
Web Services
April 25, 2006
Web Services
April 25, 2006

TopicsTopics� HTTP� Serving static content� Serving dynamic content� Proxies

15-213
“The course that gives CMU its Zip!”

24-webservices.ppt

– 2 – 15-213, S’06

History of the WebHistory of the Web
1945: 1945: � Vannevar Bush, “As we may think”, Atlantic

Monthly, July, 1945.� Describes the idea of a distributed hypertext syste m.� A “Memex” that mimics the “web of trails” in our
minds.

1989:1989:� Tim Berners-Lee (CERN) writes internal proposal
to develop a distributed hypertext system.� Connects “a web of notes with links.”� Intended to help CERN physicists in large projects

share and manage information

1990:1990:� Sir Tim BL writes a graphical browser for NeXT
machines, and first web server ‘httpd’

– 3 – 15-213, S’06

Web History (cont)Web History (cont)
19921992� NCSA server released� 26 WWW servers worldwide

19931993� Marc Andreessen releases first version of NCSA Mosa ic
browser (killer app of the 90’s)� Mosaic version released for (Windows, Mac, Unix).� Web (port 80) traffic at 1% of NSFNET backbone traf fic.� Over 200 WWW servers worldwide.

19941994� Andreessen and colleagues leave NCSA to form “Mosai c
Communications Corp” (predecessor to Netscape).

– 4 – 15-213, S’06

Internet HostsInternet Hosts

– 5 – 15-213, S’06

Internet AddressesInternet Addresses

19.0.0.0 -
19.255.255.255

Ford Motor Company

18.0.0.0 -
18.255.255.255

Massachusetts Institute of Technology

17.0.0.0 -
17.255.255.255

Apple Computer

16.0.0.0 -
16.255.255.255

Digital Equipment Corporation

15.0.0.0 -
15.255.255.255

Hewlett-Packard

13.0.0.0 -
13.255.255.255

Xerox

12.0.0.0 -
12.255.255.255

AT&T

9.0.0.0 - 9.255.255.255IBM

– 6 – 15-213, S’06

Where is this traffic going?Where is this traffic going?

1.1. Yahoo.comYahoo.com !!

2.2. MSN.comMSN.com

3.3. Google.comGoogle.com

4.4. Passport.netPassport.net

5.5. eBay.comeBay.com

……

2543. 2543. www.cmu.eduwww.cmu.edu (23% to (23% to www.cs.cmu.eduwww.cs.cmu.edu))

– 7 – 15-213, S’06

Web TransactionWeb Transaction

Web
server

HTTP request

HTTP response
(content)

Clients and servers Clients and servers
communicate using the communicate using the
HyperTextHyperText Transfer Transfer
Protocol (HTTP)Protocol (HTTP)� Client and server

establish TCP connection� Client requests content� Server responds with
requested content� Client and server close
connection (usually)

Current version is HTTP/1.1Current version is HTTP/1.1� RFC 2616, June, 1999.

Web
client

(browser)

– 8 – 15-213, S’06

HTTP ProtocolHTTP Protocol
GET / HTTP/1.1 Client: request line
host: www.aol.com Client: required HTTP/1.1 HOST header

Client: empty line terminates headers .
HTTP/1.0 200 OK Server: response line
MIME-Version: 1.0 Server: followed by five response headers
Date: Mon, 08 Jan 2001 04:59:42 GMT
Server: NaviServer/2.0 AOLserver/2.3.3
Content-Type: text/html Server: expect HTML in the response body
Content-Length: 42092 Server: expect 42,092 bytes in the resp body

Server: empty line (“ \r\n”) terminates hdrs
<html> Server: first HTML line in response body
... Server: 766 lines of HTML not shown.
</html> Server: last HTML line in response body
Connection closed by foreign host. Server: closes connection
unix> Client: closes connection and terminates

– 9 – 15-213, S’06

Web ContentWeb Content
Web servers return Web servers return contentcontent to clientsto clients� content: a sequence of bytes with an associated MIME

