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ABSTRACT
Recent work in neuroimaging has shown that it is possible to
classify cognitive states from functional magnetic resonance
images (fMRI). Machine learning classifiers such as Gaus-
sian Naive Bayes, Support Vector Machines, and Nearest
Neighbors have all been applied successfully to this domain.
Although it is a natural question to ask which classifiers
work best, research has shown that the accuracy of a classi-
fier is intimately tied to the underlying feature selection (or
generation) method.

Most of these feature selection methods search spatially for
voxels that discriminate classes well. An empirical analysis
shows, however, that voxels that discriminate well at a given
time point may not discriminate well at another time point.
Thus without considering this temporal component we risk
passing more noise to the classifier than necessary. Choos-
ing features temporally, focusing on regions of time when
voxels discriminate well, can reduce this noise. We present
empirical results that show that this method yields highly
accurate classifiers with far fewer features than methods that
only consider spacial information.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—clas-

sifier design and evaluation, feature evaluation and selection

Keywords
functional magnetic resonance imaging, neuroimaging, cog-
nitive state classification

1. INTRODUCTION
1.1 Cognitive State Classification
Functional magnetic resonance images (fMRI) have proven
useful for studying the behavior of human brains. These
images measure the neural activity 1 of the brain at differ-

1Technically, fMRI measures the hemodynamic response
which is a measure of the blood oxygenation level. Current

ent locations and can be used to decipher how the brain
responds to various stimuli. For example, researchers may
want to understand how the brain responds to human faces.
By placing a human subject into a fMRI scanner and expos-
ing him to images of faces, they may discover that a partic-
ular region has activity highly correlated with the exposure
of faces. This may lead to the conclusion that this region of
the brain is specialized to the function of face recognition.
In this fashion, a great literature of research has been gen-
erated, much of it dedicated to discovering the functional
purpose of the various regions of the brain.

Beyond discovering the functional purpose of different brain
regions, recent research has shown that it is possible to clas-
sify cognitive states from these neural images. One study [8]
has shown that it is possible to determine when a subject
is either reading a sentence or viewing a picture. In a sim-
ilar study, the group was able to determine when a subject
was reading words within different semantic categories (e.g.
fruits, buildings, tools, etc.). Another study has shown it is
possible to classify between drug addicted persons and non-
drug-using controls [13]. Classification methods have also
been used successfully for the purpose of lie detection [2].

1.2 fMRI Datasets
Despite recent progress, training effective classifiers is still
a challenging problem. This difficulty is mainly caused by
the high dimensional, sparse, and noisy nature of the data.
The shear volume of data produced also poses problems.
A typical experiment takes a 3D image of the brain every
second. Each image is composed of roughly 10,000 voxels 2,
each of which measures the neural activity at a particular
location within the brain. Figure 1 shows a 2D example of
this neural activity.

A typical experiment may be divided into trials, with each
lasting approximately 60 seconds. A trial is often repeated
several times within an experiment. Figure 2 shows the
time series data produced for a single voxel. An experiment
with V voxels, T images per trial, and N trials would have
V ∗T ∗N total data points. A typical experiment may have
V = 10, 000, T = 60, and N = 30, yielding 18 million data
points.

theory suggests that neural activity increases the amount of
oxygen brought into the active area.
2The actual number of voxels depends on the resolution of
the scanner as well as the size of the subject’s brain
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Figure 1: A 2D snapshot of neural activity in response to different stimuli
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Figure 2: The time series for a single voxel in a fMRI
experiment

1.3 Feature Selection
Dealing with this much data is a challenge. Since reducing
the dimensionality of the data is critical to making good
predictors, numerous methods have been developed that at-
tempt to address this problem.

Classical fMRI analysis has taken a univariate approach [5].
Statistical tests are performed on voxels individually to se-
lect which voxels have the highest activation level. The se-
lected voxels are then used in a general linear model to make
predictions.

More recently, researchers have tried multivariate techniques
such as independent components analysis (ICA) [7], princi-
pal component analysis (PCA) [10], and manifold learning
techniques [11].

Another popular approach is the searchlight method [6].
Voxels with high activation (signal) are often correlated with
their neighboring voxels. The searchlight is a simple scheme

that passes a 3D window through the brain looking for col-
lective regions of high activation. The window size is usually
fixed.

