
March 21, 2002
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Scan Conversion of Polygons
Antialiasing
Compositing

[Angel, Ch. 7.10-7.11, 9.7-9.8]

Scan Conversion of Polygons
Antialiasing
Compositing

[Angel, Ch. 7.10-7.11, 9.7-9.8]

RasterizationRasterization

15-462 Computer Graphics I
Lecture 15

03/21/2002 15-462 Graphics I 2

ReviewReview

• Rasterization: from screen coordinates (floats)
to frame buffer (ints)

• Scan conversion of lines
– DDA algorithm
– Bresenham’s incremental algorithm

03/21/2002 15-462 Graphics I 3

Scan Conversion of PolygonsScan Conversion of Polygons

• Multiple tasks for scan conversion
– Filling polygon (inside/outside)
– Pixel shading (color interpolation)
– Blending (accumulation, not just writing)
– Depth values (z-buffer hidden-surface removal)
– Texture coordinate interpolation (texture mapping)

• Hardware efficiency critical
• Many algorithms for filling (inside/outside)
• Much fewer that handle all tasks well

03/21/2002 15-462 Graphics I 4

Filling Convex PolygonsFilling Convex Polygons

• Find top and bottom vertices
• List edges along left and right sides
• For each scan line from top to bottom

– Find left and right endpoints of span, xl and xr
– Fill pixels between xl and xr
– Can use Bresenham’s alg. to update xl and xr

xl xr

03/21/2002 15-462 Graphics I 5

Other OperationsOther Operations

• Pixel shading (Gouraud)
– Bilinear interpolation of vertex colors

• Depth values (z-Buffer)
– Bilinear interpolation of vertex depth
– Read, and write only if visible
– Preserve depth (final orthographic projection)

• Texture coordinates u and v
– Rational linear interpolation to avoid distortion
– u(x,y) = (Ax+By+C)/(Dx+Ey+F) similarly for v(x,y)
– Two divisions per pixel for texture mapping
– Due to perspective transformation

03/21/2002 15-462 Graphics I 6

Concave Polygons: Odd-Even TestConcave Polygons: Odd-Even Test

• Approach 1: odd-even test
• For each scan line

– Find all scan line/polygon intersections
– Sort them left to right
– Fill the interior spans between intersections

• Parity rule: inside after
an odd number of
crossings

03/21/2002 15-462 Graphics I 7

Concave Polygons: Winding RuleConcave Polygons: Winding Rule

• Approach 2: winding rule
• Orient the lines in polygon
• For each scan line

– Winding number = right-hdd – left-hdd crossings
– Interior if winding number non-zero

• Different only for self-intersecting polygons

Even-odd rule

21
1

1

1 1

Winding rule

03/21/2002 15-462 Graphics I 8

Concave Polygons: TessellationConcave Polygons: Tessellation

• Approach 3: divide non-convex, non-flat, or
non-simple polygons into triangles

• OpenGL specification
– Need accept only simple, flat, convex polygons
– Tessellate explicitly with tessellator objects
– Implicitly if you are lucky

• GeForce3 scan converts only triangles

03/21/2002 15-462 Graphics I 9

Boundary CasesBoundary Cases

• Boundaries and special cases require care
– Cracks between polygons
– Parity bugs: fill to infinity

• Intersections on pixel: set at beginning, not end
• Shared vertices: count ymin for parity, not ymax

• Horizontal edges: don’t change parity

set pixel don’t
set pixel

parity
change

no parity
change

03/21/2002 15-462 Graphics I 10

Edge/Scan Line IntersectionsEdge/Scan Line Intersections

• Brute force: calculate intersections explicitly
• Incremental method (Bresenham’s algorithm)
• Caching intersection information

– Edge table with edges sorted by ymin

– Active edges, sorted by x-intersection, left to right

• Process image from smallest ymin up

03/21/2002 15-462 Graphics I 11

Flood FillFlood Fill

• Draw outline of polygon
• Color seed
• Color surrounding pixels and recurse
• Must be able to test boundary and duplication
• More appropriate for drawing than rendering

03/21/2002 15-462 Graphics I 12

OutlineOutline

• Scan Conversion for Polygons
• Antialiasing
• Compositing

03/21/2002 15-462 Graphics I 13

AliasingAliasing

• Artefacts created during scan conversion
• Inevitable (going from continuous to discrete)
• Aliasing (name from digital signal processing):

we sample a continues image at grid points
• Effect

– Jagged edges
– Moire patterns

Moire pattern from sandlotscience.com

03/21/2002 15-462 Graphics I 14

More AliasingMore Aliasing

03/21/2002 15-462 Graphics I 15

Antialiasing for Line SegmentsAntialiasing for Line Segments

• Use area averaging at boundary

• (c) is aliased, magnified
• (d) is antialiased, magnified
• Warning: these images are sampled on screen!

