15-122 : Principles of Imperative Computation, Fall 2015

Written Homework 9

Due: Monday, November 2 2015 by 6:00 PM

Name:

Andrew 1ID:

Section:

This written homework covers binary search trees and AVL trees.

Print out this PDF double-sided, staple pages in order, and write your answers on these
pages neatly. You can hand in the assignment to your TA during lab or in the box outside
of GHC 4117 (in the CS Undergraduate Program suite). Warning: The box is removed

promptly at 6PM.

You must hand in your homework yourself;
do not give it to someone else to hand in.

Question | Points | Score
1 8
2 7
Total: 15

15-122 Homework 9 Page 2 of 7

1. Binary Search Trees

1pt (a) Draw the final binary search tree that results from inserting the following keys in
the order given. Be sure all branches in your tree are drawn clearly so we can
distinguish left branches from right branches.

91, 85, 69, 110, 87, 98, 93, 76, 94, 108

Solution:

15-122 Homework 9 Page 3 of 7

(b) How many different binary search trees can be constructed using the following five
keys if they can be inserted in any order?

36, 18, 42, —2, 91

Show how your answer is derived. We've begun the derivation below; we’ve used
t(n) to stand for the number of binary search trees with n elements.

Think recursively: How many trees with 0 elements can possibly exist? How many
different trees with 1 element can possibly exist? 2 elements? 3 elements? 4
elements? Think about how to build up your answer from answers to simpler

questions. (It might help to come back to this question after doing the last question
on AVL tree height.)

n | t(n)

(0) x (1) + £(1) x £(0) = 2

0
1
2
3
4
)

15-122 Homework 9 Page 4 of 7

For the following questions, you should refer to the implementation of binary search trees
discussed in class. The code is available on the course website. We’ll use the version of
binary search trees where the client defines a single elem_compare(x,y) function that
returns -1 if x is "less than" y, 0 if x is "equal to" y, and 1 if x is "greater than" y. These
relations are defined based on the type of the keys in the elements.

(c) Assume that the client also provides a function elem_print (e) that prints the given
element e in a readable format on one line. Complete the function bst_inorder
which prints the elements of the given BST on one line in order from smallest key
to largest key. If the BST is empty, nothing is printed. You will need a recursive
helper function tree_inorder to complete the task.

Think recursively: To print the elements rooted at some tree node T in order, first
print all of the elements of T’s left subtree in order, then print the element of the
node T, and finally print all of the elements of T’s right subtree in order. You
should not need to examine the keys since the contract guarantees the argument is

a BST.

Solution:

void tree_inorder (treex T)
//@requires is_ordered(T, NULL, NULL);
{

void bst_inorder(bst_t B)
//@requires is_bst(B);
{
tree_inorder(
print ("\n");
}

15-122 Homework 9

Page 5 of 7

(d) The tree_insert function in the lecture notes is recursive, but it is also possible

to implement it iteratively. Fill in the missing code.

Solution:
treex tree_insert(treex T, elem x)
//@requires is_tree(T) && x != NULL;
//Q@ensures is_tree(\result);
{
treex parent = NULL;
treex current = ______________ ___ ____________ N
while (current != NULL)
/*@loop_invariant current == NULL || parent == NULL
|| current == ____________________________
|| current == ______ _ _ ___ o ___ ;@%/
{
parent = current,;
int cmp = elem_compare(x, current->data);
if (cmp == 0) {
current->data = x;
return T;
} else if (cmp < 0) {
current = ____ _ _ _ _ _ _ _ _ H
} else {//@assert cmp > 0;
current = _ _ _ _ _ _ _ ;
+
}
treex R = alloc(tree);
R->data = x;
if (parent != NULL) {
int cmp = elem_compare(x, parent->data);
if (cmp < 0)
else
}
else {
+
return T;
+

15-122 Homework 9 Page 6 of 7

2. AVL Trees.

(a) Draw the AVL trees that result after successively inserting the following keys into
an initially empty tree, in the order shown:

38, 76, 90, 87, 105, 79, 96

Show the tree after each insertion and subsequent re-balancing (if any) is completed:
the tree after the first element, 38, is inserted into an empty tree, then the tree after
76 is inserted into the first tree, and so on for a total of seven trees. Make it clear
what order the trees are in.

Be sure to maintain and restore the BST invariants and the additional balance
invariant required for an AVL tree after each insert.

Solution:

15-122 Homework 9 Page 7 of 7

(b) Recall our definition for the height A of a tree:

The height of a tree is the maximum number of nodes on a path
from the root to a leaf. So the empty tree has height 0, the tree
with one node has height 1, and a balanced tree with three nodes
has height 2.

The minimum and maximum number of nodes m in a valid AVL tree is related to
its height. The goal of this question is to quantify this relationship.
i. Let m(h) be the minimum number of nodes in an AVL tree of height h. Fill in
the table below relating h and m(h):

h m(h)
0 0
1 1
2 2
3
4
5
6
Ipt ii. Guided by the table in part (i), give an expression for m(h).
Here’s a hint: recall that the nth Fibonacci number F(n) is defined by:
F(0)=0
F(1)=1

F(n)=F(n—-1)+ F(n—2), n>1

You may find it useful to use the Fibonacci function F'(n) in your answer. Your
answer does not need to be a closed form expression; it could be a recursive
definition like the one for F'(n).

Solution:

1pt iii. Give a closed form expression (nonrecursive) for M(h), the mazimum number
of nodes in a valid AVL tree of height h.

Solution: M(h) =

