
Model Checking In-The-Loop

Flavio Lerda†, James Kapinski§, Hitashyam Maka§, Edmund M. Clarke†, and Bruce H. Krogh§
† School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

Email: flerda@cs.cmu.edu,emc@cs.cmu.edu
§ Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

Email: krogh@ece.cmu.edu,hmaka@andrew.cmu.edu,jpk3@andrew.cmu.edu

Abstract— Model checkers for program verification have
enjoyed considerable success in recent years. In the control
systems domain, however, they suffer from an inability to
account for the physical environment. For control systems,sim-
ulation is the most widely used approach for validating system
designs. We present a new technique that uses a software model
checker to perform a systematic simulation of the software
implementation of a controller coupled with a continuous plant.
Instead of performing a large set of independent simulations,
our approach uses the model checking notion of state-space
exploration by piecing together numerical simulations of the
plant and transitions of the controller. Our implementation
of this technique uses an explicit-state source-code model
checker to analyze the software and the MATLAB/Simulink
environment to model and simulate the plant. We present an
illustrative example involving a supervisory controller for an
unmanned aerial vehicle (UAV). We show that our technique is
able to detect an error in the controller design.

I. I NTRODUCTION

The goal of model-based design of embedded software
is to reduce development time and cost by evaluating con-
trollers using computer-based models before implementing
the designs. This approach requires methods for exploring
the behaviors of dynamical systems. While simulation can
be used to evaluate system performance for a specific set of
parameters, exhaustive evaluation of system behaviors over
a range of parameters using simulation is usually intractable.
We investigate using formal verification techniques to catch
design errors by exploring the behaviors of an embedded
control system. Our approach combines a software model
checker with numerical simulation.

Model checking is an automated technique for the formal
verification of temporal properties [7], [8]. In recent years,
there has been considerable interest in model checkers for
software [3], [10], [5], [14]. One of the main advantages
of model checking compared to other validation techniques,

This research was sponsored by the Air Force Research Office (AFRO)
under contract no. FA9550-06-1-0312, and by the National Science Foun-
dation (NSF) under grant no. CCR-0411152.The views and conclusions
contained in this document are those of the author and shouldnot be
interpreted as representing the official policies, either expressed or implied,
of NSF, AFRO, or the U.S. government.

The first author was supported by General Motors under grant no.
GM9100096UMA.

such as simulation, is the ability to explore the behaviors of
a system exhaustively.

Model checking was initially developed to analyze finite
state systems. Embedded control systems are difficult to
analyze using model checking due to the controller’s inter-
action with a continuous dynamic plant, which makes the
system infinite state. Various methods have been developed
to formally verify hybrid automata, which can be used to
model embedded control systems [9], [12], [4], [6]. These
techniques are computationally expensive, however, and are
able to analyze only systems of low complexity.

Simulation is the most widely used technique for validat-
ing control system designs. Tools like MATLAB/Simulink
provide an environment for modeling and simulating control
systems [13], [2]. Recently, a MATLAB toolbox for veri-
fication was released, theDesign Verification Toolbox[1],
but this tool only addresses the verification of discrete-time
components of Simulink models.

We present an approach that narrows the gap between
simulation and model checking of control systems. Using
a numerical simulator, we can capture the dynamics of the
plant accurately. By employing a model checker, we can
validate properties that are difficult to validate using standard
simulation, such as correctness of an implementation using
concurrent tasks communicating via shared variables.

The technique is implemented using an explicit-state
source-code model checker and the MATLAB/Simulink sim-
ulation environment. We present an example based on the
Stanford Testbed of Autonomous Rotorcraft for Multi-Agent
Control (STARMAC) platform [11]. We constructed a su-
pervisory controller and found an error using our technique.
Note that, as far as we know, the original STARMAC design
is correct.

II. SYSTEM MODEL

We consider a sampled-data controller and a continuous-
time plant. Asampled-data controlleris able to observe the
state of the plant only at discrete time instants, calledsample
times. We assume that the sample times occur at multiples
of a fixedsampling period, ts. The software that implements
the controller is composed of a set of concurrent tasks. The

tasks execute periodically at the sample times. We assume
that the code of the controller executes instantaneously and
all tasks share the same clock. The plant is modeled as a set
of differential equations. Figure 1 shows the architectureof a
sampled-data system. For simplicity, we show the controller
(resp. plant) observing the entire state of the plant (resp.
controller), however, our analysis does not require this. The
controller can observe a mappingg(x) of the plant state and
the plant can observe a mappingh(v) of the controller state.

