Model Checking In-The-Loop

Flavio Lerdd, James Kapinskj Hitashyam Mak® Edmund M. Clarké and Bruce H. Krogh
T School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
Email: f| erda@s. cnu. edu, ent@s. cnu. edu
§ Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213
Email: kr ogh@ce. cnmu. edu, hmaka@ndr ew. cmu. edu, j pk3@ndr ew. crru. edu

Abstract—Model checkers for program verification have such as simulation, is the ability to explore the behavidrs o
enjoyed considerable success in recent years. In the contro g system exhaustively.
systems domain, however, they suffer from an inability o nadel checking was initially developed to analyze finite

account for the physical environment. For control systemssim- o
ulation is the most widely used approach for validating sysm state systems. Embedded control systems are difficult to

designs. We present a new technique that uses a software mode analyze using model checking due to the controller’s inter-
checker to perform a systematic simulation of the software action with a continuous dynamic plant, which makes the

implementation of a controller coupled with a continuous pnt. system infinite state. Various methods have been developed
Instead of performing a large set of independent simulatios, to formally verify hybrid automata, which can be used to

our approach uses the model checking notion of state-space
exploration by piecing together numerical simulations of he model embedded control systems [9], [12], [4], [6]. These

plant and transitions of the controller. Our implementation t€chniques are computationally expensive, however, aad ar
of this technique uses an explicit-state source-code model able to analyze only systems of low complexity.

checker to analyze the software and the MATLAB/Simulink Simulation is the most widely used technique for validat-
environment to model and simulate the plant. We present an ing control system designs. Tools like MATLAB/Simulink

illustrative example involving a supervisory controller for an - . - . .
unmanned aerial vehicle (UAV). We show that our technique is provide an environment for modeling and simulating control

able to detect an error in the controller design. systems [13], [2]. Recently, a MATLAB toolbox for veri-
fication was released, thBesign Verification ToolboX1],
|. INTRODUCTION but this tool only addresses the verification of discratesti

The goal of model-based design of embedded softwag@mponents of Simulink models.
is to reduce development time and cost by evaluating con-We present an approach that narrows the gap between
trollers using computer-based models before implementirgimulation and model checking of control systems. Using
the designs. This approach requires methods for exploriggnumerical simulator, we can capture the dynamics of the
the behaviors of dynamical systems. While simulation caplant accurately. By employing a model checker, we can
be used to evaluate system performance for a specific setwsflidate properties that are difficult to validate usingstard
parameters, exhaustive evaluation of system behavions owmulation, such as correctness of an implementation using
a range of parameters using simulation is usually intrdetab concurrent tasks communicating via shared variables.
We investigate using formal verification techniques to lsatc The technique is implemented using an explicit-state
design errors by exploring the behaviors of an embeddedurce-code model checker and the MATLAB/Simulink sim-
control system. Our approach combines a software modelation environment. We present an example based on the
checker with numerical simulation. Stanford Testbed of Autonomous Rotorcraft for Multi-Agent

Model checking is an automated technique for the formalontrol (STARMAC) platform [11]. We constructed a su-
verification of temporal properties [7], [8]. In recent ygar pervisory controller and found an error using our technique
there has been considerable interest in model checkers fgote that, as far as we know, the original STARMAC design
software [3], [10], [5], [14]. One of the main advantageds correct.

of model checking compared to other validation techniques,
g P q Il. SYSTEM MODEL

This research was sponsored by the Air Force Research OAIERQ) We consider a sampled—data controller and a continuous-
under contract no. FA9550-06-1-0312, and by the Nation&r8e Foun- . | A led-d llei bl b h
dation (NSF) under grant no. CCR-041115he views and conclusions time plant. Asampled- ate_‘ Contro_els a e to observe the
contained in this document are those of the author and shooidbe State of the plant only at discrete time instants, cadiachple
interpreted as representing the official policies, eithepressed or implied, times We assume that the sample times occur at muItipIes
of NSF, AFRO, or the U.S. government. f a fixed l . Th f hat i |

