,
int a2, int *a2p,
short a3, short *a3p,
char a4, char *a4p)

{
*a1p += a1;
*a2p += a2;
*a3p += a3;
*a4p += a4;

}

The arguments include a range of different sized integers (64, 32, 16, and 8 bits) as well as different types
of pointers, each of which is 64 bits.

This function is implemented in x86-64 as follows:

x86-64 implementation of function proc

Arguments passed as follows:

a1 in %rdi (64 bits)

a1p in %rsi (64 bits)

a2 in %edx (32 bits)

a2p in %rcx (64 bits)

a3 in %r8w (16 bits)

a3p in %r9 (64 bits)

a4 at 8(%rsp) (8 bits)

a4p at 16(%rsp) (64 bits)

1 proc:
2 movq 16(%rsp), %r10 Fetch a4p (64 bits)

3 addq %rdi, (%rsi) *a1p += a1 (64 bits)

4 addl %edx, (%rcx) *a2p += a2 (32 bits)

5 movzbl 8(%rsp), %eax Fetch a4 (8 bits)

21

6 addw %r8w, (%r9) *a3p += a3 (16 bits)

7 addb %al, (%r10) *a4p += a4 (8 bits)

8 ret

The first six arguments are passed in registers, while the last two are at positions 8 and 16 relative to the
stack pointer. Different versions of the add instruction are used according to the sizes of the operands:
addq for a1 (long), addl for a2 (int), addw for a3 (short), and addb for a4 (char).

Practice Problem 5:

A C function incrprob with arguments q, t, and x (not given in that order) has the following body:

*t += x;
*q += *t;

It compiles to the following x86-64 code:

1 incrprob:
2 addl (%rdx), %edi
3 movl %edi, (%rdx)
4 movslq %edi,%rdi
5 addq %rdi, (%rsi)
6 ret

Determine all valid function prototypes for incrprob by determining the ordering and possible types
of the three parameters.

6.2 Stack Frames

We have already seen that many compiled functions do not require a stack frame. If all of the local variables
can be held in registers, and the function does not call any other functions (sometimes referred to as a leaf
procedure, in reference to the tree structure of procedure calls), then the only need for the stack is to save
the return pointer.

On the other hand, there are several reasons a function may require a stack frame:

• There are too many local variables to hold in registers.

• Some local variables are arrays or structures.

• The function uses the address-of operator (&) to compute the address of a local variable.

• The function must pass some arguments on the stack to another function.

• The function needs to save the state of a callee-save register before modifying it.

22

When any of these conditions hold, we find the compiled code for the function creating a stack frame. Unlike
the code for IA32, where the stack pointer fluctuates back and forth as values are pushed and popped, the
stack frames for x86-64 procedures usually have a fixed size, set at the beginning of the procedure by
decrementing the stack pointer (register %rsp). The stack pointer remains at a fixed position during the
call, making it possible to access data using offsets relative to the stack pointer. As a consequence, the
frame pointer (register %ebp) seen in IA32 code is no longer needed.

In addition, whenever one function (the caller) calls another (the callee), the return pointer gets pushed on
the stack. By convention, we consider this part of the caller’s stack frame, in that it encodes part of the
caller’s state. But this information gets popped from the stack as control returns to the caller, and so it does
not affect the offsets used by the caller for accessing values within the stack frame.

The following function illustrates many aspects of the x86-64 stack discipline.

long int call_proc()
{

long x1 = 1; int x2 = 2;
short x3 = 3; char x4 = 4;
proc(x1, &x1, x2, &x2, x3, &x3, x4, &x4);
return (x1+x2)*(x3-x4);

}

GCC generates the following x86-64 code.

x86-64 implementation of call_proc

1 call_proc:
2 subq $32, %rsp Allocate 32-byte stack frame

3 movl $2, %edx Pass 2 as argument 3

4 movl $3, %r8d Pass 3 as argument 5

5 leaq 31(%rsp), %rax Compute &x4

6 leaq 24(%rsp), %rcx Pass &x2 as argument 4

7 leaq 28(%rsp), %r9 Pass &x3 as argument 6

8 leaq 16(%rsp), %rsi Pass &x1 as argument 2

9 movl $1, %edi Pass 1 as argument 1

10 movq $1, 16(%rsp) x1 = 1

11 movq %rax, 8(%rsp) Pass &x4 as argument 8

12 movl $2, 24(%rsp) x2 = 2

13 movw $3, 28(%rsp) x3 = 3

14 movb $4, 31(%rsp) x4 = 4

15 movl $4, (%rsp) Pass 4 as argument 7

16 call proc Call

17 movswl 28(%rsp),%edx Get x3

18 movsbl 31(%rsp),%ecx Get x4

19 movslq 24(%rsp),%rax Get x2

20 addq 16(%rsp), %rax Compute x1+x2

21 addq $32, %rsp Deallocate stack frame

22 subl %ecx, %edx Compute (int) (x3-x4)

23 movslq %edx,%rdx Sign extend to long

24 imulq %rdx, %rax Return (x1+x2)*(x3-x4)

25 ret

23

A). Before call to proc

0
Stack pointer
%rsp

x4x4 x3 x2

x1

Argument 8

Argument 7

8

16

2831

24

0
Stack pointer
%rsp
Stack pointer
%rsp

x4x4 x3 x2

x1

Argument 8

Argument 7

x4x4 x3 x2

x1

Argument 8

Argument 7

8

16

2831

24

B). During call to proc

0
Stack pointer
%rsp

x4x4 x3 x2

x1

Argument 8

Argument 7
8

Return Pointer

16

0
Stack pointer
%rsp
Stack pointer
%rsp

x4x4 x3 x2

x1

Argument 8

Argument 7

x4x4 x3 x2

x1

Argument 8

Argument 7
8

Return Pointer

16

Figure 8: Stack frame structure for call proc. The frame is required to hold local variables x1–x4, as
well as for the seventh and eighth arguments to proc. During the execution of proc (B), the stack pointer
is shifted down by 8.