Fig. 1. The architecture of a sampled-data system.

We use a single finite-state automaton to describe the
behavior of the controller, which represents a set of con-
currently executing tasks. In the following, we describe how
the finite-state automaton for the controller can be obtained
from the set of finite-state automata representing the tasks.

Let v ∈ V m be the controller variables shared among
the tasks, whereV is a finite set of values. Each controller
task Ti is described as a finite-state automaton with shared
variables. LetLoci be the states of the automaton, called
local control locations. Let li,init , li,final ∈ Loci be two
specially designated control locations. At each sample time,
task Ti starts at control locationli,init and ends at control
location li,final. Let Qi = Loci × V m represent the local
controller states of taskTi. The transitions of the task depend
on the state of the plant,x ∈ R

n. The local transition relation
of Ti is defined byδi : R

n → 2Qi×Qi . There exists a local

controller transition ofTi denoted by(li,v)
δi(x)
−−−→ (l′i,v

′) if
and only if((li,v), (l′i,v

′)) ∈ δi(x). No transition is possible
from the final control locationli,final.

Given a set of tasksT1, . . . , Tp, the controller is obtained
by composing the tasks usinginterleaving semantics, mean-
ing that there is no predetermined execution order between
the transitions of different tasks. Interleaving semantics is
used to model control software that is either implemented as
multiple threads or distributed among a set of processors.

The composed system is represented as a finite-state
automaton. LetLoc = Loc1 × . . . × Locp be the states
of the automaton, called thecontrol locations. Let Linit =
(l1,init, . . . , lp,init) and Lfinal = (l1,final, . . . , lp,final) be
the initial and final control locations. LetQ = Loc ×
V m represent the controller states. The controller transi-
tion relation is defined byδ : R

n → 2Q×Q such that
(((l1, . . . , lp),v), ((l′1, . . . , l

′

p),v
′)) ∈ δ(x) if and only if

there exists a taskTi such that(li,v)
δi(x)
−−−→ (l′i,v

′) and
∀j 6= i : lj = l′j . Given two controller statesq, q′ ∈ Q and a

plant statex, we denote(q, q′) ∈ δ(x) by q
δ(x)
−−−→ q′.

At each sample time, the controller starts executing at

control location Linit and stops when it reaches control
location Lfinal. We can define a transition relation∆ :
R

n → 2Q×Q that represents the relation between the
states of the controller at the beginning and at the end
of each execution. Given a plant statex ∈ R

n, we
have that((Linit,v), (Lfinal,v

′)) ∈ ∆(x), also denoted as

(Linit,v)
∆(x)
−−−→ (Lfinal,v

′)), if and only if there exists a
finite sequence of controller statesq0 . . . qJ such thatq0 =

((Linit,v), qJ = (Lfinal,v
′), and qj

δ(x)
−−−→ qj+1 for every

0 ≤ j < J .
A sampled-data control systemis a tuple SDCS =

(Loc, Linit, Lfinal, V, δ, f, ts, Init), where:

• Loc is a finite set of control locations;
• Linit, Lfinal ∈ Loc are the first and last control locations

of each periodic execution of the controller;
• V is a finite set of values;
• δ : R

n → 2Q×Q is the controller transition relation;
• f : R

n × V m → R
n is Lipschitz continuous in its

first argument and describes the continuous flow of the
system as a function of the controller variables;

• ts > 0 is the sampling period of the controller. The
controller executes only at time instances corresponding
to non-negative multiples ofts;

• Init ⊂ Loc × V m × R
n is a finite set of initial states.

Let S = Loc × V m × R
n denote the set of system

states. Evolutions of the plant over a sampling periodts
are defined implicitly by the set of differential equations
ẋ = f(x,v). Let F : V m → 2R

n
×R

n

be the discrete-
time update function, such that(x,x′) ∈ F (v) if and only
if there exists a differentiable functionξx

v
: [0, ts] → R

n

such thatξ̇x

v
(t) = f(ξx

v
(t),v) for all t ∈ [0, ts], ξx

v
(0) = x,

and ξx

v
(ts) = x′. There exists a plant transition fromx to

x′ when the controller variables are equal tov, denoted by

x
F (v)
−−−→ x′, if and only if (x,x′) ∈ F (v).
There exists asystem-level transitionbetween two system

statess = (L,v,x) ands′ = (L′,v′,x′), denoted bys =⇒
s′, if and only if either:

• (L,v)
δ(x)
−−−→ (L′,v′) andx = x′; or

• x
F (v)
−−−→ x′, L = Lfinal, L′ = Linit, andv = v′.