The data becomes more manageable when its dimensionality
is reduced. Of course, any time we remove data we risk
loosing valuable information that could help our prediction
task. To our knowledge, there does not appear to be any
gold standard for handling this problem.

1.3.1 Are voxels features?
In many of the feature selection methods described above
there appears to be a synonymy between voxels and features.
The thinking goes: in order to make a good predictor, we
just need to find the underlying voxels that discriminate the
classes well. This seems completely natural and appropriate
since often the overall goal of fMRI analysis is to find the
regions of the brain that are responsible for a particular task.

There is a subtlety, however, that is often ignored. fMRI
data are a time series, and voxels that discriminate well at a
given time point may not discriminate well at another time
point. This is due to the nature of the experiments: typi-
cally a stimulus is presented and only after several seconds
does the hemodynamic response fully develop (Figure 3).
Thus including regions of time when the hemodynamic re-
sponse is not fully developed can hurt classification, since
these regions have lower signal-to-noise ratio.

1.4 Contribution
The main contribution of this work is to address the impor-
tance of time when performing feature selection in fMRI
analysis. We show a simple method where features are
no longer voxels, but rather voxel-timepoints. We demon-
strate that choosing highly discriminating voxel-timepoints
improves classification performance and significantly reduces
the number of features necessary for classification. We also
show the importance of temporally smoothing data, and
show its impact on classification.



Table 1: Percent Accuracy of Temporally Smoothed
vs. Unsmoothed Data

No Smoothing Smoothed
Subject 1 82.5 92.5
Subject 2 50.0 67.5
Subject 3 80.0 82.5
Subject 4 67.5 90.0
Subject 5 62.5 82.5
Subject 6 25.0 47.5
Subject 7 32.5 60.0
Subject 8 55.0 75.0
Subject 9 75.0 77.5
Subject 10 92.5 92.5
Subject 11 65.0 77.5
Subject 12 10.0 37.5
Subject 13 82.5 95.0

2. TEMPORAL FEATURES
2.1 Kernel Smoothing
fMRI data are inherently noisy. Since the hemodynamic re-
sponse is assumed continuous, it seems appropriate to con-
sider temporally smoothed data. This technique appears
under various names in different communities but is usually
called low-pass filtering or kernel smoothing (e.g. Gaussian
smoothing). (See Figure 2).

The basic idea is to remove noise while preserving the un-
derlying signal. The difficulty is choosing the amount of
smoothing. Too much smoothing destroys signal while too
little preserves noise. Choosing the appropriate smoothing is
a problem of statistical decision theory and the bias/variance
decomposition. Smoothing removes variance and introduces
bias. Much work has been done trying to balance bias
and variance and to estimate the optimal smoothing factor.
Some work [3] also suggests that for problems of classifica-
tion (rather than signal reconstruction) introducing addi-
tional bias (more smoothing) may be beneficial.

We implemented Gaussian kernel smoothing and chose a
smoothing factor as described in [12]. Although smoothing
is often noted as a footnote in fMRI studies, we found it can

dramatically increase classification accuracy. Thus we feel
it important to explicitly note its use and we present the
technical implementation in Appendix A.2.

2.1.1 Classification accuracy of smoothed data
We present the results of a simple fMRI classification task to
demonstrate the importance of temporal smoothing. In this
experiment, a subject was presented a stimulus for eight
seconds. There were two stimuli, pictures and words and
each was presented twenty times (twenty word trials, twenty
picture trials). The experimental data produced for each
subject are a matrix V oxels ∗ Timepoints ∗ Trials.

The classification task is to learn the mapping between the
trial and the stimulus. If a trial has V voxels over T time-
points, then the classification function f is:

f : V × T → {Picture, Word}
We used a Gaussian Naive Bayes classifier and treated each
voxel-timepoint as a feature in the classifier. We estimated
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Figure 3: Typical Hemodynamic Response Function

parameters for each feature by calculating the class condi-
tional mean and variance for each voxel-timepoint over the
relevant trials. We detail the implementation in Appendix
A.1.

We operated directly on all the voxels (≈ 5,000 per subject)
and did not perform any feature selection. We used kernel
smoothing to generate a new feature set of exactly the same
dimension. We performed a leave-one-out-cross-validation
(LOOCV) to compare the effects of smoothing.