24

Figure 8A illustrates the stack frame set up during the execution of call proc. Function call proc
allocates 32 bytes on the stack by decrementing the stack pointer. It uses bytes 16–31 to hold local variables
x1 (bytes 16–23), x2 (bytes 24–27), x3 (bytes 28–29), and x4 (byte 31). These allocations are sized
according to the variable types. Byte 30 is unused. Bytes 0–7 and 8–15 of the stack frame are used to
hold the seventh and eighth arguments to call proc, since there are not enough argument registers. The
parameters are allocated eight bytes each, even though parameter x4 requires only a single byte. In the
code for call proc, we can see instructions initializing the local variables and setting up the parameters
(both in registers and on the stack) for the call to call proc. After proc returns, the local variables are
combined to compute the final expression, which is returned in register %rax. The stack space is deallocated
by simply incrementing the stack pointer before the ret instruction.

Figure 8B illustrates the stack during the execution of proc. The call instruction pushed the return
pointer onto the stack, and hence the stack pointer is shifted down by 8 relative to its position during the
execution of call proc. Hence, within the code for proc, arguments 7 and 8 are accessed by offsets of
8 and 16 from the stack pointer.

Observe how call proc changed the stack pointer only once during its execution. GCC determined that
32 bytes would suffice for holding all local variables and for holding the additional arguments to proc.
Minimizing the amount of movement by the stack pointer simplifies the compiler’s task of generating refer-
ence to stack elements using offsets from the stack pointer.

6.3 Register Saving Conventions

We saw in IA32 (CS:APP Section 3.73) that some registers used for holding temporary values are by desig-
nated as caller saved, where the callee is free to overwrite their values, while others are callee saved, where
the callee must save their values on the stack before writing to them. With x86-64, the following registers
are designated as being callee saved: %rbx, %rbp, and %r12–%r15.

Aside: Are there any caller-saved temporary registers?
Of the 16 general-purpose registers, we’ve seen that six are designated for passing arguments, six are for callee-
saved temporaries, one (%rax) holds the return value for a function, and one (%rsp) serves as the stack pointer. In
addition, %r10 has a specific use in supporting languages that allow static scoping. This includes Pascal, but not C
or C++. Only %r12 is left as a caller-saved temporary register, but this is generally reserved for use by the linking
code.

Of course, some of the argument registers can be used when a procedure has less than six arguments, and %rax can
be used within a procedure. Moreover, it’s always possible to save the state of some callee-saved registers and then
use them to hold temporary values. End Aside.

We illustrate the use of callee-saved registers with a somewhat unusual version of a recursive factorial
function:

/* Compute x! and store at resultp */
void sfact_helper(long int x, long int *resultp)
{

if (x <= 0)
*resultp = 1;

else {

25

A). Before decrementing the stack pointer (on line 4)
Stack pointer
%rsp
Stack pointer
%rsp

Saved %rbp

Saved %rbx

–8

–16

B). After decrementing the stack pointer

Stack pointer
%rsp
Stack pointer
%rsp

Saved %rbp

Saved %rbx

16

8

nresult
0

Figure 9: Stack frame for function sfact helper. This function decrements the stack pointer after
saving some of the state.

long int nresult;
sfact_helper(x-1, &nresult);
*resultp = x * nresult;

}
}

To compute the factorial of a value x, this function would be called at the top level as follows:

long int sfact(long int x)
{

long int result;
sfact_helper(x, &result);
return result;

}

The x86-64 code for sfact helper is shown below

x86-64 implementation of sfact_helper

Argument x in %rdi, resultp in %rsi

1 sfact_helper:
2 movq %rbx, -16(%rsp) Save %rbx (callee save)

3 movq %rbp, -8(%rsp) Save %rbp (callee save)

4 subq $24, %rsp Allocate 24 bytes on stack

5 testq %rdi, %rdi Test x

6 movq %rdi, %rbx Copy x to %rbx

7 movq %rsi, %rbp Copy resultp to %rbp

8 jle .L17 if x<=0 goto finish

9 leaq -1(%rdi), %rdi xm1 = x-1 (1st argument)

10 movq %rsp, %rsi &nresult (2nd argument)

11 call sfact_helper sfact_helper(xm1, &nresult)

12 imulq (%rsp), %rbx x*nresult

26

13 movq %rbx, (%rbp) *result = x*nresult

14 movq 8(%rsp), %rbx Restore %rbx

15 movq 16(%rsp), %rbp Restore %rbp

16 addq $24, %rsp Deallocate stack frame

17 ret Return

18 .L17: finish:

19 movq $1, (%rsi) *resultp = 1

20 movq 8(%rsp), %rbx Restore %rbx

21 movq 16(%rsp), %rbp Restore %rbp

22 addq $24, %rsp Deallocate stack frame

23 ret Return

Figure 9 illustrates how sfact helper uses the stack to store the values of callee-saved registers and to
hold the local variable nresult. This implementation has the interesting feature that the two callee-saved
registers it uses (%rbx and %rbp) are saved on the stack (lines 2–3) before the stack pointer is decremented
(line 4) to allocate the stack frame. As a consequence, the stack offset for %rbx shifts from −16 at the
beginning to +8 at the end (line 14). Similarly, the offset for %rbp shifts from −8 to +16.

Being able to access memory beyond the stack pointer is an unusual feature of x86-64. It requires that the
virtual memory management system allocate memory for that region. The x86-64 ABI [8] specifies that
programs can use the 128 bytes beyond (i.e., at lower addresses than) the current stack pointer. The ABI
refers to this area as the red zone. It must be kept available for reading and writing as the stack pointer
moves.

Note also how the code for sfact helper has two separate ret instructions: one for each branch of
the conditional statement. This contrasts with IA32 code, where we always saw the different branches
come together at the end of a function to a shared ret instruction. This is partly because IA32 requires a
much more elaborate instruction sequence to exit a function, and it is worthwhile to avoid duplicating these
instructions at multiple return points.

