
1

February 26, 2002
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Assignment 3 Movie
Midterm Review
Midterm Preview

Midterm Review

15-462 Computer Graphics I
Lecture 11

02/26/2002 15-462 Graphics I 2

Announcements

• Assignment 4 due Thursday before lecture
• Lecture by John Ketchpaw
• Midterm next Tuesday

– In class
– Closed book
– One double-sided sheet of notes permitted
– Everything covered in lecture so far

• Assignment 3 movies
– Some flaws may be problems in production software
– Enjoy!

2

02/26/2002 15-462 Graphics I 3

1. Course Overview Revisited

• Modeling: how to represent objects
• Animation: how to control and represent motion
• Rendering: how to create images
• OpenGL graphics library

02/26/2002 15-462 Graphics I 4

2. Basic Graphics Programming

• The graphics pipeline

• Pipelines and parallelism
• Latency vs throughput
• Efficiently implementable in hardware
• Not so efficiently implementable in software
• Course approach: walk the pipeline left-to-right

3

02/26/2002 15-462 Graphics I 5

Graphics Functions

• Primitive functions (points, lines, polygons)
• Attribute functions (color, lighting, material)
• Transformation functions (homogeneous coord)
• Viewing functions (projections)
• Input functions (callbacks)
• Control functions (GLUT library calls)

02/26/2002 15-462 Graphics I 6

3. Interaction

• Client/Server Model
• Callbacks
• Double Buffering
• Hidden Surface Removal

4

02/26/2002 15-462 Graphics I 7

Client/Server Model

• Graphics hardware and caching

• Important for efficiency
• Need to be aware where data are stored
• Examples: vertex arrays, display lists

02/26/2002 15-462 Graphics I 8

Hidden Surface Removal

• Classic problem of computer graphics
• What is visible after clipping and projection?
• Object-space vs image-space approaches
• Object space: depth sort (Painter’s algorithm)
• Image space: ray cast (z-buffer algorithm)
• Related: back-face culling

5

02/26/2002 15-462 Graphics I 9

4. Transformations

• Vector Spaces
• Affine and Euclidean Spaces
• Frames
• Homogeneous Coordinates
• Transformation Matrices
• OpenGL Transformation Matrices

02/26/2002 15-462 Graphics I 10

Geometric Interpretations

• Lines and line segments
• Convexity
• Dot product and projections
• Cross product and normal vectors
• Planes

6

02/26/2002 15-462 Graphics I 11

Lines and Line Segments

• Parametric form of line: P(α) = P0 + α d

• Line segment between Q and R:
P(α) = (1-α) Q + α R for 0 · α · 1

02/26/2002 15-462 Graphics I 12

Convex Hull

• Convex hull defined by

P = α1 P1 + L + αn Pn
for a1 + L + an = 1
and 0 · ai · 1, i = 1, ..., n

7

02/26/2002 15-462 Graphics I 13

Projection

• Dot product projects one vector onto other

u ¢ v = |u| |v| cos(θ)

[diagram correction: x = u]

02/26/2002 15-462 Graphics I 14

Normal Vector

• Cross product defines normal vector

• Right-hand rule

u £ v = n
|u £ v| = |u| |v| |sin(θ)|

8

02/26/2002 15-462 Graphics I 15

Plane

• Plane defined by point P0 and vectors u and v
• u and v cannot be parallel
• Parametric form: T(α, β) = P0 + α u + β v
• Let n = u £ v be the normal
• Then n ¢ (P – P0) = 0 iff P lies in plane

02/26/2002 15-462 Graphics I 16

Homogeneous Coordinates

• In affine space, P = α1 v1 + α2 v2 + α3 v3 + P0

• Define 0 ¢ P = 0, 1 ¢ P = P
• Points [α1 α2 α3 1]T

• Vectors [δ1 δ2 δ3 0]T

• Change of frame

9

02/26/2002 15-462 Graphics I 17

Affine Transformations

• Compose
– Rotations, translations, scalings
– Express in homogeneous coods (4 £ 4 matrices)

• Apply from right to left!
– R p = (Rz Ry Rx) p = Rz (Ry (Rx p))
– Postmultiplication in OpenGL

• Think in terms of composition
– Translation to and from origin
– Remember geometric intuition

02/26/2002 15-462 Graphics I 18

5. Viewing and Projection

• Camera Positioning
• Parallel Projections
• Perspective Projections

10

02/26/2002 15-462 Graphics I 19

Camera in Modeling Coordinates

• Camera position is identified with a frame
• Either move and rotate the objects
• Or move and rotate the camera
• Those views are inverses!