03/21/2002 15-462 Graphics I 16

Antialiasing by SupersamplingAntialiasing by Supersampling

• Mostly for off-line rendering (e.g., ray tracing)
• Render, say, 3x3 grid of mini-pixels
• Average results using a filter
• Can be done adaptively

– Stop if colors are similar
– Subdivide at discontinuities

03/21/2002 15-462 Graphics I 17

Supersampling ExampleSupersampling Example

• Other improvements
– Stochastic sampling (avoiding repetition)
– Jittering (perturb a regular grid)

03/21/2002 15-462 Graphics I 18

Pixel-Sharing PolygonsPixel-Sharing Polygons

• Another aliasing error
• Assign color based on area-weighted average
• Interaction with depth information
• Use accumulation buffer

or α-blending

03/21/2002 15-462 Graphics I 19

Temporal AliasingTemporal Aliasing

• Sampling rate is frame rate (30 Hz for video)
• Example: spokes of wagon wheel in movie
• Possible to supersample and average
• Fast-moving objects are blurred
• Happens automatically in video and movies

– Exposure time (shutter speed)
– Memory persistence (video camera)
– Effect is motion blur

03/21/2002 15-462 Graphics I 20

Motion BlurMotion Blur

• Achieve by stochastic sampling in time
• Still-frame motion blur, but smooth animation

03/21/2002 15-462 Graphics I 21

Motion Blur ExampleMotion Blur Example

T. Porter, Pixar, 1984
16 samples/pixel

03/21/2002 15-462 Graphics I 22

OutlineOutline

• Scan Conversion for Polygons
• Antialiasing
• Compositing

03/21/2002 15-462 Graphics I 23

Accumulation BufferAccumulation Buffer

• OpenGL mechanism for supersampling or jitter
• Accumulation buffer parallel to frame buffer
• Superimpose images from frame buffer
• Copy back into frame buffer for display

γλΧλεαρ(ΓΛ_ΑΧΧΥΜ_ΒΥΦΦΕΡ_ΒΙΤ);
φορ (ι = 0; ι < νυµ_ιµαγεσ; ι++) {

γλΧλεαρ(ΓΛ_ΧΟΛΟΡ_ΒΥΦΦΕΡ_ΒΙΤ, ΓΛ_∆ΕΠΤΗ_ΒΥΦΦΕΡ_ΒΙΤ);
δισπλαψ_ιµαγε(ι);
γλΑχχυµ(ΓΛ_ΑΧΧΥΜ, 1.0/(φλοατ)νυµ_ιµαγεσ);

}
γλΑχχυµ(ΓΛ_ΡΕΤΥΡΝ, 1.0);

03/21/2002 15-462 Graphics I 24

Filtering and ConvolutionFiltering and Convolution

• Image transformation at pixel level
• Represent N £ M image as matrix A = [aik]
• Process each color component separately
• Linear filter produces matrix B = [bik] with

• B is the result of convolving A with filter H
• Represent H by n £ m convolution matrix

03/21/2002 15-462 Graphics I 25

Filters for AntialiasingFilters for Antialiasing

• Averaging pixels with neighbors

• For antialiasing: weigh center more heavily

03/21/2002 15-462 Graphics I 26

Filter for Depth-of-FieldFilter for Depth-of-Field

• Simulate camera depth-of-field
– Keep plane z = zf in focus
– Keep near and far planes unchanged

• Move viewer by ∆x
• Compute x’min, x’max, y’min, y’max for new frustum

03/21/2002 15-462 Graphics I 27

Depth-of-Field JitterDepth-of-Field Jitter

• Compute

• Blend the two images in accumulation buffer

03/21/2002 15-462 Graphics I 28

BlendingBlending

• Frame buffer
– Simple color model: R, G, B; 8 bits each
– α-channel A, another 8 bits

• Alpha determines opacity, pixel-by-pixel
– α = 1: opaque
– α = 0: transparent

• Blend translucent objects during rendering
• Achieve other effects (e.g., shadows)