If the former holds, we calls =⇒ s′ a system-level controller
transition; if the latter holds, we calls =⇒ s′ a system-level
plant transition.

A trace of an SDCS is a finite sequence of system states
σ = s0 . . . sK , such thats0 ∈ Init, and, for every0 ≤ k <

K, there exists a system-level transitionsk =⇒ sk+1. Given
a traceσ, duration(σ) denotes the amount of time elapsed
between the first state and the last state ofσ, and it is defined
inductively as follows:

• For a traceσ = s0, duration(σ) = 0.
• For a traceσ = s0 . . . sK such that sK−1 =⇒

sK is a system-level controller transition,
duration(s0 . . . sK) = duration(s0 . . . sK−1), since
we assume the controller transitions execute
instantaneously.

• For a traceσ = s0 . . . sK such thatsK−1 =⇒ sK is
a system-level plant transition,duration(s0 . . . sK) =
duration(s0 . . . sK−1) + ts.

The system states ∈ S of an SDCS isreachable within a
time boundT if and only if there exists a traceσ = s0 . . . sK

such thatsK = s and duration(σ) ≤ T . A system states
is a deadlock stateif there does not exist a system states′

such thats =⇒ s′. A deadlock state is a state from which no
transition is possible. An SDCS has a deadlock within time
boundT if and only if a deadlock state is reachable within
T . A states = (L,v,x) is a livelock stateif and only if there
exists an infinite sequence of controller states,q0q1 . . ., such

that q0 = (L,v) and, for everyi ≥ 0, qi

δ(x)
−−−→ qi+1. A

livelock corresponds to an infinite loop in the controller. An
SDCS has a livelock within time boundT if and only if there
exists a livelock state that is reachable withinT .

Given a set of unsafe system statesU ⊂ S, an SDCS is
safe within time boundT if and only if there exists no unsafe
system states ∈ U that is reachable withinT and the system
has no deadlock or livelock within time boundT .

III. A NALYSIS TECHNIQUE

This section presents a technique for checking bounded-
time safety of an SDCS. The approach, calledsystematic
simulation, uses a model checker to guide the search for
counterexamples. The algorithm efficiently analyzes simula-
tion traces to determine if a system can reach an unsafe state,
a deadlock, or a livelock within a given time bound.

A. Systematic Simulation

Simulation is a validation technique that generates the
traces of a system. For a continuous system specified as
a set of differential equations, numerical methods are used
to generate traces of the system. Tools such as MAT-
LAB/Simulink [2] are used for modeling and simulating
dynamical systems. A simulation trace corresponds to one
possible evolution of the dynamical system: all inputs must
be fixed, and therefore the simulation is deterministic.

Model checking is a verification technique that is able to
check that all possible behaviors of a system satisfy a given
property. In this context, a system is allowed to be non-
deterministic. Systems modeled as an SDCS exhibit non-
deterministic behavior due to the following:(i) the inter-
leaving of concurrent tasks;(ii) multiple initial states; and
(iii) non-determinism in the controller finite state automaton,
which can be used to model external inputs to the controller.

In contrast to simulation, where each simulation is inde-
pendent, in model checking the set of generated traces forms
a graph (see Figure 2). This leads to a saving in terms of
simulation time, as simulation traces that share a common
prefix are not executed twice.

The algorithm used by our approach is shown in Figure 3
and Figure 4. The main function (Figure 3) takes as inputs
an SDCS, a set of unsafe statesU , and a time boundT . It
can return four possible answers:

(a) Standard simulation (b) Systematic simulation

Fig. 2. Standard simulation (a) generates traces one at a time. Systematic
simulation (b) exploits the common prefixes of traces to makethe analysis
more efficient.