(Multipurpose Internet Mail Extensions) type

Example MIME typesExample MIME types� text/html HTML document� text/plain Unformatted text� application/postscript Postcript document� image/gif Binary image encoded in GIF format� image/jpeg Binary image encoded in JPEG

format

– 10 – 15-213, S’06

Static and Dynamic ContentStatic and Dynamic Content
The content returned in HTTP responses can be eithe r The content returned in HTTP responses can be eithe r

staticstatic or or dynamicdynamic ..� Static content: content stored in files and retriev ed in
response to an HTTP request� Examples: HTML files, images, audio clips.� Dynamic content: content produced on-the-fly in res ponse to
an HTTP request� Example: content produced by a program executed by the

server on behalf of the client.

Bottom line: Bottom line: All Web content is associated with a file All Web content is associated with a file
that is managed by the server.that is managed by the server.

– 11 – 15-213, S’06

URLsURLs
Each file managed by a server has a unique name cal led a Each file managed by a server has a unique name cal led a

URL (Universal Resource Locator)URL (Universal Resource Locator)

URLs for static content:URLs for static content:� http://www.cs.cmu.edu:80/index.html� http://www.cs.cmu.edu/index.html� http://www.cs.cmu.edu� Identifies a file called index.html, managed by a Web server at
www.cs.cmu.edu that is listening on port 80.

URLs for dynamic content:URLs for dynamic content:� http://www.cs.cmu.edu:8000/cgi-bin/adder?15000&213� Identifies an executable file called adder , managed by a Web
server at www.cs.cmu.edu that is listening on port 8000, that
should be called with two argument strings: 15000 and 213 .

– 12 – 15-213, S’06

How Clients and Servers Use URLsHow Clients and Servers Use URLs
Example URL: Example URL: http://www.aol.com:80http://www.aol.com:80 /index.html/index.html

Clients use Clients use prefixprefix ((http://www.aol.com:80http://www.aol.com:80) to infer:) to infer:� What kind of server to contact (Web server)� Where the server is (www.aol.com)� What port it is listening on (80)

Servers use Servers use suffixsuffix ((// index.htmlindex.html) to:) to:� Determine if request is for static or dynamic conte nt.� No hard and fast rules for this.� Convention: executables reside in cgi-bin directory� Find file on file system.� Initial “ / ” in suffix denotes home directory for requested
content.� Minimal suffix is “ / ”, which all servers expand to some default
home page (e.g., index.html).

– 13 – 15-213, S’06

Anatomy of an HTTP TransactionAnatomy of an HTTP Transaction
unix> telnet www.aol.com 80 Client: open connection to server
Trying 205.188.146.23... Telnet prints 3 lines to the terminal
Connected to aol.com.
Escape character is '^]'.
GET / HTTP/1.1 Client: request line
host: www.aol.com Client: required HTTP/1.1 HOST header

Client: empty line terminates headers .
HTTP/1.0 200 OK Server: response line
MIME-Version: 1.0 Server: followed by five response headers
Date: Mon, 08 Jan 2001 04:59:42 GMT
Server: NaviServer/2.0 AOLserver/2.3.3
Content-Type: text/html Server: expect HTML in the response body
Content-Length: 42092 Server: expect 42,092 bytes in the resp body

Server: empty line (“ \r\n”) terminates hdrs
<html> Server: first HTML line in response body
... Server: 766 lines of HTML not shown.
</html> Server: last HTML line in response body
Connection closed by foreign host. Server: closes connection
unix> Client: closes connection and terminates

– 14 – 15-213, S’06

HTTP TransactionHTTP Transaction

Web
server

HTTP request

HTTP response
(content)

Clients and servers Clients and servers
communicate using the communicate using the
HyperTextHyperText Transfer Transfer
Protocol (HTTP)Protocol (HTTP)� Client and server

establish TCP connection� Client requests content� Server responds with
requested content� Client and server close
connection (usually)

Current version is HTTP/1.1Current version is HTTP/1.1� RFC 2616, June, 1999.

