Assignment 4: Curves and Surfaces

15-462 Graphics I Spring 2002 Frank Pfenning

Out February 22 **Due February 28 before lecture**50 points

- The work must be all your own.
- The assignment is due **before lecture** on Thursday, February 28.
- Be explicit, define your symbols, and explain your steps.

 This will make it a lot easier for us to assign partial credit.

1 Bezier Curves (20 pts)

- 1. Under which conditions do we have C^1 continuity for two joined Bezier curves? Write out the condition explicitly as a test on the control points \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 and \mathbf{q}_0 , \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 of the two curves.
- 2. Under which conditions do we have G^1 continuity for two joined Bezier curves? Again, write out the condition explicitly as in part 1.
- 3. It is possible for a single segment Bezier curve to intersect itself. Give four control points with all coordinates between 0 and 1 that yield a self-intersecting Bezier curve.
- 4. Include a printed image of a self-intersecting Bezier curve with your assignment. You can capture an X window with xwd -out bezier.xwd and convert it to JPEG format with convert bezier.xwd bezier.jpg.

2 Bezier Surfaces (15 pts)

- 1. Compute the normal vector of a Bezier surface patch at the four corners and at the center (u = v = 0.5) for a given set of control points.
- 2. Discuss how you would define the normals for a surface created from joined Bezier patches using Gouraud shading.

3 Cubic B-Splines (15 pts)

- 1. Analyze the effect of four collinear control points on a cubic B-spline.
- 2. Verify the C^2 continuity of the cubic spline at the join points.