15-462 Computer Graphics |
Lecture 11

Midterm Review

Assignment 3 Movie
Midterm Review
Midterm Preview

February 26, 2002
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Announcements

« Assignment 4 due Thursday before lecture
* Lecture by John Ketchpaw

* Midterm next Tuesday
— In class
— Closed book
— One double-sided sheet of notes permitted
— Everything covered in lecture so far
« Assignment 3 movies
— Some flaws may be problems in production software
— Enjoy!

02/26/2002 15-462 Graphics | 2

1. Course Overview Revisited

* Modeling: how to represent objects

» Animation: how to control and represent motion
* Rendering: how to create images

* OpenGL graphics library

02/26/2002 15-462 Graphics |

2. Basic Graphics Programming

« The graphics pipeline

Vertices-— - Tﬁn:ﬁ:\q‘mni - I'.‘.lippt':r i == Frojector + -— R.'u.mr.i;l;rr:- = Pixels
| 1 l !
4 | A

Pipelines and parallelism

Latency vs throughput

Efficiently implementable in hardware

Not so efficiently implementable in software
Course approach: walk the pipeline left-to-right

02/26/2002 15-462 Graphics |

Graphics Functions

* Primitive functions (points, lines, polygons)
Attribute functions (color, lighting, material)
Transformation functions (homogeneous coord)
Viewing functions (projections)

Input functions (callbacks)

Control functions (GLUT library calls)

02/26/2002 15-462 Graphics | 5

3. Interaction

* Client/Server Model

» Callbacks

* Double Buffering

» Hidden Surface Removal

02/26/2002 15-462 Graphics | 6

Client/Server Model

« Graphics hardware and caching

Diaplay |

Hiost ~—m= procoessor
(DFPLH

Drispliy fils]

+ Important for efficiency
* Need to be aware where data are stored
« Examples: vertex arrays, display lists

02/26/2002 15-462 Graphics |

Hidden Surface Removal

+ Classic problem of computer graphics

What is visible after clipping and projection?
Object-space vs image-space approaches
Object space: depth sort (Painter’s algorithm)
Image space: ray cast (z-buffer algorithm)
Related: back-face culling

02/26/2002 15-462 Graphics |

4. Transformations

» Vector Spaces

Affine and Euclidean Spaces
Frames

Homogeneous Coordinates
Transformation Matrices
OpenGL Transformation Matrices

02/26/2002 15-462 Graphics |

Geometric Interpretations

* Lines and line segments
Convexity

Dot product and projections
Cross product and normal vectors
Planes

02/26/2002 15-462 Graphics |

Lines and Line Segments

« Parametric form of line: P(a) =P, +a d

Ed
Pa) R

P
‘J @

» Line segment between Q and R:
P@)=(1-a)Q+aR for0<a<1

02/26/2002 15-462 Graphics | 1"

Convex Hull

» Convex hull defined by

P=a1P1+"'+anPn
fora; +..-+a,=1
and 0<a;<1,i=1,...,n

02/26/2002 15-462 Graphics | 12

Projection

» Dot product projects one vector onto other

u-v=|ul|v| cos(q)

o) :

|&] eos 8

[diagram correction: x = u]

02/26/2002 15-462 Graphics |

Normal Vector

» Cross product defines normal vector
uxv=n
Jux v| = |ul |v] [sin(q)|

* Right-hand rule

[T

02/26/2002 15-462 Graphics |

Plane

 Plane defined by point P, and vectors u and v
* u and v cannot be parallel

Parametric form: T(a, b)=Py,+au+byv

Let n = u x v be the normal

Thenn - (P —-P,) = 0iff P lies in plane

02/26/2002 15-462 Graphics | 15

Homogeneous Coordinates

* In affine space, P=a, v, +a, v, +azvy+ P,
Define0-P=0,1-P=P

Points [a, a, a; 1]T

Vectors [d; d, d; O]

Change of frame

711 Y12 713
M = | 721 722 723
Y31 Y32 733
Y41 V42 743

= O OO

02/26/2002 15-462 Graphics | 16

Affine Transformations

« Compose

— Rotations, translations, scalings

— Express in homogeneous coods (4 x 4 matrices)
» Apply from right to left!

