
15-122: Principles of Imperative Computation
Recitation 1: Bits and Bites on Bits and Bytes Nivedita Chopra

Converting between binary and decimal
In class, we saw an algorithm for converting between our familiar decimal notation and binary notation.
The example to the left describes the conversion between the decimal representation of 20 (which we
could write as 20[10] to emphasize its decimal-ness) and the binary representation 10100[2].

⇥ 2 + = ⇥ 2 + = ⇥ 2 + =

⇥ 2 + = ⇥ 2 + = ⇥ 2 + =

⇥ 2 + 1 = 1 ⇥ 2 + = ⇥ 2 + =

1 ⇥ 2 + 0 = 2 ⇥ 2 + = ⇥ 2 + =

2 ⇥ 2 + 1 = 5 ⇥ 2 + = ⇥ 2 + =

5 ⇥ 2 + 0 = 10 ⇥ 2 + = ⇥ 2 + =

10 ⇥ 2 + 0 = 20 ⇥ 2 + = ⇥ 2 + =

Checkpoint 0
What is the decimal representation of 1111010[2]?

What is the binary representation of 49[10]?

Hexadecimal notation
Hex is useful because every hex digit corresponds to exactly 4 binary digits (bits). Base 8 (octal) is
similarly useful: each octal digit corresponds to exactly 3 binary digits. However, hex more evenly divides
up a 32-bit integer.
Hex 0 1 2 3 4 5 6 7 8 9 a b c d e f
Bin. 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Dec. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In C0 we indicate we are using base 16 with an 0x prefix, so we write 7f2c[16] as 0x7f2c.

Convert the binary number 1011111010101101[2] to hex.

Convert the hex number 20[16] to decimal.

Why wouldn’t it make sense to write a C0 function that converts hex numbers to decimal numbers?

Bit manipulation
and

& 1 0
1 1 0
0 0 0

or
| 1 0
1 1 1
0 1 0

xor (exclusive or)
^ 1 0
1 0 1
0 1 0

complement
⇠ 1 0

0 1

There are also shift operators. They take a number and shift it left (or right) by the specified number of
bits. In C0, right shifts sign extend. This means that if the first digit was a 1, then 1s will be copied in
as we shift.



ARGB representation of color
We usually use 32-bit integers in C0 to represent a single integer. However, it’s possible to use the bits in
other ways: as 32 separate Boolean values or as 4 separate 8-bit numbers in the range [0, 255). This lets
us represent a color (red, green, and blue intensities, plus transparency or “alpha”), as 32-bit C0 integer.

Checkpoint 1
Write a function that gets the alpha and red pixels of a pixel in the ARGB format, moving them from
bits 31-16 to bits 15-0. Your solution can use any of the bitwise operators, but will not need all of them.

1 typedef int pixel;
2 int alphaAndRed(pixel p)
3 //@ensures 0 <= \result && \result <= 0xffff;
4 {
5 return ;

6 }

Two’s complement
Because C0’s int type only represents integers in the range [�231, 231), addition and multiplication are
defined in terms of modular arithmetic. As a result, adding two positive numbers may give you a negative
number!

Checkpoint 2
What assertion would you need to write to ensure that an addition would give a result without overflowing
(in other words, to ensure that the result you get in C0 is the same as the result you get with true integer
arithmetic).

1 int safe_add(int a, int b)
2 /*@requires
3
4
5
6
7 @*/
8 { return a + b; }

What about multiplication? For the sake of simplicity, you can assume both numbers are non-negative.

1 int safe_mult(int a, int b)
2 /*@requires a >= 0 && b >= 0 &&
3
4
5
6
7 @*/
8 { return a * b; }