The first author was supported by General Motors under grant nOr atxe samp Ing perlodts. e software that implements
GM9100096UMA. the controller is composed of a set of concurrent tasks. The

tasks execute periodically at the sample times. We assuroentrol location L;,;; and stops when it reaches control
that the code of the controller executes instantaneously aflocation Lg,,. We can define a transition relationA

all tasks share the same clock. The plant is modeled as a 8t — 29*@ that represents the relation between the
of differential equations. Figure 1 shows the architectfre states of the controller at the beginning and at the end
sampled-data system. For simplicity, we show the controllof each execution. Given a plant state € R", we
(resp. plant) observing the entire state of the plant (respave that((Linit, v), (Lanal, v')) € A(x), also denoted as
controller), however, our analysis does not require thisee T (Linit, V) Ak, (Lgnas, V'), if and only if there exists a

controller can observe a mappipgx) of the plant state and fjjte sequence of controller states. ..qs such thatg, =

the plant can observe a mappih@v) of the controller state. 5(x
P ppihgy) ((Linit; v), @7 = (Lfina1, v'), andg; 29, ¢;+1 for every

0<g<J.

Clock signal
‘"““ periodt, A sampled-data control systens a tuple SDCS =
(Loc, Linit, Lfinal, V, 0, f, ts, Init), where:
Controller v, Plant X i o i
(L v 5L i) =/ (x,v) e Loc is a finite set of Control locations; .
e Linit, Lanal € Loc are the first and last control locations
of each periodic execution of the controller;

« V is a finite set of values;
Fig. 1. The architecture of a sampled-data system. « §:R" — 29%Q is the controller transition relation;
e f: R" x V™ — R"™ is Lipschitz continuous in its
We use a single finite-state automaton to describe the first argument and describes the continuous flow of the
behavior of the controller, which represents a set of con- System as a function of the controller variables;
currently executing tasks. In the following, we describ&vho « ts > 0 is the sampling period of the controller. The
the finite-state automaton for the controller can be obthine controller executes only at time instances corresponding
from the set of finite-state automata representing the tasks ~ to non-negative multiples of;;
Let v € V™ be the controller variables shared among « Init C Loc x V™ x R™ is a finite set of initial states.
the tasks, wheré’ is a finite set of values. Each controller | et § = Loc x V™ x R" denote the set of system

taskT; is described as a finite-state automaton with sharegates. Evolutions of the plant over a sampling perigd
variables. LetLoc; be the states of the automaton, calledyre defined implicitly by the set of differential equations
local control locations Let /it , lifinal € Loc; be tWO % — f(x v). Let F : V™ — 2R"XR" pe the discrete-
specially designated control locations. At each sample timtime update function, such thék, x') € F(v) if and only
task_ﬂ- starts at control locatiol; iy and ends at control i there exists a differentiable functiog® : [0,¢,] — R”
location I; fina1. Let Qi = Loc; x V™ represent the local sych thatéX(t) = f(€(t),v) for all ¢ € [0,], £(0) = x,
controller states of task;. The transitions of the task dependangd ¢x(¢,) = x’. There exists a plant transition from to

on the state of the plan:t € R, The local transition relation x’ when the controller variables are equa'“odenoted by
of T; is defined bys; : R® — 29:*@: There exists a local _ F(v)

N) . X x', if and only if (x,x’) € F(v).
controller transition of/; denoted by(l;, v) (1 V') f There exists aystem-level transitiobetween two system
and only if ((1;,v), (I, v')) € d;(x). No transition is possible gtatess — (L,v,x) ands’ = (I/,v',x'), denoted bys —>
from the final control locatior; fina;. s, if and only if either:
Given a set of taskg1, ..., T}, the controller is obtained 5(x)
by composing the tasks usimgterleaving semanticsnean- (L}?\(’))—> (L',v') andx = x’; or

ing that there is no predetermined execution order between, x —= x’, L = Lapal, L' = Linit, andv = v'.
the transitions of different tasks. Interleaving semanii If the former holds, we calf —> s’ asystem-level controller

used to model control software that is either implemented 3fansition if the latter holds, we calk —s s’ a system-level
multiple threads or distributed among a set of processors. lant transition '