– Each transformation
– Order of transformation
– gluLookAt utility

02/26/2002 15-462 Graphics I 20

Orthographic Projections

• Projectors perpendicular to projectoin plane
• Simple, but not realistic

11

02/26/2002 15-462 Graphics I 21

Perspective Viewing

• Characterized by foreshortening
• More distant objects appear smaller

• y/z = yp/d so yp = y/(z/d)
• Note this is non-linear!
• Need homogeneous coordinates

02/26/2002 15-462 Graphics I 22

Perspective Projection Matrix

• Represent multiple of point

• Solve

with

12

02/26/2002 15-462 Graphics I 23

6. Hierarchical Models

• Matrix and attribute stacks
• Save and restore state
• Exploit natural hierarchical structure for

– Efficient rendering
– Example: bounding boxes (later in course)
– Concise specification of model parameters
– Example: joint angles
– Physical realism

02/26/2002 15-462 Graphics I 24

Hierarchical Objects and Animation

• Drawing functions are time-invariant
• Can be easily stored in display list
• Change parameters of model with time
• Redraw when idle callback is invoked

13

02/26/2002 15-462 Graphics I 25

Complex Objects

• Tree rather than linear structure
• Interleave along each branch
• Use push and pop to save state

02/26/2002 15-462 Graphics I 26

Unified View of Computer Animation

• Models with parameters
– Polygon positions, control points, joint angles, ...
– n parameters define n-dimensional state space

• Animation defined by path through state space
– Define initial state, repeat:
– Render the image
– Move to next point (following motion curves)

• Animation = specifying state space trajectory

14

02/26/2002 15-462 Graphics I 27

Animation vs Modeling

• Modeling: what are the parameters?
• Animation: how do we vary the parameters?
• Sometimes boundary not clear
• Build models that are easy to control
• Hierarchical models often easy to control

02/26/2002 15-462 Graphics I 28

Basic Animation Techniques

• Traditional (frame by frame)
• Keyframing
• Procedural techniques
• Behavioral techniques
• Performance-based (motion capture)
• Physically-based (dynamics)

15

02/26/2002 15-462 Graphics I 29

7. Lighting and Shading

• Approximate physical reality
• Ray tracing:

– Follow light rays through a scene
– Accurate, but expensive (off-line)

• Radiosity:
– Calculate surface inter-reflection approximately
– Accurate, especially interiors, but expensive (off-line)

• Phong Illumination model:
– Approximate only interaction light, surface, viewer
– Relatively fast (on-line), supported in OpenGL

02/26/2002 15-462 Graphics I 30

Light Sources and Material Properties

• Appearance depends on
– Light sources, their locations and properties
– Material (surface) properties
– Viewer position

• Ray tracing: from viewer into scene
• Radiosity: between surface patches
• Phong Model: at material, from light to viewer

16

02/26/2002 15-462 Graphics I 31

Types of Light Sources

• Ambient light: no identifiable source or direction
• Point source: given only by point
• Distant light: given only by direction
• Spotlight: from source in direction

– Cut-off angle defines a cone of light
– Attenuation function (brighter in center)

• Light source described by a luminance
– Each color is described separately
– I = [Ir Ig Ib]T (I for intensity)
– Sometimes calculate generically (applies to r, g, b)

02/26/2002 15-462 Graphics I 32

Phong Illumination Model

• Calculate color for arbitrary point on surface
• Compromise between realism and efficiency
• Local computation (no visibility calculations)
• Basic inputs are material properties and l, n, v:

l = vector to light source
n = surface normal
v = vector to viewer
r = reflection of l at p

(determined by l and n)

17

02/26/2002 15-462 Graphics I 33

Summary of Phong Model

• Light components for each color:
– Ambient (L_a), diffuse (L_d), specular (L_s)

• Material coefficients for each color:
– Ambient (k_a), diffuse (k_d), specular (k_s)

• Distance q for surface point from light source

l = vector from light
n = surface normal

r = l reflected about n
v = vector to viewer

02/26/2002 15-462 Graphics I 34

Normal Vectors

• Critical for Phong model (diffuse and specular)
• Must calculate accurately

– From geometry (e.g., differential calculus)
– From approximating surface (e.g., Bezier patch)

• Pitfalls
– Unit length (some OpenGL support)
– Surface boundary

18

02/26/2002 15-462 Graphics I 35

8. Shading in OpenGL

• Polygonal shading
• Material properties
• Approximating a sphere [example]

02/26/2002 15-462 Graphics I 36

Polygonal Shading

• Curved surfaces are approximated by polygons
• How do we shade?

– Flat shading
– Interpolative shading
– Gouraud shading
– Phong shading (different from Phong illumination)

• Two questions:
– How do we determine normals at vertices?
– How do we calculate shading at interior points?