Practice Problem 6:

For the following C program

long int local_array(int i)
{

long int a[4] = {2L, 3L, 5L, 7l};
int idx = i & 3;
return a[idx];

}

GCC generates the following code

x86-64 implementation of local_array

Argument i in %edi

1 local_array:
2 andl $3, %edi
3 movq $2, -40(%rsp)
4 movq $3, -32(%rsp)

27

5 movq $5, -24(%rsp)
6 movq $7, -16(%rsp)
7 movq -40(%rsp,%rdi,8), %rax
8 ret

A. Draw a diagram indicating the stack locations used by this function and their offsets relative to the
stack pointer.

B. Annotate the assembly code to describe the effect of each instruction

C. What interesting feature does this example illustrate about the x86-64 stack discipline?

Practice Problem 7:

For the following recursive factorial program

long int rfact(long int x)
{

if (x <= 0)
return 1;

else {
long int xm1 = x-1;
return x * rfact(xm1);

}
}

GCC generates the following code

x86-64 implementation of recursive factorial function rfact

Argument x in %rdi

1 rfact:
2 testq %rdi, %rdi
3 pushq %rbx
4 movl $1, %eax
5 movq %rdi, %rbx
6 jle .L9
7 leaq -1(%rdi), %rdi
8 call rfact
9 imulq %rbx, %rax

10 .L9:
11 popq %rbx
12 ret

A. What value does the function store in %rbx?

B. What are the purposes of the pushq (line 3) and popq (line 11) instructions?

C. Annotate the assembly code to describe the effect of each instruction

D. What interesting feature does this example illustrate about the x86-64 stack discipline?

28

7 Data Structures

Data structures follow the same principles in x86-64 as they do in IA32: arrays are allocated as sequences of
identically-sized blocks holding the array elements, structures are allocated as sequences of variably-sized
blocks holding the structure elements, and unions are allocated as a single block big enough to hold the
largest union element.

One difference is that x86-64 follows a more stringent set of alignment requirements. For any scalar data
type requring K bytes, its starting address must be a multiple of K . Thus, data types long, double, and
pointers must be aligned on 8-byte boundaries. In addition, data type long double uses a 16-byte align-
ment (and size allocation), even though the actual representation requires only 10 bytes. These alignment
conditions are imposed to improve memory system performance—the memory interface is designed in most
processors to read or write aligned blocks that are eight or sixteen bytes long.

Practice Problem 8:

For each of the following structure declarations, determine the offset of each field, the total size of the
structure, and its alignment requirement under x86-64.

A. struct P1 { int i; char c; long j; char d; };

B. struct P2 { long j; char c; char d; int i; };

C. struct P3 { short w[3]; char c[3] };

D. struct P4 { short w[3]; char *c[3] };

E. struct P3 { struct P1 a[2]; struct P2 *p };

8 Floating Point

Starting with the Pentium MMX in 1997, both Intel and AMD have introduced successive generations of
media instructions to support graphics and image processing. The most recent version of these is named
SSE3, for “Streaming SIMD Extensions, version 3.” It is available on all x86-64 processors. The media
instructions originally focused on allowing multiple operations to be performed in a parallel mode known
as single instruction, multiple data or SIMD (pronounced SIM-DEE). In this mode the same operation is
performed on a number of different data values in parallel.

The media instructions implement SIMD operations by having a set of registers that can hold multiple data
values in packed format. For example, SSE3 provides sixteen XMM registers of 128 bits each, named
%xmm0–%xmm15. Each one of these registers can hold a vector of K elements of N bits each, such that
K × N = 128. For integers, K can be 8, 16, 32, or 64 bits, while for floating-point numbers, K can be
32 or 64. For example, a single SSE3 instruction can add two byte vectors of eight elements each. The
floating point formats match the IEEE standard formats for single and double-precision values. The major
use of these media instructions are in library routines for graphics and image processing. These routines
must be written with special tools and using assembly code, since the major compilers do not support the
media extensions.

29

Instruction Source Destination Description
movss M32/X X Move single precision
movss X M32 Move single precision
movsd M64/X X Move double precision
movsd X M64 Move double precision
cvtss2sd M32/X X Convert single to double precision
cvtsd2ss M64/X X Convert double to single precision
cvtsi2ss M32/R32 X Convert integer to single precision
cvtsi2sd M32/R32 X Convert integer to double precision
cvtsi2ssq M64/R64 X Convert quadword integer to single precision
cvtsi2sdq M64/R64 X Convert quadword integer to double precision
cvttss2si X/M32 R32 Convert with truncation single precision to integer
cvttsd2si X/M64 R32 Convert with truncation double precision to integer
cvttss2siq X/M32 R64 Convert with truncation single precision to quadword integer
cvttsd2siq X/M64 R64 Convert with truncation double precision to quadword integer
X: XMM register (e.g., %xmm3)
R32: 32-bit general-purpose register (e.g., %eax)
R64: 64-bit general-purpose register (e.g., %rax)
M32: 32-bit memory range
M64: 64-bit memory range

Figure 10: Floating-point movement and conversion operations. These operations transfer values
between memory and registers, possibly converting between data types.

With the SSE3 came the opportunity to completely change the way floating point code is compiled for x86
processors. Historically, floating point is implemented with an arcane set of instructions dating back to the
8087, a floating-point coprocessor for the Intel 8086. These instructions, often referred to as “x87” operate
on a shallow stack of registers, a difficult target for optimizing compilers (CS:APP Section 3.14). They also
have many quirks due to a nonstandard 80-bit floating-point format (CS:APP Section 2.4.6).

SSE3 introduced a set of scalar floating-point operations that work on single values in the low-order 32 or
64 bits of XMM registers, The overall effect is to provide a set of registers and instructions that are more
typical of the way other processors support floating point. GCC now implements floating point using mostly
SSE3 instructions, reverting to x87 floating point for only a few special cases.

This section describes the x86-64 implementation of floating point based on SSE3. It supplants the presen-
tation of floating point from CS:APP, Section 2.4.5.

8.1 Floating-Point Movement and Conversion Operations

Figure 10 shows a set of instructions for transfering data and for performing conversions between floating-
point and integer data types. Floating-point data are held either in memory (indicated in the table as M32

and M64) or in XMM registers (shown in the table as X). Integer data are held either in memory (indicated
in the table as M32 or M64) or in general-purpose registers (shown in the table as R32 and R64). All 32-bit

30

memory data must satisfy a 4-byte alignment, while 64-bit data must satisfy an 8-byte alignment.

The floating-point move operations can transfer data from register to register, from memory to register and
from register to memory. A single instruction cannot move data from memory to memory. The floating-
point conversion operations have either memory or a register as source and a register as destination, where
the registers are general-purpose registers for integer data and XMM registers for floating-point data. The
instructions, such as cvttss2si, for converting floating-point values to integers use truncation, always
rounding values toward zero, as is required by C and most other programming languages.