The composed system s represented as a finite-st te‘A trace of an SDCS is a finite sequence of system states
automaton. LetLoc = Loc; x ... x Loc, be the states .
. o= sg...5k, such thatsy € Init, and, for every0 < k <
of the automaton, called theontrol locations Let Li,;y = : o .
(I)) ‘and L i ;) be K, there exists a system-level transitigh— s;1. Given
Linit) - -« 2 'p,init final Lfinaly - - - °p,final a traceo, duration(c) denotes the amount of time elapsed

the initial and final control locations. Lef) = Loc x between the first state and the last state,adnd it is defined
V™ represent the controller states. The controller transi-

tion relation is defined bys : R* — 29%9 such that Inductively as follows: '
(11 1), V), (1, 1), v")) € 6(x) if and only if e Foratraces = so, duration(v) = 0.

. . ‘ si(x) ., e For a tracec = sp...sx such thatsg_; —
gyere'(?);lstis lja té_ssz such that(lﬁ’v) ,(li’v) adnd sk is a system-level controller transition,
j # i1 =1j. Given two controller State%’(q) €@ anda duration(sg...sx) = duration(sp...skx—1), Since
plant statex, we denote(q, ¢') € d(x) by ¢ —= ¢/. we assume the controller transitions execute

At each sample time, the controller starts executing at instantaneously.

o . I Controller State l]
o For a traces = sp...skg such thatsx_1 = sk is .] .] .] .] [] Plnt tate
1

a system-level plant transitiorluration(sg . ..skx) = ! ! ! s Transiion A
duration(sg . ..Sk—1) + ts. y Voo } FTransiton y
The system state ¢ S of an SDCS igeachable within a i] l] i]
time boundr if and only if there exists a trace = sq ... sk
such thatsx = s and duration(o) < T. A system states
is a deadlock statéf there does not exist a system state .] .] .] .] .] .]
such thats = s’. A deadlock state is a state from which no
transition is possible. An SDCS has a deadlock within time : : : ! ! !
v v v

boundT if and only if a deadlock state is reachable within i]
T. A states = (L, v, x) is alivelock statef and only if there .] .] .] .] .] .]
exists an infinite sequence of controller statgg; . . ., such .
that g0 = (L,v) and, for everyi > 0, ¢ RICIN Giy1. A i] i] i] i] i] i] i] i]
livelock corresponds to an infinite loop in the controllen A
SDCS has a livelock within time bourdd if and only if there (a) Standard simulation (b) Systematic simulation
exists a livelock state that is reachable witfiin
Given a set of unsafe system statésc S, an SDCS is Fig. 2. Standard simulation (a) generates traces one atea 8ystematic
safe within time bound’ if and only if there exists no unsafe f::r‘geg'f(r’lgl ég% exploits the common prefixes of traces to mikeanalysis
system state € U that is reachable withifi’ and the system
has no deadlock or livelock within time bourd
o SAFE if the system is safe within time bourifl and
I1l. ANALYSIS TECHNIQUE no deadlock or livelock is reachable within time bound
. . . . T;
timTehI:a?StC;I%? g;esseg(t:ssé :[I'ehcgr;g:?o;cz:rhcr]cz?g;?ert‘)noz;ir::ded o (UNSAFE, path)if the system.is unsafeith is a trace
' that leads to an unsafe state;

S'm“'ta“"” uses aT’:Od‘T' Chtff"erﬁ_to_ thJ||de thle search flor . (DEADLOCK, path) if a deadlock is reachable within
;:our: erexatm%ets © afgon T eticiently ahna yzes S;mut ¢ T; path is a trace that leads to a deadlock state;
lon traces to determine if a system can reach an unsafe sta & (LIVELOCK, path) if a livelock is reachable within

a deadlock, or a livelock within a given time bound. T path is a trace that leads to a livelock state.