-Rp=(R,R/R)p =R, (R, (R,P))

— Postmultiplication in OpenGL
» Think in terms of composition

— Translation to and from origin

— Remember geometric intuition

02/26/2002 15-462 Graphics |

5. Viewing and Projection
« Camera Positioning

» Parallel Projections
» Perspective Projections

02/26/2002 15-462 Graphics |

Camera in Modeling Coordinates

« Camera position is identified with a frame
» Either move and rotate the objects
* Or move and rotate the camera

* Those views are inverses!
— Each transformation y
— Order of transformation
— gluLookAt utility

02/26/2002 15-462 Graphics |

Orthographic Projections

* Projectors perpendicular to projectoin plane

« Simple, but not realistic

02/26/2002 15-462 Graphics |

20

10

Perspective Viewing

» Characterized by foreshortening
* More distant objects appear smaller

!

* ylz=yyd so vy, =yl/(z/d)
* Note this is non-linear!
* Need homogeneous coordinates

02/26/2002 15-462 Graphics |

21

Perspective Projection Matrix

* Represent multiple of point

T
z/d T
v y
(z/ay [=2 | =| Y
d
1 z/d
* Solve
X X 1 0
vyl _| ¥ ith _ |01
M . z wi M 00
1 z/d OO0
02/26/2002 15-462 Graphics |

oNoNeoNe

22

11

6. Hierarchical Models

« Matrix and attribute stacks

« Save and restore state

» Exploit natural hierarchical structure for
— Efficient rendering
— Example: bounding boxes (later in course)
— Concise specification of model parameters
— Example: joint angles
— Physical realism

02/26/2002 15-462 Graphics |

23

Hierarchical Objects and Animation

» Drawing functions are time-invariant

« Can be easily stored in display list

» Change parameters of model with time
» Redraw when idle callback is invoked

02/26/2002 15-462 Graphics |

24

12

Complex Objects

* Tree rather than linear structure []
* Interleave along each branch [E[H
» Use push and pop to save state

. I

e 5 {"._::\'"'\-h
...--"’-.--- ,f’f/ | \'\ ----h"'---h

-~ - ' Y i
Head | beftuppar] Rightupp Im&-uprm'i Highc-apped

| arm | arm leg leg

-+ —ci

L Y Y
Laft-lowar| Right Loftdower | Right-lower

i arm Tag lag

ks — i —
02/26/2002 15-462 Graphics | 25

Unified View of Computer Animation

* Models with parameters
— Polygon positions, control points, joint angles, ...
— n parameters define n-dimensional state space
« Animation defined by path through state space
— Define initial state, repeat:
— Render the image
— Move to next point (following motion curves)

« Animation = specifying state space trajectory

02/26/2002 15-462 Graphics | 26

13

Animation vs Modeling

* Modeling: what are the parameters?
Animation: how do we vary the parameters?
Sometimes boundary not clear

Build models that are easy to control
Hierarchical models often easy to control

02/26/2002 15-462 Graphics | 27

Basic Animation Techniques

 Traditional (frame by frame)
Keyframing

Procedural techniques

Behavioral techniques
Performance-based (motion capture)
Physically-based (dynamics)

02/26/2002 15-462 Graphics | 28

14

7. Lighting and Shading

Approximate physical reality

Ray tracing:

— Follow light rays through a scene

— Accurate, but expensive (off-line)

Radiosity:

— Calculate surface inter-reflection approximately

— Accurate, especially interiors, but expensive (off-line)
Phong lllumination model:

— Approximate only interaction light, surface, viewer

— Relatively fast (on-line), supported in OpenGL

02/26/2002 15-462 Graphics | 29

Light Sources and Material Properties

» Appearance depends on
— Light sources, their locations and properties
— Material (surface) properties
— Viewer position