As an example of the different floating-point move and conversion operations, consider the following C
function:

double fcvt(int i, float *fp, double *dp, long *lp)
{

float f = *fp; double d = *dp; long l = *lp;
*lp = (long) d;
*fp = (float) i;
*dp = (double) l;
return (double) f;

}

and its associated x86-64 assembly code

x86-64 implmentation of fcvt

Arguments:

i %edi int

fp %rsi float *

dp %rdx double *

lp %rcx long *

1 fcvt:
2 movlpd (%rdx), %xmm0 d = *dp

3 movq (%rcx), %r8 l = *lp

4 movss (%rsi), %xmm1 f = *fp

5 cvttsd2siq %xmm0, %rax (long) d

6 xorps %xmm0, %xmm0 Set %xmm0 to 0

7 cvtsi2ss %edi, %xmm0 (float) i

8 movq %rax, (%rcx) *lp = (long) d

9 movss %xmm0, (%rsi) *fp = (float) i

10 cvtsi2sdq %r8, %xmm0 (double) l

11 movsd %xmm0, (%rdx) *dp = (double) l

12 cvtss2sd %xmm1, %xmm0 Return (double) f

13 ret

All of the arguments to fcvt are passed through the general-purpose registers, since they are either integers
or pointers. The return value is returned in register %xmm0, the designated return register for float or
double values. In this code, we see a number of the move and conversion instructions of Figure 10. In line
2, we see a variant of the movsd instruction called movlpd. This “move lower packed double-precision
floating point” differs from movsd in its affect on the upper 64 bits of the destination XMM register. Since
we are not making use of these bits, the two instructions can be used interchangeably.

31

Single Double Effect Description
addss addsd D ← D + S Floating-point add
subss subsd D ← D − S Floating-point subtract
mulss mulsd D ← D × S Floating-point multiply
divss divsd D ← D / S Floating-point divide
maxss maxsd D ← max(D, S) Floating-point maximum
minss minsd D ← min(D, S) Floating-point minimum
sqrtss sqrtsd D ←

√
S Floating-point square root

Figure 11: Floating-point arithmetic operations. All have source S and destination D operands.

In line 6 we see the instruction xorps. In this context, the instruction is simply setting the destination
register %xmm0 to all zeros, much as we’ve seen the xorl used to set an integer register to zero (see
CS:APP Practice Problem 3.6). It’s not clear why GCC inserted this instruction, since the lower 32 bits of
the register are set to the value of (float) i by the next instruction, and only those bits are required by
the subsequent instructions (movss and movsd) having %xmm0 as source.

Practice Problem 9:

The following C function converts an argument of type src t to a return value of type dst t, where
these two types are defined using typedef.

dest_t cvt(src_t x)
{

return (dest_t) x;
}

Assume argument x is either in %xmm0 or in the appropriately named portion of register %rdi (i.e.,
%rdi or %edi), and that one of the conversion instructions is to be used to perform the type conversion
and to copy the value to the appropriately named portion of register %rax (integer result) or %xmm0
(floating-point result). Fill in the following table indicating the instruction, the source register, and the
destination register for the following combinations of source and destination type:

Tx Ty Instruction S D
long double cvtsi2sdq %rdi %xmm0

double int
float double
long float
float long

8.2 Floating-Point Arithmetic operations

Figure 11 documents a set of SSE3 floating-point instructions that perform arithmetic operations. Each has
two operands: a source S, which can be either an XMM register or a memory location, and a destination D,

32

which must be an XMM register. Each operation has an instruction for single-precision and an instruction
for double precision. The result is stored in the destination register.

As an example, consider the example function from CS:APP Section 3.14.5:

double funct(double a, float x, double b, int i)
{

return a*x - b/i;
}

The x86-64 code is as follows:

x86-64 implementation of funct

Arguments:

a %xmm0 double

x %xmm1 float

b %xmm2 double

i %edi int

1 funct:
2 cvtss2sd %xmm1, %xmm1 %xmm1 = (double) x

3 mulsd %xmm0, %xmm1 %xmm1 = a*x

4 cvtsi2sd %edi, %xmm0 %xmm0 = (double) i

5 divsd %xmm0, %xmm2 %xmm2 = b/i

6 movsd %xmm1, %xmm0 %xmm0 = a*x

7 subsd %xmm2, %xmm0 return a*x - b/i

8 ret

The three floating point arguments a, x, and b are passed in XMM registers %xmm0–%xmm2, while integer
argument i is passed in register %edi. Conversion instructions are required to convert arguments x and i
to double. The function value is returned in register %xmm0. Compared to the stack code shown for IA32
in CS:APP, floating-point x86-64 code more closely resembles integer code.

Unlike integer arithmetic operations, the floating-point operations cannot have immediate values as operands.
Instead, the compiler must allocate and initialize storage for any constant values, and then generate code
that reads the values from memory. This is illustrated by the following Celsius to Fahrenheit conversion
function:

double cel2fahr(double temp)
{

return 1.8 * temp + 32.0;
}

The relevant parts of the x86-64 assembly code are as follows:

Constant declarations

1 .LC2:
2 .long 3435973837 Low order four bytes of 1.8

3 .long 1073532108 High order four bytes of 1.8

4 .LC4:

33

5 .long 0 Low order four bytes of 32.0

6 .long 1077936128 High order four bytes of 32.0

Code

x86-64 implementation of cel2fahr

Argument temp in %xmm0

7 cel2fahr:
8 mulsd .LC2(%rip), %xmm0 Multiply by 1.8

9 addsd .LC4(%rip), %xmm0 Add 32.0

10 ret

We see that the function reads the value 1.8 from the memory location labeled .LC2, and the value 32.0
from the memory location labeled .LC4. Looking at the values associated with these labels, we see that
each is specified by a pair of .long declarations with the values given in decimal. How should these be
interpreted as floating-point values? Looking at the declaration labeled .LC2, we see that the two values are
3435973837 (0xcccccccd) and 1073532108 (0x3ffccccc). Since the machine uses little-endian byte
ordering, the first value gives the low-order 4 bytes, while the second gives the high-order 4 bytes. From
the high-order bytes, we can extract an exponent field of 0x3ff (1023), from which we subtract a bias of
1023 to get an exponent of 0. Concatenating the fraction bits of the two values, we get a fraction field of
0xccccccccccccd, which can be shown to be the fractional binary representation of 0.8, to which we
add the implied leading one to get 1.8.