The main function calls the functioexpl or e for each
initial state of SDCS and appropriately interprets the ltesu
Simulation is a validation technique that generates thghe functionexpl or e (Figure 4) takes as arguments the
traces of a system. For a continuous system specified @gstem statetate, the time horizonr, and the sequence of
a set of differential equations, numerical methods are usetatespath. This function performs a depth-first search of
to generate traces of the system. Tools such as MAfhe graph reachable frogtate up to timer.
LAB/Simulink [2] are used for modeling and simulating The functionexpl or e first adds the current state to the
dynamical systems. A simulation trace corresponds to orgquenceath (line 14) and then checks if an unsafe state has
possible evolution of the dynamical system: all inputs musieen reached (line 16), in which case it returns immediately
be fixed, and therefore the simulation is deterministic. Otherwiseexpl or e checks if the current state is a livelock
Model checking is a verification technique that is able tatate (lines 18-23). Next, the current state and time harizo
check that all possible behaviors of a system satisfy a giveire compared with the set of already visited states (ling 25)
property. In this context, a system is allowed to be nonwhich is stored in the global variablei sit ed: if there
deterministic. Systems modeled as an SDCS exhibit noexists a state irvi si t ed that is equal to the current one
deterministic behavior due to the followingi) the inter- with a larger or equal time horizon the search continues with
leaving of concurrent taskgji) multiple initial states; and a different branch; otherwise, the current state is adddoeto
(iii) non-determinism in the controller finite state automatorset of visited states (line 27).
which can be used to model external inputs to the controller. Lines 30-34 correspond to a system-level plant transition
In contrast to simulation, where each simulation is indeand are executed if the current locatiatgte.L, is equal to
pendent, in model checking the set of generated traces formg,.;. First,expl or e checks that the time horizon is large
a graph (see Figure 2). This leads to a saving in terms ehough to allow a plant transition, whose duration is equal
simulation time, as simulation traces that share a commaa the sampling time:,. Line 32 represents the invocation
prefix are not executed twice. of the numerical simulation procedure usiggte.x as the
The algorithm used by our approach is shown in Figure Biitial state andstate.v as the value of the inputs. Line 34
and Figure 4. The main function (Figure 3) takes as inpuontinues the exploration by invokirexpl or e recursively
an SDCS, a set of unsafe statés and a time bound”. It starting from the next state and with a shorter time horizon.
can return four possible answers: Lines 37-43 correspond to a system-level controller tran-

A. Systematic Simulation

sition. The set of possible successors is computed at line

37. If no discrete transition is possible (line 38) a deaklloc 12: // perform a depth-first search starting at at e
is reported. Otherwise, the successors are explored, ame at13: function explore(stater, path)

time, by the loop at lines 39-42. In this case, the time haorizo 14:

is unchanged during the recursive call (line 42).

15:

16:
1: /I Check the time-bound safety of an SDCS 17:
2: global SDCS;// A sampled-data control system. 18:
3: global U; /I A set of unsafe states. 19:
4: global T; // A time bound. 20:
5: global visited — {}; // Visited states, initially empty. 21:
6: main: 22:
7: /I Perform a depth-first search for each initial state 23:
8: foreach (statee Init) 24
9: result— explore(state, T, ()); o5
10: if (result# SAFE.BRANCH) return result; 26:
11: return SAFE; 27:

Fig. 3. Themai n procedure of the systematic simulation algorithm. 28:
29:

The pseudocode in Figures 3 and 4 is based on theso:
algorithm for explicit-state model checking [8], which gse 31:
a depth-first search of the state transition graph. We have2:
implemented this algorithm by modifying the search pro- 33:
cedure of an existing model checker. The major additions34:

arelivelock detectior(lines 18-23), storing ofime horizons

together with states in the visited set (lines 25-27), ard th 365

computation ofplant transitionsusing numerical simulation

i 37
(lines 30-34). o
B. Approximate Equivalence jg

The systematic simulation approach presented in the preas-
vious section exhaustively explores all possible behavior 4.
of an SDCS. By using a model checker, the technique isy3.

path« path- state;

/I Check for unsafe states
if (statee U) return (UNSAFE, path);