19

02/26/2002 15-462 Graphics I 37

Gouraud Shading

• Special case of interpolative shading
• How do we calculate vertex normals?
• Gouraud: average all adjacent face normals

• Requires knowledge
about which faces share
a vertex

02/26/2002 15-462 Graphics I 38

Data Structures for Gouraud Shading

• Sometimes vertex normals can be computed
directly (e.g. height field with uniform mesh)

• More generally, need data structure for mesh
• Key: which polygons meet at each vertex

20

02/26/2002 15-462 Graphics I 39

Drawing a Sphere

• Recursive subdivision technique quite general
• Interpolation vs flat shading effect

02/26/2002 15-462 Graphics I 40

Recursive Subdivision

• General method for building approximations
• Research topic: construct a good mesh

– Low curvature, fewer mesh points
– High curvature, more mesh points
– Stop subdivision based on resolution
– Some advanced data structures for animation
– Interaction with textures

• Here: simplest case
• Approximate sphere by subdividing

icosahedron

21

02/26/2002 15-462 Graphics I 41

Subdivision Example

• Icosahedron after 3 subdivisions (fast converg.)

02/26/2002 15-462 Graphics I 42

9. Curves and Surfaces

• Parametric Representations
– Also used: implicit representations

• Cubic Polynomial Forms
• Hermite Curves
• Bezier Curves and Surfaces

22

02/26/2002 15-462 Graphics I 43

Parametric Forms

• Parameters often have natural meaning
• Easy to define and calculate

– Tangent and normal
– Curves segments (for example, 0 · u · 1)
– Surface patches (for example, 0 · u,v · 1)

02/26/2002 15-462 Graphics I 44

Approximating Surfaces

• Use parametric polynomial surfaces
• Important concepts:

– Join points for segments and patches
– Control points to interpolate
– Tangents and smoothness
– Blending functions to describe interpolation

• First curves, then surfaces

23

02/26/2002 15-462 Graphics I 45

Cubic Polynomial Form

• Degree 3 appears to be a useful compromise
• Curves:

• Each ck is a column vector [ckx cky ckz]T

• From control information (points, tangents)
derive 12 values ckx, cky, ckz for 0 · k · 3

• These determine cubic polynomial form

02/26/2002 15-462 Graphics I 46

Geometry Matrix

• Calculate approximating polynomial from
control point with geometry matrix M

• Each form of interpolation has its own geometry
matrix

24

02/26/2002 15-462 Graphics I 47

Standard Methods

• Hermite curves
– Given by 2 points, 2 tangents
– C1 continuity, intersect control points

• Bezier curves
– Given by 4 control points
– Intersects 2, others approximate tangent

• Bezier surface patches
– Given by 16 control points
– Intersects 4 corners, other approximate tangents

02/26/2002 15-462 Graphics I 48

Hermite Curves

• Another cubic polynomial curve
• Specify two endpoints and their tangents

[diagram correction p9 = p’]

25

02/26/2002 15-462 Graphics I 49

Bezier Curves

• Widely used in computer graphics
• Approximate tangents by using control points

02/26/2002 15-462 Graphics I 50

10. Splines

• Approximating more than 4 control points
• Piecing together a longer curve or surface

26

02/26/2002 15-462 Graphics I 51

B-Splines

• Use 4 points, but approximate only middle two

• Draw curve with overlapping segments
0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc.

• Curve may miss all control points
• Smoother at joint points

02/26/2002 15-462 Graphics I 52

Cubic B-Splines

• Need m+2 control points for m cubic segments
• Computationally 3 times more expensive
• C2 continuous at each interior point
• Derive as follows:

– Consider two overlapping segments
– Enforce C0 and C1 continuity
– Employ symmetry
– C2 continuity follows

27

02/26/2002 15-462 Graphics I 53

Rendering by Subdivision

• Divide the curve into smaller subpieces
• Stop when “flat” or at fixed depth
• How do we calculate the sub-curves?

– Bezier curves and surfaces: easy (next)
– Other curves: convert to Bezier!

02/26/2002 15-462 Graphics I 54

Subdividing Bezier Curves

• Given Bezier curve by p0, p1, p2, p3

• Find l0, l1, l2, l3 and r0, r1, r2, r3

• Subcurves should stay the same!

28

02/26/2002 15-462 Graphics I 55

Preview I

• Physically based models
– Particle systems
– Spring forces (cloth)
– Collisions and constraints

• Rendering
– Clipping, bounding boxes
– Line drawing
– Scan conversion
– Anti-aliasing

02/26/2002 15-462 Graphics I 56

Preview II

• Textures and pixels
– Texture mapping
– Bump maps
– Environment maps
– Opacity and blending
– Filtering
– Image transformation

• Ray tracing
– Spatial data structures
– Bounding volumes

29

02/26/2002 15-462 Graphics I 57

Preview III

• Radiosity
– Inter-surface reflections
– Ray casting

• Scientific visualization
– Height fields and contours
– Isosurfaces
– Marching cubes
– Volume rendering
– Volume textures

02/26/2002 15-462 Graphics I 58

Announcements

• Assignment 4 due Thursday before lecture
• Lecture by John Ketchpaw
• Midterm next Tuesday

– In class
– Closed book
– One double-sided sheet of notes permitted
– Everything covered in lecture so far