Practice Problem 10:

Show how the numbers declared at label .LC4 encode the number 32.0.

8.3 Floating-Point Comparison operations

The SSE3 extenstions provide two instructions for comparing floating values:

Instruction Based on Description
ucomiss S2, S1 S1 - S2 Compare single precision
ucomisd S2, S1 S1 - S2 Compare double precision

These instructions are similar to the cmpl and cmpq instructions (see CS:APP Section 3.6.1), in that they
compare operands S1 and S2 and set the condition codes to indicate their relative values. As with cmpq,
they follow the GAS convention of listing the operands in reverse order. Argument S2 must be in an XMM
register, while S1 can either be in an XMM register or in memory.

The floating-point comparison instructions set three condition codes: the zero flag ZF, the carry flag CF, and
the parity flag PF. We did not document the parity flag in CS:APP, because it is not used in GCC-generated
IA32 code. For integer operations, this flag is set when the most recent arithmetic operation yielded a value
with odd parity (i.e., an odd number of 1’s in the word). For floating-point comparisons, however, the flag
is set when either operand is NaN. By convention, any comparison is considered to fail when one of the
arguments is a NaN, and this flag is used to detect such a condition. For example, even the comparison
x == x yields 0 when x is a NaN.

34

The condition codes are set as follows:

Ordering CF ZF PF
Unordered 1 1 1

< 1 0 0
= 0 1 0
> 0 0 0

The Unordered case occurs when either of the operands is NaN. This can be detected from the parity flag.
Commonly, the jp (for “jump on parity”) instruction is used to conditionally jump when a floating-point
comparison yields an unordered result. Except for this case, the values of the carry and zero flags are the
same as those for an unsigned comparison: ZF is set when the two operands are equal, and CF is set when
S1 < S2. Instructions such as ja and jb are used to conditionally jump on various combinations of these
flags.

As an example of floating-point comparisons, the following C function classifies its argument x according
to its relation to 0.0, returning an enumerated type as result.

typedef enum {NEG, ZERO, POS, OTHER} range_t;

range_t find_range(float x)
{

int result;
if (x < 0)

result = NEG;
else if (x == 0)

result = ZERO;
else if (x > 0)

result = POS;
else

result = OTHER;
return result;

}

Enumerated types in C are encoded as integers, and so the possible function values are: 0 (NEG), 1 (ZERO),
2 (POS), and 3 (OTHER). This final outcome occurs when the value of x is NaN.

GCC generates the following x86-64 code for find range:

x86-64 implementation of find_range

Argument x in %xmm0 (single precision)

1 find_range:
2 xorps %xmm1, %xmm1 %xmm1 = 0

3 xorl %eax, %eax result = 0

4 ucomiss %xmm0, %xmm1 Compare 0:x

5 ja .L5 If (> and not NaN) goto done

6 movb $1, %al result = 1

7 ucomiss %xmm1, %xmm0 Compare x:0

8 jp .L13 If unordered goto next

35

9 je .L5 If (= and not NaN) goto done

10 .L13: next:

11 xorl %eax, %eax result = 0

12 ucomiss %xmm1, %xmm0 compare x:0

13 setbe %al if (<= or NaN) result = 1

14 addl $2, %eax result += 2

15 .L5: return

16 rep ; ret

The code is somewhat arcane—it compares x to 0.0 three times, even though the required information could
be obtained with a single comparison. Let us trace the flow of the function for the four possible comparison
results.

x < 0.0: The ja instruction on line 5 will be taken, jumping to the end with a return value of 0.

x = 0.0: The ja instruction on line 5 will not be taken, nor will be the jp instruction on line 8. The je
instruction on line 9 will be taken, jumping to the end with a return value of 1 (set on line 6).

x > 0.0: Neither the ja instruction on line 5, the jp instruction on line 8, nor the je instruction on line 9
will be taken. In addition, the setbe instruction on line 13 will not change the return value, and so
the return value will be incremented from 0 to 2 on line 14, and this value will be returned.

x = NaN : The ja instruction on line 5 will not be taken, but the jp instruction on line 8 will be. Then
the setbe instruction on line line 13 will change the return value from 0 to 1, and this value is then
incremented from 1 to 3 on line 14.

Once again, we see that x86-64 floating-point code more closely resembles integer code than it does the
stack-based floating-point code of IA32.

8.4 Floating-Point Code in Procedures

We have already seen examples of several functions that have floating-point arguments and a floating-point
result. The XMM registers can be used for these purposes. Specifically, the following conventions are
observed:

• Up to eight floating point arguments can be passed in XMM registers %xmm0–%xmm7. These registers
are used in the order the arguments are listed. Additional floating-point arguments can be passed on
the stack.

• A function that returns a floating-point value does so in register %xmm0.

• All XMM registers are caller saved, The callee may overwrite any of these registers without first
saving it.

36

8.5 Performing Common Floating-Point Operations in Uncommon Ways

At times, GCC makes surprising choices of instructions for performing common tasks. As examples, we’ve
seen how the leal instruction is often used to perform integer arithmetic (CS:APP Section 3.5), and the
xorl instruction is used to set registers to 0 (CS:APP Practice Problem 3.6).

There are far more instructions for performing floating-point operations than we’ve documented here or in
CS:APP Section 3.14, and some of these appear in unexpected places. We document a few such cases here.

The following assembly code shows examples of instructions designed to operate on vectors of values in
packed format:

movlpd (%rax), %xmm0 Read double into %xmm0

xorps %xmm2, %xmm2 Set %xmm2 to zero

movaps %xmm0, %xmm1 Copy %xmm0 to %xmm1

As mentioned earlier, the movlpd is similar to the movsd instruction. In this example, it reads the eight
bytes starting at the address specified by register %rax and stores it in the lower eight bytes of XMM register
%xmm0.

The xorps instruction is an exclusive-or instruction for XMM data. Since both operands are the same in
this example, the effect is to set %xmm2 to 0.

The movaps instruction (for “move aligned packed single-precision”) is used to copy entire XMM registers.
In this example, it simply copies %xmm0 to %xmm1.