/I Detect livelocks
if (3 N < path.length:
path[N] = staten
Vv N < k < path.length:
(path[K].q, path[k+1].9kE § A
path[k]x = path[k+1]x)
return (LIVELOCK, path);

/I Compare to already visited states

if (3 (s,t) € visited: s = staten t > 7)
return SAFEBRANCH,;

visited «— visited U {(state,7)};

[/l Perform a plant transition
if (state.L = lgnal)
/I Stop if time horizon is less than sampling time
if (r <ts) return SAFEBRANCH,;
statex «— F(statex, statev);
state.L«— Linit;
return explore(stater - ts, path);

/I Perform a controller transition
else
succs— {q' | (state.q, q)e d(statex)};
if (succs =) return (DEADLOCK, path);
foreach (q' € succs)
state.q— Q’;
result— explore(statey, path);
if (result# SAFEBRANCH) return result;
return SAFEBRANCH;

more efficient than using standard simulation to enumer-
ate all traces. The approach, however, requires subdtantia
computational resources when applied to complex systems.
For such systems, the number of traces is exponential in
the time bound and the number of tasks and inputs. The
model checker has to explore all traces, even if many dhe technique to analyze larger systems. While the approach
them are similar to each other. In this section, we present @ able to efficiently search for counterexamples, it dods no
approach that prunes the simulation graph by ignoring sonexplore all possible system behaviors. As such it can show
of the traces that are similar. This is a heuristic approacthat the system is unsafe, but it cannot prove that a system
which, unlike the previous algorithm, can possibly fail tois safe.
detect unsafe behaviors in an SDCS, but is useful in finding We introduce the notion ofpproximate equivalenctr
errors in large systems. an SDCS. Two system states, = (L,v,x) and s’ =
Explicit-state model checkers compute the set of reachahlé’, v/, x’), are approximately equivalent wheh = L/,
states iteratively by constructing a graph using the ttamsi v = v/, andx and x’ satisfy a proximity criterion based
relation of the model. When the model checker encountem their positions inR™. In our implementation, a grid is
a state that is equal to a state that has already been visitggplied to the state space of the plant; the criterion on the
(line 25 in Figure 4), the transitions starting from thattsta positions ofx andx’ that we use is that botk andx’ should
are not explored. Doing so would only lead to states thatccupy the same grid element. When our algorithm reaches a
have already been encountered. In this section we presentsiate that is approximately equivalent to a previouslytegi
approach that replaces the notion of state equality in modehe, the transitions starting from that state are not erglor
checking with state equivalence based on an approximatidie call this operatiompath pruning(see Figure 5).
of the plant state. This is a heuristic approach that enablesThe heuristic approach presented here is not sound in

Fig. 4. Theexpl or e function.

Controller Statx
EP:H:‘;:; " l] IV. EXPERIMENTAL EVALUATION

. AN

AR We implemented our technique by extending an existing
E explicit-state source code model checker. The tool we chose

.
.
.

- - -

’ ' 8 Transition
-’ } F Transition
is Java PathFinder [14]. While the main purpose of the
Approximately tool is to verify Java programs, it is able to handle the
States "=y : subset of C that is common to the two languages. We were
.] .] able to check the code automatically generated using the
T P MathWorks’ Real-Time Workshop with only minor syntactic
modifications. The main reasons for choosing this tool were
.] that it was readily available and it could be extended to im-
plement our approach. In future work, we plan to investigate

|-

[am)
[mm)
-
-

R J ' R ' using alternative model checkers, especially tools that ar
iji] i]i] i] i]i] i] aimed at C/C++. We used MATLAB/Simulink to model the
plant and controller and to provide simulation traces fa th

(a) Approximate equivalence (b) Path pruning systematic simulation analysis.