« Ray tracing: from viewer into scene

+ Radiosity: between surface patches

* Phong Model: at material, from light to viewer

02/26/2002 15-462 Graphics | 30

15

Types of Light Sources

« Ambient light: no identifiable source or direction
Point source: given only by point

Distant light: given only by direction

Spotlight: from source in direction

— Cut-off angle defines a cone of light

— Attenuation function (brighter in center)

Light source described by a luminance

— Each color is described separately

— =1l 1y I,]* (I forintensity)

— Sometimes calculate generically (applies tor, g, b)

02/26/2002 15-462 Graphics | 31

Phong lllumination Model

Calculate color for arbitrary point on surface
Compromise between realism and efficiency
Local computation (no visibility calculations)
Basic inputs are material properties and |, n, v:

| = vector to light source

n = surface normal I

v = vector to viewer

r = reflection of | at p
(determined by | and n) TN

02/26/2002 15-462 Graphics | 32

16

Summary of Phong Model

 Light components for each color:

— Ambient (L_a), diffuse (L_d), specular (L_s)
» Material coefficients for each color:

— Ambient (k_a), diffuse (k_d), specular (k_s)
 Distance q for surface point from light source

1
I = kL (1n)+ksLs(r-v)?)+koL
a+bq+cq2(dd()"‘58()) alla
| = vector from light r = | reflected about n
n = surface normal v = vector to viewer

02/26/2002 15-462 Graphics | 33

Normal Vectors

« Critical for Phong model (diffuse and specular)

« Must calculate accurately

— From geometry (e.g., differential calculus)

— From approximating surface (e.g., Bezier patch)
« Pitfalls

— Unit length (some OpenGL support)

— Surface boundary

02/26/2002 15-462 Graphics | 34

17

8. Shading in OpenGL

» Polygonal shading
» Material properties
» Approximating a sphere [example]

02/26/2002 15-462 Graphics | 35

Polygonal Shading

» Curved surfaces are approximated by polygons

* How do we shade?

— Flat shading

— Interpolative shading

— Gouraud shading

— Phong shading (different from Phong illumination)
* Two questions:

— How do we determine normals at vertices?

— How do we calculate shading at interior points?

02/26/2002 15-462 Graphics | 36

18

Gouraud Shading

» Special case of interpolative shading

+ How do we calculate vertex normals?

» Gouraud: average all adjacent face normals
0 — ni{ +no+n3-+ny

ln1 + no + n3 + ny|

* Requires knowledge
about which faces share
a vertex

02/26/2002 15-462 Graphics | 37

Data Structures for Gouraud Shading

+ Sometimes vertex normals can be computed
directly (e.g. height field with uniform mesh)

* More generally, need data structure for mesh
» Key: which polygons meet at each vertex

02/26/2002 15-462 Graphics | 38

19

Drawing a Sphere

* Recursive subdivision technique quite general
* Interpolation vs flat shading effect

02/26/2002 15-462 Graphics | 39

Recursive Subdivision

* General method for building approximations
» Research topic: construct a good mesh

— Low curvature, fewer mesh points

— High curvature, more mesh points

— Stop subdivision based on resolution

— Some advanced data structures for animation

— Interaction with textures
» Here: simplest case

» Approximate sphere by subdividing
icosahedron

02/26/2002 15-462 Graphics | 40

20

Subdivision Example

 Icosahedron after 3 subdivisions (fast converg.)

02/26/2002 15-462 Graphics | 41

9. Curves and Surfaces

« Parametric Representations
— Also used: implicit representations
* Cubic Polynomial Forms
* Hermite Curves
» Bezier Curves and Surfaces

02/26/2002 15-462 Graphics | 42

21

Parametric Forms

« Parameters often have natural meaning

» Easy to define and calculate
— Tangent and normal
— Curves segments (for example, 0 < u < 1)
— Surface patches (for example, 0 < u,v < 1)

JNAY

Pliz
rTLJ‘

Pl |

P

Z

02/26/2002 15-462 Graphics | 43

Approximating Surfaces

» Use parametric polynomial surfaces
* Important concepts:
— Join points for segments and patches
— Control points to interpolate
— Tangents and smoothness
— Blending functions to describe interpolation