• SAFE if the system is safe within time boundT and
no deadlock or livelock is reachable within time bound
T ;

• (UNSAFE, path) if the system is unsafe;path is a trace
that leads to an unsafe state;

• (DEADLOCK, path) if a deadlock is reachable within
T ; path is a trace that leads to a deadlock state;

• (LIVELOCK, path) if a livelock is reachable within
T ; path is a trace that leads to a livelock state.

The main function calls the functionexplore for each
initial state of SDCS and appropriately interprets the result.
The functionexplore (Figure 4) takes as arguments the
system statestate, the time horizonτ , and the sequence of
statespath. This function performs a depth-first search of
the graph reachable fromstate up to timeτ .

The functionexplore first adds the current state to the
sequencepath (line 14) and then checks if an unsafe state has
been reached (line 16), in which case it returns immediately.
Otherwise,explore checks if the current state is a livelock
state (lines 18-23). Next, the current state and time horizon
are compared with the set of already visited states (line 25),
which is stored in the global variablevisited: if there
exists a state invisited that is equal to the current one
with a larger or equal time horizon the search continues with
a different branch; otherwise, the current state is added tothe
set of visited states (line 27).

Lines 30-34 correspond to a system-level plant transition
and are executed if the current location,state.L, is equal to
Lfinal. First,explore checks that the time horizon is large
enough to allow a plant transition, whose duration is equal
to the sampling timets. Line 32 represents the invocation
of the numerical simulation procedure usingstate.x as the
initial state andstate.v as the value of the inputs. Line 34
continues the exploration by invokingexplore recursively
starting from the next state and with a shorter time horizon.

Lines 37-43 correspond to a system-level controller tran-

sition. The set of possible successors is computed at line
37. If no discrete transition is possible (line 38) a deadlock
is reported. Otherwise, the successors are explored, one ata
time, by the loop at lines 39-42. In this case, the time horizon
is unchanged during the recursive call (line 42).

1: // Check the time-bound safety of an SDCS
2: global SDCS;// A sampled-data control system.
3: global U; // A set of unsafe states.
4: global T; // A time bound.
5: global visited← {}; // Visited states, initially empty.
6: main:
7: // Perform a depth-first search for each initial state
8: foreach (state∈ Init)
9: result← explore(state, T, ());
10: if (result 6= SAFE BRANCH) return result;
11: return SAFE;

Fig. 3. Themain procedure of the systematic simulation algorithm.

The pseudocode in Figures 3 and 4 is based on the
algorithm for explicit-state model checking [8], which uses
a depth-first search of the state transition graph. We have
implemented this algorithm by modifying the search pro-
cedure of an existing model checker. The major additions
are livelock detection(lines 18-23), storing oftime horizons
together with states in the visited set (lines 25-27), and the
computation ofplant transitionsusing numerical simulation
(lines 30-34).

B. Approximate Equivalence

The systematic simulation approach presented in the pre-
vious section exhaustively explores all possible behaviors
of an SDCS. By using a model checker, the technique is
more efficient than using standard simulation to enumer-
ate all traces. The approach, however, requires substantial
computational resources when applied to complex systems.
For such systems, the number of traces is exponential in
the time bound and the number of tasks and inputs. The
model checker has to explore all traces, even if many of
them are similar to each other. In this section, we present an
approach that prunes the simulation graph by ignoring some
of the traces that are similar. This is a heuristic approach,
which, unlike the previous algorithm, can possibly fail to
detect unsafe behaviors in an SDCS, but is useful in finding
errors in large systems.

Explicit-state model checkers compute the set of reachable
states iteratively by constructing a graph using the transition
relation of the model. When the model checker encounters
a state that is equal to a state that has already been visited
(line 25 in Figure 4), the transitions starting from that state
are not explored. Doing so would only lead to states that
have already been encountered. In this section we present an
approach that replaces the notion of state equality in model
checking with state equivalence based on an approximation
of the plant state. This is a heuristic approach that enables

12: // Perform a depth-first search starting atstate
13: function explore(state,τ , path)
14: path← path · state;

15: // Check for unsafe states
16: if (state∈ U) return (UNSAFE, path);

17: // Detect livelocks
18: if (∃ N < path.length:
19: path[N] = state∧
20: ∀ N ≤ k < path.length:
21: (path[k].q, path[k+1].q)∈ δ ∧

22: path[k].x = path[k+1].x)
23: return (LIVELOCK, path);

24: // Compare to already visited states
25: if (∃ (s,t) ∈ visited: s = state∧ t ≥ τ)
26: return SAFE BRANCH;
27: visited← visited∪ {(state,τ)};