We extended the existing model checker in the following
Fig. 5. Approximate equivalence (a) identifies states tleatehthe same way. We added an additional component to the state of the
controller state and similar plant states. This enablesipgu(b) parts of .
the graph. system corresponding to the state of the plant. The plant
state is represented by a set of floating-point values fdn eac
of the continuous state variables. We extended the transiti

that it is not guaranteed to find a counterexample if ongYStém constructed by the model checker to include plant

exists. This is because the traces neglected may lead to E#SItions.

unsafe system state: while two plant states may be close toSeparate concurrent processes are modeled explicitly in
each other at a given point in time, they may lead to statéBe model checker; the model checker automatically trans-
that are far from each other. This behavior is characteristforms the separate tasks into a single nondeterministie tra
of differential equations, where apparently simple dyreami sition system. Plant transitions are computed using the MAT
may lead to chaotic behavior. We are currently working-AB/Simulink numerical integration solver (this corresyts

on an approach that has similar advantages to approxima@line 32 in Figure 4). Given the sampling period the

equivalence but is able to prove bounded-time safety of Zt/Irent plant state:, and the value of the program state
SDCS. MATLAB/Simulink returns the statex’ that is reached at

For stable affine plant dynamics, we can determine a LyzSi—me Ls.))
punov function)(x) = x7 Px, whereP € R"*" is positive In the following, we present experimental results we ob-
definite. We define a Lyapunov ellipsoid with center and tained by applying our technique to an example based on the
sizea > 0 as&(x.,P,a) = {x|(x — x.)TP(x — x,) < Stanford Testbed of Autonomous Rotorcraft for Multi-Agent

ellipsoids have the following property. Given two plantteta 2erial vehicle (UAV) under development at Stanford Univer-
. Fv) sity [11]. We obtained a Simulink model of the STARMAC

x andy such thaty € £(x,P,a), if x —> x’ and .

Fv) ,) _ system from the Stanford development team. We believe
y —y', theny’ € £(x', P, a). Consequently, if we know that the model is correct and does not contain an error.
thatx andy are sufficiently close, meaning |lfx—}/’|\P <a We constructed a new system model, the Reconnaissance
for a givena > 0, then we k/”OW thak’ andy’ remain \ission (RM) model, that includes a supervisory controller
sufficiently close, that igx’ —y’|[p < o (see Figure 6). We that we designed. We used our technique to detect an error
will use this property of Lyapunov ellipsoids to define ann the RM model.

equivalence relation which preserves bounded-time safety e vehicle, shown in Figure 7, is composed of a computer
controller and power supply at its center, which is attadied
&(x.P) a frame on which four rotors are mounted. The controller of
e the vehicle is organized on three levels illustrated in Fegii
The inner loop controller sends thrust commands to the four
rotors based on the pitch, roll, yaw, and altitude commands
that it receives from the outer loop controller. The latter
commands are based on the position command (in three
dimensions) that the supervisory controller generateg Th
Fig. 6. If y is within a Lyapunov ellipsoid of size: centered at, and supervisor makes its decision based on the current position
x’ andy’ are plant states reachable framandy, theny’ is within a Of the vehicle.
Lyapunov ellipsoid of sizex centered ak’. We constructed a supervisory controller whose purpose is
to guide the vehicle through a sequence of waypoints. The

Fig. 7. An illustration of the Stanford Testbed of AutonorsdRotorcraft
for Multi-Agent Control.

Plant Model

X,y,Z position Roll, pitch, yaw, z
commands [commands Motor thrusts

\

Supervisor H OUteli‘ Control H Inner Control UAV |
oop Loop

' |

: |

! I

X,Y,z position

Fig. 8. Vehicle block diagram.

« Waypoint Tracking - takes the vehicle through a <
of positions given by a waypoint list. It checks t
proximity of the vehicle to the target waypoint and,
the vehicle is close to the target, it then picks the r
waypoint from the list and issues the command to
STARMAC Quadrotor.

Waypoint Monitor - checks if the altitude commar
of the next waypoint is below 1.1 meters and, if so
adjusts the altitude command to 1.1 meters.
Command Latch - maintains the last command un
the next waypoint command is issued.

The tasks communicate among themselves using st
variables.

Waypoint Monitoring

Shared Variables

XYz
position

commandi

waypoint_avaliable
waypoint_index

Command
Latch
target_position
XYz i
Waypoint
_position| Waypoint Tracking IYIpSt

Fig. 9. Block diagram of the supervisory controller.