In addition, there are times that GCC uses IA32 floating-point code in x86-64. Most commonly, it makes use
of the ability of IA32 floating-point instructions to perform format conversions while loading a value from
memory and while storing a value to memory. This is illustrated by the following code sequence

flds 16(%rsp) Load single-precision into FP register

fstpl 8(%rsp) Store FP register as double precision

Recall that IA32 floating point makes use of a shallow stack of registers, each holding an 80-bit floating-
point value. In this example, the flds instruction reads a single-precision value from memory, converts it
to the 80-bit format, and stores the result in the top stack register. The fstpl instruction pops the top value
from the stack, converts it to double precision, and stores it in memory.

This combination of copying and conversion could readily be implemented using SSE instructions:

movss 16(%rsp), %xmm0 Read single-precision into %xmm0

cvtss2sd %xmm0, %xmm0 Convert to double precision

movsd %xmm0, 8(%rsp) Store double precision

but, for some reason, GCC prefers the stack-based version.

References

[1] Advanced Micro Devices, Inc. Software Optimization Guide for AMD Athlon 64 and AMD Opteron
Processors, 2004. Publication Number 25112.
Also available at http://www.amd.com/us-en/Processors/TechnicalResources/.

37

[2] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual Volume 1: Application
Programming, 2005. Publication Number 24592.
Also available at http://www.amd.com/us-en/Processors/TechnicalResources/.

[3] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual Volume 3: General-Purpose
and System Instructions, 2005. Publication Number 24594.
Also available at http://www.amd.com/us-en/Processors/TechnicalResources/.

[4] Intel Corporation. Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture, 2005.
Order Number 253665.
Also available at http://developer.intel.com/.

[5] Intel Corporation. Intel Architecture Software Developer’s Manual, Volume 2A: Instruction Set Refer-
ence, A–M, 2005. Order Number 253666.
Also available at http://developer.intel.com/.

[6] Intel Corporation. Intel Architecture Software Developer’s Manual, Volume 2B: Instruction Set Refer-
ence, N–Z, 2005. Order Number 253667.
Also available at http://developer.intel.com/.

[7] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach, Third Edition.
Morgan-Kaufmann, San Francisco, 2002.

[8] M. Matz, J. Hubička, A. Jaeger, and M. Mitchell. System V application binary interface
AMD64 architecture processor supplement. Technical report, AMD64.org, 2005. Available at
http://www.x86-64.org/.

38

Practice Problem Solutions

Problem 1 Solution: [Pg. 9]

This problem illustrates some of the subtleties of type conversion and the different move instructions. In
some cases, we make property that the movl instruction will set the upper 32 bits of the destination register
to 0’s. Some of the problems have multiple solutions.

Tx Ty Instruction S D Explanation
long long movq %rdi %rax No conversion
int long movslq %edi %rax Sign extend
char long movsbq %dil %rax Sign extend

unsigned int unsigned long movl %edi %eax Zero extends to 64 bits
unsigned char unsigned long movzbq %dil %rax Zero extend to 64
unsigned char unsigned long movzbl %dil %eax Zero extends to 64 bits

long int movslq %edi %rax Sign extends to 64 bits
long int movl %edi %eax Zero extends to 64 bits

unsigned long unsigned movl %edi %eax Zero extends to 64 bits

We show that the long to int conversion can use either movslq or movl, even though one will sign
extend the upper 32 bits, while the other will zero extend it. This is because the values of the upper 32 bits
are ignored for any subsequent instruction %eax as an operand.

Problem 2 Solution: [Pg. 11]

We can step through the code for arithprob and determine the following:

1. The movslq instruction sign extends d to a long integer. This implies that d has type int and c has
type long.

2. The movsbl instruction sign extends b to an integer. This means that b has type char and a has
type int.

3. The sum is computed using a leal instruction, indicating that the return value has type int.

From this, we can determine that the unique prototype for arithprob is

int arithprob(int a, char b, long c, int d);

Problem 3 Solution: [Pg. 15]

This problem provides a chance to study the use of conditional moves.

A. The operator is ’/’. We see this is an example of dividing by a power of two by right shifting (see
CS:APP Section 2.3.7). Before shifting by k = 2, we must add a bias of 2k−1 = 3 when the dividend
is negative.

39

B. Here is an annotated version of the assembly code.

x86-64 implementation of arith

x in register %edi

1 arith:
2 leal 3(%rdi), %eax x+3

3 cmpl $-1, %edi Compare x:-1

4 cmovle %eax, %edi If <= then x = x+3

5 sarl $2, %edi x >>= 2

6 movl %edi, %eax return value in %eax

7 ret

The cmovle instruction conditionally changes the number to be shifted from x to x+3 when x ≤ −1.

Problem 4 Solution: [Pg. 19]

Reverse engineering code is a good way to understand machine-level programming. This example gives us
a chance to look at the new loop structure.

The following is an annotated version of the assembly code

x86-64 implementation of puzzle

a in register %edi, b in register %esi

1 puzzle:
i is in register %esi, which is initialized to a

2 movslq %esi,%rdx result = (long) b

3 jmp .L60 goto middle

4 .L61: loop:

5 movslq %edi,%rax (long) i

6 subl %esi, %edi i -= b

7 imulq %rax, %rdx result *= (long) i

8 .L60: middle:

9 testl %edi, %edi Test i

10 jg .L61 If >0 goto loop

11 movq %rdx, %rax Return result

12 ret

A. Variable result is in register %rax.

B. Variable i is in register %esi. Since this is an argument register, i is initialized to a.

C. Here are the definitions of the five expressions

#define EXPR1 b
#define EXPR2 a
#define EXPR3 0
#define EXPR4 b
#define EXPR5 i

40

Problem 5 Solution: [Pg. 22]

We can step through the code for incrprob and determine the following:

1. The addl instruction fetches a 32-bit integer from the location given by the third argument register
and adds it to the 32-bit version of the first argument register. From this, we can infer that t is the
third argument and x is the first argument. In addition, x must be a signed or unsigned integer, and t
must be a pointer to a signed or unsigned integer.

2. The movslq instruction sign extends the sum (a copy of *t) to a long integer. From this, we can
infer that t must be a pointer to a signed integer.

3. The addq instruction adds the sign-extended value of the previous sum to the location indicated by
the second argument register. From this, we can infer that q is the second argument and that it is a
pointer to a long integer.