Table 1 shows the accuracy of classification for smoothed
vs. unsmoothed data. For twelve of thirteen subjects in
this study, smoothed data produced a more accurate classi-
fier. On the remaining subject (which was the most accurate
subject in the unsmoothed experiment), smoothing had no
effect.

Smoothing did not hurt performance in any subject and we
see large performance gains for the poorer performing sub-
jects. In some subjects, unsmoothed data had near random
accuracy. Without smoothing, a researcher might look at
these subjects and conclude that classification is not possi-
ble for the given task. Smoothing could lead the researcher
to an entirely different conclusion.

As a result, we feel that temporal smoothing is an important

preprocessing step that should be used for fMRI classification

studies.

2.2 Voxel Discrimination Over Time
We now turn to the task of choosing subsets of features.
The hope is that if we can remove noisy, non-discriminating
features, we can improve our classification performance. As
mentioned in the introduction there are many ways to do
this feature selection step, most of which focus on spacial
selection of voxels.

A spacial classification scheme might consider voxels, rather
than voxel-timepoints as features. In this scenario the time
series for each voxel may be replaced by a simple statistic
such as the mean. Each feature would then become the



0 1 2 3 4 5 6 7 8
0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

Time (Seconds)

A
cc

u
ra

cy
 (

%
 C

o
rr

e
ct

)

Figure 4: Average accuracy of all voxels at each
timepoint (Subject 1)

mean activity of a particular voxel, and then voxels could
be ranked by how well their mean activity discriminates a
training set. Since we reduce the entire temporal dimension
to a simple statistic, we may destroy valuable information.

Instead, we could treat each feature as a voxel-timepoint, yet
still rank by voxel. Essentially, each voxel would represent
a subset of features (i.e. all the timepoints for that voxel).
Ranking voxels would basically mean ranking the subsets of
features against each other. The danger here is that some
voxels may discriminate well at a given time point but poorly
at other timepoints. Ranking by voxel may add individ-
ual voxel-timepoints that discriminate poorly, although the
voxel’s aggregate performance for the entire time series may
be reasonable.

Figure 4 demonstrates the discriminating power over the
time series (i.e. we compute the average accuracy of all
voxels for each timepoint). We see that the discriminating
ability increases several seconds after the onset of the stim-
ulus. In hindsight, this effect is not surprising. When we
look at a typical hemodynamic response curve in Figure 3
we see peak activation several seconds after the onset of the
stimulus.

At the peak of the hemodynamic response, we have the strongest

signal-to-noise ratio. We would expect classification accu-

racy to improve near this peak.

This leads to the simple intuition that we should not rank
features entirely by voxel (spatially). Rather, we should
take advantage of this difference in temporal discrimination
to further reduce noise.

Therefore, we should treat each feature as a voxel-timepoint,

and we should rank each voxel-timepoint individually when

selecting features.

2.2.1 Classification accuracy of temporally selected
features

We present results of two feature selection methods in Ta-
ble 2. In each case, features are considered voxel-timepoints.
The first method, Discriminate-By-Voxel, chooses the voxels
(all the timepoints for that voxel) that best discriminate the
training set. In this experiment, choosing a single voxel re-
sulted in sixteen voxel-timepoints being selected. We tested
groups of 50 voxels at a time, up to 4,000 voxels (i.e. 50,
100, 150, ..., 4,000). Thus we tested classifiers with 800,
1600, ..., 60,000 features.

The second method, Discriminate-By-Voxel-Timepoint , chooses
the voxel-timepoints that best discriminate the training set.
We tested groups of 10 voxel-timepoints at a time, up to
2,500 voxel-timepoints (i.e. 10, 20, 30, ... 2,500).

Lessons Learned

There are some interesting insights that can be gained from
these results. First, both methods improved performance on
all subjects with the largest gains coming from the noisiest
subjects. Without feature selection, several of these subjects
performed with near random accuracy. Feature selection
shows us that there is discriminating signal even within these
noisy subjects. This is an important point since often the
goal of fMRI research is to determine whether two cognitive
states can be discriminated at all (e.g. can fMRI be used to
detect lies from truth?). Feature selection might be the key

between two different conclusions.