28: // Perform a plant transition
29: if (state.L = Lfinal)
30: // Stop if time horizon is less than sampling time
31: if (τ < ts) return SAFE BRANCH;
32: state.x ← F(state.x, state.v);
33: state.L← Linit;
34: return explore(state,τ - ts, path);

35: // Perform a controller transition
36: else
37: succs← {q’ | (state.q, q’)∈ δ(state.x)};
38: if (succs =∅) return (DEADLOCK, path);
39: foreach (q’ ∈ succs)
40: state.q← q’;
41: result← explore(state,τ , path);
42: if (result 6= SAFE BRANCH) return result;
43: return SAFEBRANCH;

Fig. 4. Theexplore function.

the technique to analyze larger systems. While the approach
is able to efficiently search for counterexamples, it does not
explore all possible system behaviors. As such it can show
that the system is unsafe, but it cannot prove that a system
is safe.

We introduce the notion ofapproximate equivalencefor
an SDCS. Two system states,s = (L,v,x) and s′ =
(L′,v′,x′), are approximately equivalent whenL = L′,
v = v′, and x and x′ satisfy a proximity criterion based
on their positions inRn. In our implementation, a grid is
applied to the state space of the plant; the criterion on the
positions ofx andx′ that we use is that bothx andx′ should
occupy the same grid element. When our algorithm reaches a
state that is approximately equivalent to a previously visited
one, the transitions starting from that state are not explored.
We call this operationpath pruning(see Figure 5).

The heuristic approach presented here is not sound in

(a) Approximate equivalence (b) Path pruning

Fig. 5. Approximate equivalence (a) identifies states that have the same
controller state and similar plant states. This enables pruning (b) parts of
the graph.

that it is not guaranteed to find a counterexample if one
exists. This is because the traces neglected may lead to an
unsafe system state: while two plant states may be close to
each other at a given point in time, they may lead to states
that are far from each other. This behavior is characteristic
of differential equations, where apparently simple dynamics
may lead to chaotic behavior. We are currently working
on an approach that has similar advantages to approximate
equivalence but is able to prove bounded-time safety of an
SDCS.

For stable affine plant dynamics, we can determine a Lya-
punov function,V(x) = xT Px, whereP ∈ R

n×n is positive
definite. We define a Lyapunov ellipsoid with centerxc and
size α ≥ 0 as E(xc,P, α) = {x|(x − xc)

TP(x − xc) ≤
α}, where the matrixP determines the shape. Lyapunov
ellipsoids have the following property. Given two plant states

x and y such thaty ∈ E(x,P, α), if x
F (v)
−−−→ x′ and

y
F (v)
−−−→ y′, theny′ ∈ E(x′,P, α). Consequently, if we know

thatx andy are sufficiently close, meaning if‖x−y‖P ≤ α

for a given α > 0, then we know thatx′ and y′ remain
sufficiently close, that is‖x′−y′‖P ≤ α (see Figure 6). We
will use this property of Lyapunov ellipsoids to define an
equivalence relation which preserves bounded-time safety.

Fig. 6. If y is within a Lyapunov ellipsoid of sizeα centered atx, and
x
′ and y

′ are plant states reachable fromx and y, then y
′ is within a

Lyapunov ellipsoid of sizeα centered atx′.

IV. EXPERIMENTAL EVALUATION

We implemented our technique by extending an existing
explicit-state source code model checker. The tool we chose
is Java PathFinder [14]. While the main purpose of the
tool is to verify Java programs, it is able to handle the
subset of C that is common to the two languages. We were
able to check the code automatically generated using the
MathWorks’ Real-Time Workshop with only minor syntactic
modifications. The main reasons for choosing this tool were
that it was readily available and it could be extended to im-
plement our approach. In future work, we plan to investigate
using alternative model checkers, especially tools that are
aimed at C/C++. We used MATLAB/Simulink to model the
plant and controller and to provide simulation traces for the
systematic simulation analysis.

We extended the existing model checker in the following
way. We added an additional component to the state of the
system corresponding to the state of the plant. The plant
state is represented by a set of floating-point values for each
of the continuous state variables. We extended the transition
system constructed by the model checker to include plant
transitions.