Figure 8). Since the inner and outer control loops operate at
a much faster clock rate than the supervisor, we model them
as part of the RM plant and take the supervisor to be the
RM controller.

The RM plant model corresponds to a set of non-linear
differential equations with over 39 continuous-valuedesta
variables. The interaction between the plant and the super-
visory controller occurs by means of position commands (in
the x, y, and z coordinates) sent by the supervisor to the
plant, and position sensor values sent by the plant to the
supervisor.

The property that we want to check is that the vehicle
never flies below the minimum safe altitude of 1 meter,
unless it is taking off or landing.

We used the technique described in Section Ill to search
for a counterexample. The tool explores the traces of the sys
tem until it reaches an unsafe state and the counterexample
shown in Figure 10 is generated. The horizontal axis in the
figure represents time, the vertical one represents thadsti
The dashed curve is the actual altitude of the vehicle as it
evolves with the passing of time. The solid curve represents
the altitude command generated by the controller. The trace

controller must be robust with respect to invalid waypaintsis a counterexample because at the end of the trace the
meaning that it has to guarantee that the vehicle will nailtitude reaches a value below 1 meter and the vehicle is
reach an altitude below 1 meter unless it is taking off oneither taking off nor landing. The circles on the diagram
landing (corresponding to the first and last waypoint irmark the sampling times and may correspond to multiple
the sequence). The supervisory controller is modeled usim@ntroller transitions.

Stateflow diagrams. The implementation uses the follov
interleaved tasks, illustrated in Figure 9:

16 |=0=Zg
---z B P "\
2 /

A N
min . [y

N
»
T

~
‘
b

[
T
)

o
o
T

~

Altitute (meters)

o
o
T

=}
IS
T

o
N
T

I I I I)
3 6 7 8 9

Ite
=

4 5
Time (seconds)
Fig. 10. Counterexample trace.

The counterexample is due to the interleaving of the tasks.
In this particular trace the Waypoint Monitor task executes
before the Waypoint Tracking task at time-= 7 seconds and
therefore sees the previous valuetadr get _posi ti on.
Since this value is valid (its altitude component is above
1.1 meters) the value is not changed. After that, the
Waypoint Tracking task executes ahdr get _posi ti on
is set equal to the fourth waypoint, which contains an
invalid altitude value (see Figure 11). The value of
waypoi nt _avai | abl e is set to true and the Command

The MATLAB/Simulink model of the RM system includes Latch task records the incorrect value. At this point the

the supervisory controller, the outer loop controller, therehicle starts to decrease its altitude towards the waypoin
inner loop controller, and the dynamics of the vehicle (seat altitude 0.5 meters. At the next sample time, the Way-

point Monitor task corrects the value, but it is too lateour approach using an explicit-state source code model

as waypoi nt _avai | abl e is now set to false and the checker for handling the controller and MATLAB/Simulink

Command Latch task does not update its interval value unfibr simulating models of the plant.

the next waypoint is generated. One sampling time later Our approach uses numerical simulation in conjunction

the vehicle altitude becomes lower than the minimum saf@ith a model checker to provide an efficient way to explore

altitude and an error is reported by our tool. a large set of system behaviors and detect possible errors.
One of the main advantages of this approach is that it can

#| x y z accurately model the controller and is able to find errors tha
100 00 0.0 are difficult to identify using simulation. By using a source
2|20 13 12 code model checker and MATLAB/Simulink, we believe
3102 20 15 these techniques can be used to address industrial prablems
4118 11 05 As described in Section Ill, we are currently working
5112 04 15 on a technique based on ellipsoids and Lyapunov functions
6|00 00 00 to strengthen the results that can be obtained using our

technique. At the same time, we are interested in trying
different model checkers, especially ones that are able to

o) o _handle C/C++ directly, in order to increase the applicaili
As shown in Figure 12, during the analysis with a timesf our approach.