Another insight gained is that it is possible to classify with
high accuracy with only a small number of features. In both
methods, the highest accuracy appeared close to the smallest
number of features considered. The original data contained
≈80,000 features per example. With the Discriminate-By-

Voxel-Timepoint method, we see that a classifier with ≈100
features, leads to a good predictor for all subjects. This
leads us to a heuristic that could be useful for this domain:

Feature Selection Heuristic: Treat each voxel-timepoint as

a feature. Rank all features by how well they individually

classify a training set. Choose the top 100 features for the

final classifier

Although there seems to be a minor improvement with the
Discriminate-By-Voxel-Timepoint method over the Discriminate-

By-Voxel method, more tests would be required to confirm
if this is statistically significant. There is a large compu-
tational benefit, however, for the Discriminate-By-Voxel-

Timepoint method. Since we’re only evaluating a very small
number of features for each test example, testing time can
be greatly reduced.

Future Experiments

We think the Gaussian Naive Bayes is a great classifier for
this domain because it appears to be very robust to noise.
Adding a few hundred noisy features only seems to have a
minor degradation on performance. We suspect other clas-
sification methods would be more susceptible to spurious
features and thus show a larger discrepancy in performance
for the two methods described above. Since feature selection
methods are intimately tied to the underlying classifier, it
would be interesting to know the results of these two meth-
ods with other classification techniques.



Table 2: Accuracy of Feature Selection Methods for 13 Subjects
1 2 3 4 5 6 7 8 9 10 11 12 13

No feature selection 92.5 67.5 82.5 90.0 82.5 47.5 60.0 75.0 77.5 92.5 77.5 37.5 95.0
Discrim-by-voxel (DV) 95.0 90.0 95.0 97.5 95.0 92.5 92.5 90.0 85.0 97.5 82.5 80.0 100

Discrim-by-voxel-timepoint (DVT) 97.5 95.0 90.0 97.5 97.5 95.0 95.0 92.5 85.0 97.5 90.0 77.5 100
NumFeatures used (DV) 800 800 1600 800 1600 1600 800 800 1600 800 1600 800 1600

NumFeatures used (DVT) 20 10 80 120 60 180 220 10 70 10 50 130 110

Also, it would be useful to run these experiments with a
smaller granularity and also to consider a smaller number
of voxels for the Discriminate-By-Voxel method. With such
a small number of training examples, we run the risk that
certain features may discriminate well by random chance.
As a result, we were surprised that both methods appeared
to have highest accuracy with only a small number of fea-
tures. It would be interesting to know how few voxels or
voxel-timepoints we could use before classification perfor-
mance degrades and to see how this amount changes as a
function of the number of training examples.

3. CONCLUSION
There are many ways to create features from fMRI time
series data. Most traditional methods have focused on spa-
tially selecting the most discriminating voxels while ignoring
the temporal dimension of the data. We discovered empiri-
cally, however, that voxels that discriminate well at a given
timepoint may not discriminate well at another timepoint.
This seems obvious (only in hindsight) given the changing
signal strength of the hemodynamic response. By explic-
itly treating features as voxel-timepoints, we can improve
performance by removing regions of time that discriminate
poorly.

Using this idea, we demonstrated a simple heuristic that
reduces an example of 80,000 dimensions to one of 100 use-
ful features. We found that it yields excellent performance
and computational speed. Further, we showed that tempo-
ral smoothing further increased classification performance,
especially for noisy subjects.

Dealing with noisy subjects is an important problem for
fMRI analysis. Often the goal of fMRI research is to de-
termine whether two cognitive states can be discriminated
at all. Currently, experiments are run using many subjects
in order to minimize the effect of a single noisy subject on
the experimental conclusion. In the experiment we consid-
ered, several subjects produced very noisy data and had near
random classification accuracy. Through kernel smoothing
and feature selection, we were able to make dramatic im-
provements in classification accuracy for these subjects. As
we become more confident in our ability to handle noisy
subjects, we can run fMRI experiments and test cognitive
hypotheses with fewer human subjects. This would lead to
a large savings in both cost and time.