Separate concurrent processes are modeled explicitly in
the model checker; the model checker automatically trans-
forms the separate tasks into a single nondeterministic tran-
sition system. Plant transitions are computed using the MAT-
LAB/Simulink numerical integration solver (this corresponds
to line 32 in Figure 4). Given the sampling periodts, the
current plant statex, and the value of the program statev,
MATLAB/Simulink returns the statex′ that is reached at
time ts.

In the following, we present experimental results we ob-
tained by applying our technique to an example based on the
Stanford Testbed of Autonomous Rotorcraft for Multi-Agent
Control (STARMAC). STARMAC is a quadrotor unmanned
aerial vehicle (UAV) under development at Stanford Univer-
sity [11]. We obtained a Simulink model of the STARMAC
system from the Stanford development team. We believe
that the model is correct and does not contain an error.
We constructed a new system model, the Reconnaissance
Mission (RM) model, that includes a supervisory controller
that we designed. We used our technique to detect an error
in the RM model.

The vehicle, shown in Figure 7, is composed of a computer
controller and power supply at its center, which is attachedto
a frame on which four rotors are mounted. The controller of
the vehicle is organized on three levels illustrated in Figure 8.
The inner loop controller sends thrust commands to the four
rotors based on the pitch, roll, yaw, and altitude commands
that it receives from the outer loop controller. The latter
commands are based on the position command (in three
dimensions) that the supervisory controller generates. The
supervisor makes its decision based on the current position
of the vehicle.

We constructed a supervisory controller whose purpose is
to guide the vehicle through a sequence of waypoints. The

Fig. 7. An illustration of the Stanford Testbed of Autonomous Rotorcraft
for Multi-Agent Control.

Fig. 8. Vehicle block diagram.

controller must be robust with respect to invalid waypoints,
meaning that it has to guarantee that the vehicle will not
reach an altitude below 1 meter unless it is taking off or
landing (corresponding to the first and last waypoint in
the sequence). The supervisory controller is modeled using
Stateflow diagrams. The implementation uses the following
interleaved tasks, illustrated in Figure 9:

• Waypoint Tracking - takes the vehicle through a set
of positions given by a waypoint list. It checks the
proximity of the vehicle to the target waypoint and, if
the vehicle is close to the target, it then picks the next
waypoint from the list and issues the command to the
STARMAC Quadrotor.

• Waypoint Monitor - checks if the altitude command
of the next waypoint is below 1.1 meters and, if so, it
adjusts the altitude command to 1.1 meters.

• Command Latch - maintains the last command until
the next waypoint command is issued.

The tasks communicate among themselves using shared
variables.

Fig. 9. Block diagram of the supervisory controller.

The MATLAB/Simulink model of the RM system includes
the supervisory controller, the outer loop controller, the
inner loop controller, and the dynamics of the vehicle (see

Figure 8). Since the inner and outer control loops operate at
a much faster clock rate than the supervisor, we model them
as part of the RM plant and take the supervisor to be the
RM controller.

The RM plant model corresponds to a set of non-linear
differential equations with over 39 continuous-valued state
variables. The interaction between the plant and the super-
visory controller occurs by means of position commands (in
the x, y, and z coordinates) sent by the supervisor to the
plant, and position sensor values sent by the plant to the
supervisor.

The property that we want to check is that the vehicle
never flies below the minimum safe altitude of 1 meter,
unless it is taking off or landing.

We used the technique described in Section III to search
for a counterexample. The tool explores the traces of the sys-
tem until it reaches an unsafe state and the counterexample
shown in Figure 10 is generated. The horizontal axis in the
figure represents time, the vertical one represents the altitude.
The dashed curve is the actual altitude of the vehicle as it
evolves with the passing of time. The solid curve represents
the altitude command generated by the controller. The trace
is a counterexample because at the end of the trace the
altitude reaches a value below 1 meter and the vehicle is
neither taking off nor landing. The circles on the diagram
mark the sampling times and may correspond to multiple
controller transitions.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (seconds)

A
lt

it
u

te
 (

m
et

er
s)

z
cmd

z
z

min

Fig. 10. Counterexample trace.