03/21/2002 15-462 Graphics I 29

Image CompositingImage Compositing

• Compositing operation
– Source: s = [sr sg sb sa]
– Destination: d = [dr dg db da]
– b = [br bg bb ba] source blending factors
– c = [cr cg cb ca] destination blending factors
– d’ = [brsr + crdr bgsg + cgdg bbsb + cbdb basa + cada]

• Overlay n images with equal weight
– Set α-value for each pixel in each image to 1/n
– Source blending factor is “α”
– Destination blending factor is “1”

03/21/2002 15-462 Graphics I 30

Blending in OpenGLBlending in OpenGL

• Enable blending

• Set up source and destination factors

• Source and destination choices
– GL_ONE, GL_ZERO
– GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
– GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA

γλΕναβλε(ΓΛ_ΒΛΕΝ∆);

γλΒλενδΦυνδ(σουρχε_φαχτορ, δεστ_φαχτορ);

03/21/2002 15-462 Graphics I 31

Blending ErrorsBlending Errors

• Operations are not commutative
• Operations are not idempotent
• Interaction with hidden-surface removal

– Polygon behind opaque one should be culled
– Translucent in front of others should be composited
– Solution: make z-buffer read-only for translucent

polygons with glDepthMask(GL_FALSE);

03/21/2002 15-462 Graphics I 32

Antialiasing RevisitedAntialiasing Revisited

• Single-polygon case first
• Set α-value of each pixel to covered fraction
• Use destination factor of “1 – α”
• Use source factor of “α”
• This will blend background with foreground
• Overlaps can lead to blending errors

03/21/2002 15-462 Graphics I 33

Antialiasing with Multiple PolygonsAntialiasing with Multiple Polygons

• Initially, background color C0, α0 = 0
• Render first polygon; color C1fraction α1

– Cd = (1 – α1)C0 + α1C1

– αd = α1

• Render second polygon; assume fraction α2

• If no overlap (a), then
– C’d = (1 – α2)Cd + α2C2

– α’d = α1 + α2

03/21/2002 15-462 Graphics I 34

Antialiasing with OverlapAntialiasing with Overlap

• Now assume overlap (b)
• Average overlap is α1α2

• So αd = α1 + α2 – α1α2

• Make front/back decision for color as usual

03/21/2002 15-462 Graphics I 35

Antialiasing in OpenGLAntialiasing in OpenGL

• Avoid explicit α-calculation in program
• Enable both smoothing and blending

γλΕναβλε(ΓΛ_ΠΟΙΝΤ_ΣΜΟΟΤΗ);
γλΕναβλε(ΓΛ_ΛΙΝΕ_ΣΜΟΟΤΗ);
γλΕναβλε(ΓΛ_ΒΛΕΝ∆);
γλΒλενδΦυνχ(ΓΛ_ΣΡΧ_ΑΛΠΗΑ, ΓΛ_ΟΝΕ_ΜΙΝΥΣ_ΣΡΧ_ΑΛΠΗΑ);

03/21/2002 15-462 Graphics I 36

Depth Cueing and FogDepth Cueing and Fog

• Another application of blending
• Use distance-dependent (z) blending

– Linear dependence: depth cueing effect
– Exponential dependence: fog effect
– This is not a physically-based model

[Example: Fog Tutor]

ΓΛφλοατ φχολορ[4] = {...};
γλΕναβλε(ΓΛ_ΦΟΓ);
γλΦογφ(ΓΛ_ΦΟΓ_ΜΟ∆Ε; ΓΛ_ΕΞΠ);
γλΦογφ(ΓΛ_ΦΟΓ_∆ΕΝΣΙΤΨ, 0.5);
γλΦογφϖ(ΓΛ_ΦΟΓ_ΧΟΛΟΡ, φχολορ);

03/21/2002 15-462 Graphics I 37

SummarySummary

• Scan Conversion for Polygons
– Basic scan line algorithm
– Convex vs concave
– Odd-even and winding rules, tessellation

• Antialiasing (spatial and temporal)
– Area averaging
– Supersampling
– Stochastic sampling

• Compositing
– Accumulation buffer
– Blending and α-values

03/21/2002 15-462 Graphics I 38

PreviewPreview

• Assignment 5 extended to Friday night
• Assignment 6 out tonight, due next Thursday
• Next topics:

– More on image processing and pixel operations
– Ray tracing