We believe time is an essential element for selecting features
in fMRI analysis. We hope this work demonstrates tempo-
ral feature engineering is useful and stimulates additional
research into temporal methods.
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APPENDIX
A. TECHNICAL DETAILS
A.1 Gaussian Naive Bayes Classifier
The Gaussian Naive Bayes classifier is based on Bayes rule:

P (Y |X) =
P (X|Y )P (Y )

P (X)

where Y is our class label Y ∈ {0, 1} and X is a real valued
number X ∈ ℜ. We model the likelihood P (X|Y ) using
a Gaussian. Further, if X is a vector, we make the naive
assumption that all the Xi are conditionally independent
given the class label. Specifically,

P (X1, X2, . . . , Xn|Y ) =
nY

i=1

P (Xi|Y )

Our classification rule is to find the class label k that max-
imizes P (Y = k|X). Since the denominator is the same
regardless of k, we can choose the k that maximizes just the
numerator. Often the numerator is called the score function

and is denoted by S. We find k to maximize the score:

Predicted Class = argmaxkS(k)

= argmaxkP (Y = k)

nY
i=1

P (Xi|Y = k)

Now for our fMRI classification task we treat each voxel-

timepoint as a feature. Let V be the number of voxels,
T be the number of timepoints, and N be the number of
trials. We index a voxel-timepoint for a particular trial as
Xivt where 1 ≤ v ≤ V, 1 ≤ t ≤ T, 1 ≤ i ≤ N . We assume
that each feature is distributed normally across trials in the
experiment given the class:

Xitv|Y = k ∼ N(µ
(k)
tv , σ

2(k)
tv )

If we let bπk and bf(x|Yi = k) denote estimates for the the
prior P (Y = k) and likelihood P (X|Y ) then our score func-
tion then becomes:

S = bπk
bf(x|Yi = k)

= bπk

Y
T,V

1√
2πbσ(k)

tv

exp
n−(Xtv − bµ(k)

tv )2

2bσ2(k)
tv

o
It is important to note that we cannot find this score directly.
The problem is that we have a very large number of features
(T ∗ V ). The likelihood of a single voxel-timepoint will be
a very small number and multiplying thousands of small
numbers together will quickly break the numerical precision
of any computer. To correct this problem we can work in
log-space. Since log is a monotonic function, the max of the
log will also be the max of the original function. Therefore
we compute the log-likelihood instead:

S = log(bπk) +
X
T,V

−log(
√

2πσ
(k)
tv ) − (Xtv − bµ(k)

tv )2

2bσ2(k)
tv

We estimate the class specific mean µ(k) and variance σ2(k)

for each voxel-timepoint. (Note: we use δ(·) as the indicator

function. It is 1 when the predicate is true and 0 otherwise)

µ̂
(k)
tv =

1PN
i=1 δ(Yi = k)

NX
i=1

δ(Yi = k)Xitv

σ̂
2(k)
tv =

1PN
i=1 δ(Yi = k)

NX
i=1

δ(Yi = k)(Xitv − µ̂
(k)
tv )2

We can compute estimates for the priors by just taking the
average as usual:

π̂k =
1

N

NX
i=1

δ(Yi = k)

A.2 Kernel Smoother
We implemented kernel regression from Wasserman [12] as
our smoother. To keep notation consistent with the book,
we let our output variable Y be a real number Y ∈ ℜ. The
basic idea is that each data point is replaced by a weighted
combination of the nearby data points. This is sometimes
referred to as the Nadaraya-Watson kernel estimator:br(x) =

nX
i=1

wi(x)Yi

The weights wi(x) are computed using a kernel function K:

wi(x) =
K(x−xi

h
)Pn

j=1 K(
x−xj

h
)

There are many different kernel functions that can be sub-
stituted for K. In the above equation, the variable h is the
bandwidth or scale of the kernel. Wider bandwidths increase
the weight on points farther away. For smoothing tasks, the
Gaussian kernel is often used:

K(x) =
1√
2π

e
−x2/2

The choice of bandwidth is the tricky part. If we choose
a bandwidth that is too large we risk over smoothing the
data and destroying the underlying signal. If we choose too
little smoothing we leave high frequency noise in our data.
There has been much work trying to find estimators for the
optimal bandwidth. One way to choose the bandwidth is to
minimize the cross validation risk:bJ(h) =

nX
i=1

(Yi − br−i(xi))
2

In this equation r
−i(x) is the estimate of r(x) with band-

width h and the ith data point left out. Like many cross
validation estimators, there is a shortcut formula that avoids
explicitly computing each r

−i.bJ(h) =
nX

i=1

(Yi − br(xi))
2 1�

1 − K(0)

n
j=1

K
�

xi−xj
h

��2

So we just need to test different values of the bandwidth to

find the one that minimizes bJ(h).