Web
client

(browser)

– 15 – 15-213, S’06

HTTP RequestsHTTP Requests

HTTP request is a HTTP request is a request linerequest line , followed by zero or , followed by zero or
more more request headersrequest headers

Request line: Request line: <method> <<method> < uriuri > <version>> <version>� <version> is HTTP version of request (HTTP/1.0 or
HTTP/1.1)� <uri> is typically URL for proxies, URL suffix for server s.� A URL is a type of URI (Uniform Resource Identifier)� See http://www.ietf.org/rfc/rfc2396.txt� <method> is either GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE.

– 16 – 15-213, S’06

HTTP Request LineHTTP Request Line
HTTP methods:HTTP methods:� GET: Retrieve static or dynamic content� Arguments for dynamic content are in URI� Workhorse method (99% of requests)� POST: Retrieve dynamic content� Arguments for dynamic content are in the request bo dy� OPTIONS: Get server or file attributes� HEAD: Like GETbut no data in response body� PUT: Write a file to the server!� DELETE: Delete a file on the server!� TRACE: Echo request in response body� Useful for debugging.

– 17 – 15-213, S’06

HTTP Request HeadersHTTP Request Headers
Request headers: Request headers: <header name>: <header data<header name>: <header data >>� Provide additional information to the server.

Major differences between HTTP/1.1 and HTTP/1.0Major differences between HTTP/1.1 and HTTP/1.0� HTTP/1.0 uses a new connection for each transaction .� HTTP/1.1 also supports persistent connections� multiple transactions over the same connection�

Connection: Keep-Alive� HTTP/1.1 requires HOSTheader�

Host: kittyhawk.cmcl.cs.cmu.edu� HTTP/1.1 adds additional support for caching

– 18 – 15-213, S’06

GETRequest to Apache Server
From Browser
GETRequest to Apache Server
From Browser

GET /test.html HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 4.01; Win dows 98)
Host: euro.ecom.cmu.edu
Connection: Keep-Alive
CRLF (\r\n)

URI is just the suffix, not the entire URL

– 19 – 15-213, S’06

HTTP ResponsesHTTP Responses
HTTP response is a HTTP response is a response lineresponse line followed by zero or followed by zero or

more more response headersresponse headers ..

Response line: Response line:

<version> <status code> <status <version> <status code> <status msgmsg>>� <version> is HTTP version of the response.� <status code> is numeric status.� <status msg> is corresponding English text.� 200 OK Request was handled without error� 403 Forbidden Server lacks permission to access file� 404 Not found Server couldn’t find the file.

Response headers: Response headers: <header name>: <header data><header name>: <header data>� Provide additional information about response� Content-Type: MIME type of content in response body.� Content-Length: Length of content in response body.

– 20 – 15-213, S’06

GETResponse From Apache ServerGETResponse From Apache Server

HTTP/1.1 200 OK
Date: Thu, 22 Jul 1999 04:02:15 GMT
Server: Apache/1.3.3 Ben-SSL/1.28 (Unix)
Last-Modified: Thu, 22 Jul 1999 03:33:21 GMT
ETag: "48bb2-4f-37969101"
Accept-Ranges: bytes
Content-Length: 79
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
CRLF
<html>
<head><title>Test page</title></head>
<body>
<h1>Test page</h1>
</html>

– 21 – 15-213, S’06

Web ProxyWeb Proxy

Web ProxyWeb Proxy� Interposed between Client & Server� Usually serves as Firewall

Sample ProxySample Proxy� Produces log of communication between client & serv er� Alter HTTP contents

Client ServerProxy

1). Client Request 2). Proxy Request

4). Proxy Response 3). Server Response

– 22 – 15-213, S’06

Servicing Web Page RequestServicing Web Page Request

� URI: /~bryant/test.html� Host: www-2.cs.cmu.edu

– 23 – 15-213, S’06

Client � Proxy � ServerClient � Proxy � Server

GET http://www-2.cs.cmu.edu/~bryant/test.html HTTP/ 1.1\r\n
Host: www-2.cs.cmu.edu\r\n
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1 ; en-US; rv:1.7.3)

Gecko/20040910\r\n
Accept:

text/xml,application/xml,application/xhtml+xml,text /html;q=0.9,tex
t/plain;q=0.8,image/png,*/*;q=0.5\r\n

Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n
Keep-Alive: 300\r\n
Proxy-Connection: keep-alive\r\n
\r\n

– 24 – 15-213, S’06

Server � Proxy � Client #1Server � Proxy � Client #1

Chunked Transfer EncodingChunked Transfer Encoding� Alternate way of specifying content length� Each “chunk” prefixed with chunk length� See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.ht ml

HTTP/1.1 200 OK\r\n
Date: Mon, 29 Nov 2004 01:27:15 GMT\r\n
Server: Apache/1.3.27 (Unix) mod_ssl/2.8.12 OpenSSL /0.9.6

mod_pubcookie/a5/1.76-009\r\n
Transfer-Encoding: chunked\r\n
Content-Type: text/html\r\n
\r\n

– 25 – 15-213, S’06

Server � Proxy � Client #2Server � Proxy � Client #2
2ec\r\n
<head><title>Some Tests</title></head>\n
<h1>Some Tests</h1>\n
<dl>\n

<dt> Current Teaching: \n
\n

 Bryant's teaching\ n
 \n

15-213 Introduction to Computer Systems (Fall ' 04).\n
 N onexistent file\n
 Nonexistent host\n

\n
<dt>Fun Downloads\n
\n

 Google\n
 CMU\n
 Yahoo\n
 NFL\n

\n
</dl>\n
<hr>\n
Back to Randy Bryant's home pa ge\n
\n
\r\n
0\r\n
\r\n

First Chunk: 0x2ec = 748 bytes

Second Chunk: 0 bytes (indicates last chunk)

– 26 – 15-213, S’06

Serving Dynamic ContentServing Dynamic Content

Client Server

Client sends request to Client sends request to
server.server.

If request URI contains the If request URI contains the
string “string “ // cgicgi -- binbin ”, then ”, then
the server assumes that the server assumes that
the request is for the request is for
dynamic content. dynamic content.

GET /cgi-bin/env.pl HTTP/1.1

– 27 – 15-213, S’06

Serving Dynamic Content (cont)Serving Dynamic Content (cont)

Client Server
The server creates a child The server creates a child

process and runs the process and runs the
program identified by the program identified by the
URI in that processURI in that process

env.pl

fork/exec

– 28 – 15-213, S’06

Serving Dynamic Content (cont)Serving Dynamic Content (cont)

Client ServerThe child runs and The child runs and
generates the dynamic generates the dynamic
content.content.

The server captures the The server captures the
content of the child and content of the child and
forwards it without forwards it without
modification to the clientmodification to the client

env.pl

Content

Content

– 29 – 15-213, S’06

Issues in Serving Dynamic ContentIssues in Serving Dynamic Content

How does the client pass program How does the client pass program
arguments to the server?arguments to the server?

How does the server pass these How does the server pass these
arguments to the child?arguments to the child?

How does the server pass other How does the server pass other
info relevant to the request to info relevant to the request to
the child?the child?

How does the server capture the How does the server capture the
content produced by the child?content produced by the child?

These issues are addressed by the These issues are addressed by the
Common Gateway Interface Common Gateway Interface
(CGI) (CGI) specification.specification.

Client Server

Content

Content

Request

Create

env.pl

– 30 – 15-213, S’06

CGICGI

Because the children are written according to the C GI Because the children are written according to the C GI
spec, they are often called spec, they are often called CGI programsCGI programs ..

Because many CGI programs are written in Perl, they Because many CGI programs are written in Perl, they
are often called are often called CGI scriptsCGI scripts ..

However, CGI really defines a simple standard for However, CGI really defines a simple standard for
transferring information between the client transferring information between the client
(browser), the server, and the child process.(browser), the server, and the child process.

– 31 – 15-213, S’06

add.com:
THE Internet addition portal!
add.com:
THE Internet addition portal!

Ever need to add two numbers together and you just Ever need to add two numbers together and you just
can’t find your calculator?can’t find your calculator?

Try Dr. Dave’s addition service at “Try Dr. Dave’s addition service at “ add.comadd.com : THE : THE
Internet addition portal!”Internet addition portal!”� Takes as input the two numbers you want to add toge ther.� Returns their sum in a tasteful personalized messag e.