* First curves, then surfaces

'Pl - Join poinc
/—v Py p)_~ w:"
Po piu)
*p, d
02/26/2002 15-462 Graphics | 44

22

Cubic Polynomial Form

* Degree 3 appears to be a useful compromise
» Curves:

3
p(u) = co + c1u + cou® + c3u = cpu”
0 3 k
k=0

Each c, is a column vector [c,, ¢, C,]

From control information (points, tangents)
derive 12 values ¢, C,, ¢, for0 <k <3

These determine cubic polynomial form

02/26/2002 15-462 Graphics | 45

Geometry Matrix

+ Calculate approximating polynomial from
control point with geometry matrix M

p(u) = cg + ciu + cou? + c3u’
o Po
c1 | — M| Pt
C2 P2
Cc3 P3

« Each form of interpolation has its own geometry
matrix

02/26/2002 15-462 Graphics | 46

23

Standard Methods

* Hermite curves
— Given by 2 points, 2 tangents
— C continuity, intersect control points
» Bezier curves
— Given by 4 control points
— Intersects 2, others approximate tangent
» Bezier surface patches
— Given by 16 control points
— Intersects 4 corners, other approximate tangents

02/26/2002 15-462 Graphics | 47

Hermite Curves

» Another cubic polynomial curve
» Specify two endpoints and their tangents

pe0)

pm}/ -

4

[diagram correction p9 = p’]

02/26/2002 15-462 Graphics | 48

24

Bezier Curves

» Widely used in computer graphics
« Approximate tangents by using control points

P,
p’'(0) = 3(p1 — Po) Py

pzeh
p'(1) = 3(p3 — p2)

Py P

02/26/2002 15-462 Graphics | 49

10. Splines

« Approximating more than 4 control points
» Piecing together a longer curve or surface

02/26/2002 15-462 Graphics | 50

25

B-Splines

» Use 4 points, but approximate only middle two

p,e
‘ *p,

Pn . !

op,
» Draw curve with overlapping segments
0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, efc.
« Curve may miss all control points
« Smoother at joint points

02/26/2002 15-462 Graphics | 51

Cubic B-Splines

* Need m+2 control points for m cubic segments
+ Computationally 3 times more expensive
« C2 continuous at each interior point

* Derive as follows:
— Consider two overlapping segments
— Enforce C° and C' continuity
— Employ symmetry
— C? continuity follows

02/26/2002 15-462 Graphics | 52

26

Rendering by Subdivision

 Divide the curve into smaller subpieces
« Stop when “flat” or at fixed depth

 How do we calculate the sub-curves?
— Bezier curves and surfaces: easy (next)
— Other curves: convert to Bezier!

02/26/2002 15-462 Graphics | 53

Subdividing Bezier Curves

« Given Bezier curve by p, pq, P2, P3
» Subcurves should stay the same!

P, =T,

02/26/2002 15-462 Graphics | 54

27

Preview |

» Physically based models
— Particle systems
— Spring forces (cloth)
— Collisions and constraints
* Rendering
— Clipping, bounding boxes
— Line drawing
— Scan conversion
— Anti-aliasing

02/26/2002 15-462 Graphics |

55

Preview |

» Textures and pixels
— Texture mapping
— Bump maps
— Environment maps
— Opacity and blending
— Filtering
— Image transformation
« Ray tracing
— Spatial data structures
— Bounding volumes

02/26/2002 15-462 Graphics |

56

28

Preview ll|

+ Radiosity
— Inter-surface reflections
— Ray casting
 Scientific visualization
— Height fields and contours
— Isosurfaces
— Marching cubes
— Volume rendering
— Volume textures

02/26/2002 15-462 Graphics | 57

Announcements

« Assignment 4 due Thursday before lecture
* Lecture by John Ketchpaw

* Midterm next Tuesday
— In class
— Closed book
— One double-sided sheet of notes permitted
— Everything covered in lecture so far

02/26/2002 15-462 Graphics | 58

29