bound of 15 seconds, the tool generated 131,158 statesbefor
detecting the error. This required about 11 minutes and
928MB of memory. The counterexample shown in Figure 10[1] Simulink Design Verifier User's Guiddhe MathWorks, 2007.
contains 1346 transitions, of which 9 are plant transitiong?] #Jﬁénngaii“é:“”gnzhg rw:;:‘V}\éor'éi_ ;?f;:}-i Beboo: A Svmbolic Mbd
and the rest are controller transitions. The large number o) Checker for Boolean Progréms. JIFrroc. of the 7tt$.lntern);tional SPIN
controller transitions is due to the fact that the software

Fig. 11. List of waypoints used in the experimental evabrati

REFERENCES

Workshop 2000.
is modeled at the statement level in order to be able td?4
check the interleaving of the tasks. During the analysis,
the tool encountered 140,673 states equivalent to preyious
visited states, marked as revisited states in the table. I
the example we analyzed most of the revisited states were
actually identical to previously visited states. We bediev
this is due to the fact that most of the revisited states arél
obtained by a different interleaving of the tasks: différen
task orderings during execution often led to the same statq7)
The approach, however, is able to detect those cases where
a different ordering leads to a different behavior, as in theg
counterexample shown above. The results for differenteslu
of the time bound are shown in Figure 12. Notice that nol®l
counterexample is found for a time bound of 5 seconds
(first row in the table), since the duration of the shortegto)
counterexample trace is 9 seconds.

Time | Running Memory Reached Revisited (]
bound time usage states states
5s 5:50s 795MB 112,057 131,781 [12]
10s 1:12s 25MB 2,470 2,449
15s 11:31s 928MB 131,158 140,673

INo counterexample found. [13]
Fig. 12. Running times, memory usage, number of reachedsstand
number of revisited states for different time bounds andwitd without
approximate equivalence.

[14]

V. CONCLUSIONS

We have presented an approach for the validation of
sampled-data control systems where the controller is imple

mented as a set of concurrent tasks and the plant is described

by a set of differential equations. We have implemented

Oleg Botchkarev and Stavros Tripakis. Verification offig Systems
with Linear Differential Inclusions Using Ellipsoidal Apgximations.

In Proc. of the 3rd International Workshop on Hybrid Systems:
Computation and ControlSpringer-Verlag, 2000.

Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, an
Helmut Veith. Modular Verification of Software ComponentsG. In
Proc. of the 25th International Conference on Software Begiing
2003.

Alongkrit Chutinan and Bruce H. Krogh. Verification offlnite State
Dynamic Systems Using Approximate Quotient Transition tSys.
IEEE Transactions on Automatic Contret6(9):1401-1410, 2001.
Edmund M. Clarke and E. Allen Emerson. Synthesis of Symch
nization Skeletons for Branching Time Temporal Logic. Rroc. of
Workshop on Logic of Program4981.

Edmund M. Clarke, Orna Grumberg, and Doron Peledviodel
Checking MIT Press, 2000.

Thomas A. Henzinger. The Theory of Hybrid Automata. Fmoc.

of the 11th Annual IEEE Symposium on Logic in Computer Sejenc
1996.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, @rdgoire
Sutre. Lazy Abstraction. IRroc. of the 29th Symposium on Principles
of Programming Languagef002.

Gabriel M. Hoffmann, Haomiao Huang, Steven L. Waslandesd
Claire J. Tomlin. Quadrotor Helicopter Flight Dynamics aBdntrol:
Theory and Experiment. IRroc. of the AIAA Guidance, Navigation,
and Control Conference2007.

Stefan Kowalewski, Sebastian Engell, Jorg PreuRigl @laf Sturs-
berg. Verification of Logic Controllers for Continuous PisrJsing
Timed Condition/Event-System Modeléutomatica 35(3):505-518,
1999.

Klaus D. Muller-Glaser, Gerd Frick, Eric Sax, and MaskKuhl.
Multiparadigm Modeling in Embedded Systems DesitffEE Trans-
actions on Control Systems Technolpdg(2):279-292, March 2004.
Willem Visser, Klaus Havelund, Guillaume Brat, Seuogd Park,
and Flavio Lerda. Model Checking ProgramAutomated Software
Engineering 10(2):203—-232, 2003.