After the IPO we’ll expand to multiplication!After the IPO we’ll expand to multiplication!

– 32 – 15-213, S’06

The add.com ExperienceThe add.com Experience
input URL

Output page

host port CGI program args

– 33 – 15-213, S’06

Serving Dynamic Content With GETServing Dynamic Content With GET

Question:Question: How does the client pass arguments to the How does the client pass arguments to the
server?server?

Answer:Answer: The arguments are appended to the URIThe arguments are appended to the URI

Can be encoded directly in a URL typed to a browser Can be encoded directly in a URL typed to a browser
or a URL in an HTML link or a URL in an HTML link � http://add.com/cgi-bin/adder?1&2� adder is the CGI program on the server that will do the

addition.� argument list starts with “?”� arguments separated by “&”� spaces represented by “+” or “%20”

Can also be generated by an HTML formCan also be generated by an HTML form
<form method=get action="http://add.com/cgi-bin/pos tadder">

– 34 – 15-213, S’06

Serving Dynamic Content With GETServing Dynamic Content With GET

URL: URL: � http://add.com/cgi-bin/adder?1&2

Result displayed on browser: Result displayed on browser:

Welcome to add.com: THE Internet addition portal.

The answer is: 1 + 2 = 3

Thanks for visiting!

– 35 – 15-213, S’06

Serving Dynamic Content With GETServing Dynamic Content With GET

QuestionQuestion : How does the server pass these : How does the server pass these
arguments to the child?arguments to the child?

Answer:Answer: In environment variable QUERY_STRINGIn environment variable QUERY_STRING� A single string containing everything after the “?”� For add.com: QUERY_STRING= “ 1&2”

/* child code that accesses the argument list */
if ((buf = getenv("QUERY_STRING")) == NULL) {

exit(1);
}

/* extract arg1 and arg2 from buf and convert */
...
n1 = atoi(arg1);
n2 = atoi(arg2);

– 36 – 15-213, S’06

Serving Dynamic Content With GETServing Dynamic Content With GET

Question:Question: How does the server pass other info relevant How does the server pass other info relevant
to the request to the child?to the request to the child?

Answer:Answer: In a collection of environment variables In a collection of environment variables
defined by the CGI spec.defined by the CGI spec.

– 37 – 15-213, S’06

Some CGI Environment VariablesSome CGI Environment Variables

GeneralGeneral� SERVER_SOFTWARE� SERVER_NAME� GATEWAY_INTERFACE(CGI version)

RequestRequest --specificspecific� SERVER_PORT� REQUEST_METHOD(GET, POST, etc)� QUERY_STRING(contains GETargs)� REMOTE_HOST(domain name of client)� REMOTE_ADDR(IP address of client)� CONTENT_TYPE(for POST, type of data in message body, e.g.,
text/html)� CONTENT_LENGTH(length in bytes)

– 38 – 15-213, S’06

Some CGI Environment VariablesSome CGI Environment Variables

In addition, the value of each header of type In addition, the value of each header of type typetype
received from the client is placed in environment received from the client is placed in environment
variable variable HTTP_HTTP_typetype� Examples:�

HTTP_ACCEPT�

HTTP_HOST�

HTTP_USER_AGENT(any “-” is changed to “_”)

– 39 – 15-213, S’06

Serving Dynamic Content With GETServing Dynamic Content With GET
Question:Question: How does the server capture the content produced by the How does the server capture the content produced by the

child?child?

Answer:Answer: The child generates its output on The child generates its output on stdoutstdout . Server uses . Server uses dup2 dup2
to redirect to redirect stdoutstdout to its connected socket. to its connected socket. � Notice that only the child knows the type and size of the content. Thus

the child (not the server) must generate the corres ponding headers.