There are two valid prototypes for incrprob, which we name incrprob s and incrprob u. They
differ only in whether x is signed or unsigned.

void incrprob_s(int x, long *q, int *t);
void incrprob_u(unsigned x, long *q, int *t);

Problem 6 Solution: [Pg. 27]

This function is an example of a leaf function that requires local storage. It can use space beyond the stack
pointer for its local storage, never altering the stack pointer.

Stack pointer
%rsp
Stack pointer
%rsp

Unused]

a[3]
–16

a[2]

a[1]

–24

–32

a[0]
–40

A.

B. x86-64 implementation of local_array

Argument i in %edi

1 local_array:
2 andl $3, %edi idx = i & 3;

3 movq $2, -40(%rsp) a[0] = 2

4 movq $3, -32(%rsp) a[1] = 3

5 movq $5, -24(%rsp) a[2] = 5

6 movq $7, -16(%rsp) a[3] = 7

41

7 movq -40(%rsp,%rdi,8), %rax return a[idx]

8 ret

C. The function never changes the stack pointer. It stores all of its local values in the region beyond the
stack pointer.

Problem 8 Solution: [Pg. 29]

This problem is similar to CS:APP Practice Problem 3.23, but updated for x86-64.

A. struct P1 { int i; char c; long int j; char d; };

i c j d Total Alignment
0 4 8 16 24 8

B. struct P2 { long i; char c; char d; int j; };

i c d j Total Alignment
0 8 9 12 16 8

C. struct P3 { short w[3]; char c[3] };

w c Total Alignment
0 6 10 2

D. struct P4 { short w[3]; char *c[3] };

w c Total Alignment
0 8 32 8

E. struct P3 { struct P1 a[2]; struct P2 *p };

a p Total Alignment
0 48 56 8

Problem 7 Solution: [Pg. 28]

A. Register %rbx is used to hold the parameter x.

B. Since %rbx is callee saved, it must be stored on the stack. Since this is the only use of the stack for
this function, the code uses push and pop instructions to save and restore the register.

C. x86-64 implementation of recursive factorial function rfact

Argument x in %rdi

1 rfact:
2 testq %rdi, %rdi Test x

3 pushq %rbx Save %rbx (callee save)

42

4 movl $1, %eax result = 1

5 movq %rdi, %rbx Copy x to %rbx

6 jle .L9 if x<=0 goto done

7 leaq -1(%rdi), %rdi xm1 = x-1

8 call rfact rfact(xm1)

9 imulq %rbx, %rax result = x*rfact(x)

10 .L9: done:

11 popq %rbx Restore %rbx

12 ret Return

D. Instead of explicitly decrementing and incrementing the stack pointer, the code can use pushq and
popq to both modify the stack pointer and to save and restore register state.

Problem 9 Solution: [Pg. 32]

These cases can be handled by selecting the appropriate entry from the table in Figure 10.

Tx Ty Instruction S D

long double cvtsi2sdq %rdi %xmm0
double int cvttsd2si %xmm0 %eax
float double cvtss2sd %xmm0 %xmm0
long float cvtsi2ssq %rdi %xmm0
float long cvtss2siq %xmm0 %rax

Problem 10 Solution: [Pg. 34]

This problem involves the same reasoning as was required to see that numbers declared at label .LC2
encode 1.8, but with a simpler example.

We see that the two values are 0 and 1077936128 (0x40400000). From the high-order bytes, we can
extract an exponent field of 0x404 (1028), from which we subtract a bias of 1023 to get an exponent of 5.
Concatenating the fraction bits of the two values, we get a fraction field of 0, but with the implied leading
value giving value 1.0. The constant is therefore 1.0× 25 = 32.0.

43

Index

NaN, floating-point not-a-number, 34
GAS, Gnu assembler, 3
GAS, Gnu assembler, argument listing, 34
%xmm0, Return floating-point value register, 31
%xmm0, return floating-point value, 36
%ah [x86-64] Bits 8–15 of register %rax, 7
%al [x86-64] Low order 8 of register %rax, 7
%ax [x86-64] Low order 16 bits of register %rax,

7
%ax [x86-64] Low order 16 bits of register %rbx,

7
%bh [x86-64] Bits 8–15 of register %rbx, 7
%bl [x86-64] Low order 8 of register %rbx, 7
%bpl [x86-64] Low order 8 of register %rbp, 7
%bp [x86-64] Low order 16 bits of register %rbp,

7
%ch [x86-64] Bits 8–15 of register %rcx, 7
%cl [x86-64] Low order 8 of register %rcx, 7
%cx [x86-64] Low order 16 bits of register %rcx,

7
%dh [x86-64] Bits 8–15 of register %rdx, 7
%dil [x86-64] Low order 8 of register %rdi, 7
%di [x86-64] Low order 16 bits of register %rdi,

7
%dl [x86-64] Low order 8 of register %rdx, 7
%dx [x86-64] Low order 16 bits of register %rdx,

7
%eax [x86-64] Low order 32 bits of register %rax,

7
%ebp [x86-64] Low order 32 bits of register %rbp,

7
%ebx [x86-64] Low order 32 bits of register %rbx,

7
%ecx [x86-64] Low order 32 bits of register %rcx,

7
%edi [x86-64] Low order 32 bits of register %rdi,

7
%edx [x86-64] Low order 32 bits of register %rdx,

7
%esi [x86-64] Low order 32 bits of register %rsi,

7

%esp [x86-64] Low order 32 bits of stack pointer
register %rsp, 7

%r10d [x86-64] Low order 32 bits of register %r10,
7

%r10w [x86-64] Low order 16 bits of register %r10,
7

%r10 [x86-64] Low order 8 of register %r10, 7
%r10 [x86-64] program register, 7
%r11d [x86-64] Low order 32 bits of register %r11,

7
%r11w [x86-64] Low order 16 bits of register %r11,

7
%r11 [x86-64] Low order 8 of register %r11, 7
%r11 [x86-64] program register, 7
%r12d [x86-64] Low order 32 bits of register %r12,

7
%r12w [x86-64] Low order 16 bits of register %r12,

7
%r12 [x86-64] Low order 8 of register %r12, 7
%r12 [x86-64] program register, 7
%r13d [x86-64] Low order 32 bits of register %r13,

7
%r13w [x86-64] Low order 16 bits of register %r13,

7
%r13 [x86-64] Low order 8 of register %r13, 7
%r13 [x86-64] program register, 7
%r14d [x86-64] Low order 32 bits of register %r14,