/* child generates the result string */
sprintf(content, "Welcome to add.com: THE Internet addition portal\

<p>The answer is: %d + %d = %d\
<p>Thanks for visiting!\r\n",

n1, n2, n1+n2);

/* child generates the headers and dynamic content */
printf("Content-length: %d\r\n", strlen(content));
printf("Content-type: text/html\r\n");
printf("\r\n");
printf("%s", content);

– 40 – 15-213, S’06

Serving Dynamic Content With GET Serving Dynamic Content With GET
bass> ./tiny 8000
GET /cgi-bin/adder?1&2 HTTP/1.1
Host: bass.cmcl.cs.cmu.edu:8000
<CRLF>

kittyhawk> telnet bass 8000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
GET /cgi-bin/adder?1&2 HTTP/1.1
Host: bass.cmcl.cs.cmu.edu:8000
<CRLF>
HTTP/1.1 200 OK
Server: Tiny Web Server
Content-length: 102
Content-type: text/html
<CRLF>
Welcome to add.com: THE Internet addition portal.
<p>The answer is: 1 + 2 = 3
<p>Thanks for visiting!
Connection closed by foreign host.
kittyhawk>

HTTP request received by
Tiny Web server

HTTP request sent by client

HTTP response generated by
the server
HTTP response generated by
the CGI program

– 41 – 15-213, S’06

ProxiesProxies

A A proxy proxy is an intermediary between a client and an is an intermediary between a client and an
origin serverorigin server ..� To the client, the proxy acts like a server.� To the server, the proxy acts like a client.

Client Proxy Origin
Server

HTTP request HTTP request

HTTP responseHTTP response

– 42 – 15-213, S’06

Why Proxies?Why Proxies?

Can perform useful functions as requests and Can perform useful functions as requests and
responses pass byresponses pass by� Examples: Caching, logging, anonymization

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html

foo.html

foo.html

Client
B

Request foo.html

foo.html

Fast inexpensive local network

Slower more
expensive

global network

– 43 – 15-213, S’06

Proxy Example: Interface SimplificationProxy Example: Interface Simplification

� Allegheny County
real estate
information

– 44 – 15-213, S’06

Proxy Example: Interface SimplificationProxy Example: Interface Simplification

� Search Results

– 45 – 15-213, S’06

Simplified VersionSimplified Version

� Run special proxy on home machine� http://bryant.dsl.telerama.com/name.html

– 46 – 15-213, S’06

Simplified Version: On CellphoneSimplified Version: On Cellphone

� Request

� Response

– 47 – 15-213, S’06

Generating CGI RequestGenerating CGI Request

<FORM METHOD=GET ACTION="http://bryant.dsl.telerama .com/cgi-bin/name.pl">

<p>Last First<INPUT NAME="name" TYPE=text SIZE="25" >
<p><INPUT TYPE=submit>

</FORM>

http://bryant.dsl.telerama.com/cgi-bin/name.pl?name =lemieux+mario

Form Portion of Web Page:

– 48 – 15-213, S’06

For More InformationFor More Information

Study the Tiny Web server described in your textStudy the Tiny Web server described in your text� Tiny is a sequential Web server.� Serves static and dynamic content to real browsers.� text files, HTML files, GIF and JPEG images.� 220 lines of commented C code.� Also comes with an implementation of the CGI script for the
add.com addition portal.

– 49 – 15-213, S’06

Summary #1Summary #1

Web
server

HTTP request

HTTP response
(content)

Clients and servers Clients and servers
communicate using communicate using
the the HyperTextHyperText
Transfer Protocol Transfer Protocol
(HTTP)(HTTP)� HTTP Request� HTTP Response

Web
client

(browser)

– 50 – 15-213, S’06

Summary #2Summary #2
The content returned in HTTP responses can be eithe r The content returned in HTTP responses can be eithe r

staticstatic or or dynamicdynamic ..� Static content: � Specified in the URI, server fetches file and sends content to
client� Dynamic content: Content produced on-the-fly in res ponse

to an HTTP request� Server forks client, passes arguments using CGI� Client generates content

– 51 – 15-213, S’06

Summary #3Summary #3

A A proxy proxy is an intermediary between a client and an is an intermediary between a client and an
origin serverorigin server ..� To the client, the proxy acts like a server.� To the server, the proxy acts like a client.

Client Proxy Origin
Server

HTTP request HTTP request

HTTP responseHTTP response