7
%r14w [x86-64] Low order 16 bits of register %r14,

7
%r14 [x86-64] Low order 8 of register %r14, 7
%r14 [x86-64] program register, 7
%r15d [x86-64] Low order 32 bits of register %r15,

7
%r15w [x86-64] Low order 16 bits of register %r15,

7
%r15 [x86-64] Low order 8 of register %r15, 7
%r15 [x86-64] program register, 7
%r8d [x86-64] Low order 32 bits of register %r8,

7
%r8w [x86-64] Low order 16 bits of register %r8,

44

7
%r8 [x86-64] Low order 8 of register %r8, 7
%r8 [x86-64] program register, 7
%r9d [x86-64] Low order 32 bits of register %r9,

7
%r9w [x86-64] Low order 16 bits of register %r9,

7
%r9 [x86-64] Low order 8 of register %r9, 7
%r9 [x86-64] program register, 7
%rax [x86-64] program register, 7
%rbp [x86-64] program register, 7
%rbx [x86-64] program register, 7
%rcx [x86-64] program register, 7
%rdi [x86-64] program register, 7
%rdx [x86-64] program register, 7
%rip [x86-64] program counter, 8
%rsi [x86-64] program register, 7
%rsp [x86-64] stack pointer register, 7
%sil [x86-64] Low order 8 of register %rsi, 7
%si [x86-64] Low order 16 bits of register %rsi,

7
%spl [x86-64] Low order 8 of stack pointer reg-

ister %rsp, 7
%sp [x86-64] Low order 16 bits of stack pointer

register %rsp, 7
128-bit arithmetic in GCC, 12
8086, Intel 16-bit microprocessor, 1, 30
8087, floating-point coprocessor, 3, 30

ABI (Application Binary Interface), 3
addq [x86-64] add quad word, 10
alignment, with x86-64, 29
andq [x86-64] and quad word, 10
Application Binary Interface, 3

callee (procedure being called), 23
callee save, 25
caller (procedure making call), 23
caller save, 25
cltq [x86-64] convert double word to quad word,

12
cmova [x86-64] move if unsigned greater, 15
cmovae [x86-64] move if unsigned greater or equal,

15
cmovb [x86-64] move if unsigned less, 15

cmovbe [x86-64] move if unsigned less or equal,
15

cmovg [x86-64] move if greater, 15
cmovge [x86-64] move if greater or equal, 15
cmovl [x86-64] move if less, 15
cmovle [x86-64] move if less or equal, 15
cmovna [x86-64] move if not unsigned greater,

15
cmovnae [x86-64] move if unsigned greater or

equal, 15
cmovnb [x86-64] move if not unsigned less, 15
cmovnbe [x86-64] move if not unsigned less or

equal, 15
cmovne [x86-64] move if not equal, 15
cmovng [x86-64] move if not greater, 15
cmovnge [x86-64] move if not greater or equal,

15
cmovnl [x86-64] move if not less, 15
cmovnle [x86-64] move if not less or equal, 15
cmovns [x86-64] move if nonnegative, 15
cmovnz [x86-64] move if not zero, 15
cmovs [x86-64] move if negative, 15
cmovz [x86-64] move if zero, 15
cmpq [x86-64] compare quad words, 13
conditional move instructions, 13
cqto [x86-64] convert quad word to oct word, 12
cvtsd2ss [x86-64] Convert single to double pre-

cision, 30
cvtsi2sd [x86-64] Convert integer to double

precision, 30
cvtsi2sdq [x86-64] Convert quadword integer

to double precision, 30
cvtsi2ss [x86-64] Convert integer to single pre-

cision, 30
cvtsi2ssq [x86-64] Convert quadword integer

to single precision, 30
cvtss2sd [x86-64] Convert single to double pre-

cision, 30
cvttsd2si [x86-64] Convert double precision

to integer, 30
cvttsd2siq [x86-64] Convert double precision

to quadword integer, 30
cvttss2si [x86-64] Convert single precision

to integer, 30

45

cvttss2siq [x86-64] Convert single precision
to quadword integer, 30

decq [x86-64] decrement quad word, 10
divq [x86-64] unsigned divide, 12

idivq [x86-64] signed divide, 12
imulq [x86-64] multiply quad word, 10
imulq [x86-64] signed multiply, 12
incq [x86-64] increment quad word, 10

jp [x86-64] Jump when parity flag set, 35

leaf procedure, 22
leaq [x86-64] load effective address, 10

MMX, Intel multimedia extenstion, 29
movabsq [x86-64] move absolute quad word, 9
movaps [x86-64] used to copy values between

XMM registers, 37
movlpd [x86-64] similar to movsd, 31, 37
movq [x86-64] move quad word, 9
movsbq [x86-64] move sign-extend byte to quad

word, 9
movsd [x86-64] Move double precision, 30
movslq [x86-64] move sign-extend double word

to quad word, 9
movss [x86-64] Move single precision, 30
movzbq [x86-64] move zero-extend byte to quad

word, 9
mulq [x86-64] unsigned multiply, 12

negq [x86-64] negate quad word, 10
notq [x86-64] complement quad word, 10

orq [x86-64] or quad word, 10

PC (program counter) relative, 8
popq [x86-64] pop quad word, 9
pushq [x86-64] push quad word, 9

Red zone, region beyond stack pointer, 27
rep [IA32] String repeat instruction, used as no-

op, 18
ret [x86-64] Return from procedure call, 18
rspreg [x86-64] Stack pointer register, 23

salq [x86-64] shift left quad word, 10
sarq [x86-64] shift arithmetic right quad word,

10
shlq [x86-64] shift left quad word, 10
shrq [x86-64] shift logical right double word, 10
SIMD, Single-Instruction Multiple Data execution,

29
speculative execution, 14
SSE3, Streaming SIMD Extensions, version 3, 29
subq [x86-64] subtract quad word, 10

testq [x86-64] test quad word, 13

ucomisd [x86-64] compare double precision, 34
ucomiss [x86-64] compare single precision, 34
Unordered, floating-point comparision outcome,

35

x86, Intel instruction set, 1
x87, floating-point instructions for 8087, 30
XMM, SSE3 registers, 29
xorps [x86-64] used to clear XMM register, 32,

37
xorq [x86-64] exclusive-or quad word, 10

46