The counterexample is due to the interleaving of the tasks.
In this particular trace the Waypoint Monitor task executes
before the Waypoint Tracking task at timet = 7 seconds and
therefore sees the previous value oftarget position.
Since this value is valid (its altitude component is above
1.1 meters) the value is not changed. After that, the
Waypoint Tracking task executes andtarget position
is set equal to the fourth waypoint, which contains an
invalid altitude value (see Figure 11). The value of
waypoint available is set to true and the Command
Latch task records the incorrect value. At this point the
vehicle starts to decrease its altitude towards the waypoint
at altitude 0.5 meters. At the next sample time, the Way-

point Monitor task corrects the value, but it is too late
as waypoint available is now set to false and the
Command Latch task does not update its interval value until
the next waypoint is generated. One sampling time later
the vehicle altitude becomes lower than the minimum safe
altitude and an error is reported by our tool.

x y z
1 0.0 0.0 0.0
2 2.0 1.3 1.2
3 0.2 2.0 1.5
4 1.8 1.1 0.5
5 1.2 0.4 1.5
6 0.0 0.0 0.0

Fig. 11. List of waypoints used in the experimental evaluation

As shown in Figure 12, during the analysis with a time
bound of 15 seconds, the tool generated 131,158 states before
detecting the error. This required about 11 minutes and
928MB of memory. The counterexample shown in Figure 10
contains 1346 transitions, of which 9 are plant transitions
and the rest are controller transitions. The large number of
controller transitions is due to the fact that the software
is modeled at the statement level in order to be able to
check the interleaving of the tasks. During the analysis,
the tool encountered 140,673 states equivalent to previously
visited states, marked as revisited states in the table. In
the example we analyzed most of the revisited states were
actually identical to previously visited states. We believe
this is due to the fact that most of the revisited states are
obtained by a different interleaving of the tasks: different
task orderings during execution often led to the same state.
The approach, however, is able to detect those cases where
a different ordering leads to a different behavior, as in the
counterexample shown above. The results for different values
of the time bound are shown in Figure 12. Notice that no
counterexample is found for a time bound of 5 seconds
(first row in the table), since the duration of the shortest
counterexample trace is 9 seconds.

Time Running Memory Reached Revisited
bound time usage states states

5s1 5:50s 795MB 112,057 131,781
10s 1:12s 25MB 2,470 2,449
15s 11:31s 928MB 131,158 140,673

1No counterexample found.

Fig. 12. Running times, memory usage, number of reached states, and
number of revisited states for different time bounds and with and without
approximate equivalence.

V. CONCLUSIONS

We have presented an approach for the validation of
sampled-data control systems where the controller is imple-
mented as a set of concurrent tasks and the plant is described
by a set of differential equations. We have implemented

our approach using an explicit-state source code model
checker for handling the controller and MATLAB/Simulink
for simulating models of the plant.

Our approach uses numerical simulation in conjunction
with a model checker to provide an efficient way to explore
a large set of system behaviors and detect possible errors.
One of the main advantages of this approach is that it can
accurately model the controller and is able to find errors that
are difficult to identify using simulation. By using a source
code model checker and MATLAB/Simulink, we believe
these techniques can be used to address industrial problems.

As described in Section III, we are currently working
on a technique based on ellipsoids and Lyapunov functions
to strengthen the results that can be obtained using our
technique. At the same time, we are interested in trying
different model checkers, especially ones that are able to
handle C/C++ directly, in order to increase the applicability
of our approach.

REFERENCES

[1] Simulink Design Verifier User’s Guide. The MathWorks, 2007.
[2] Using Simulink. The MathWorks, 2007.
[3] Thomas Ball and Sriram K. Rajamani. Bebop: A Symbolic Model

Checker for Boolean Programs. InProc. of the 7th International SPIN
Workshop, 2000.

[4] Oleg Botchkarev and Stavros Tripakis. Verification of Hybrid Systems
with Linear Differential Inclusions Using Ellipsoidal Approximations.
In Proc. of the 3rd International Workshop on Hybrid Systems:
Computation and Control. Springer-Verlag, 2000.

[5] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and
Helmut Veith. Modular Verification of Software Components in C. In
Proc. of the 25th International Conference on Software Engineering,
2003.

[6] Alongkrit Chutinan and Bruce H. Krogh. Verification of Infinite State
Dynamic Systems Using Approximate Quotient Transition Systems.
IEEE Transactions on Automatic Control, 46(9):1401–1410, 2001.

[7] Edmund M. Clarke and E. Allen Emerson. Synthesis of Synchro-
nization Skeletons for Branching Time Temporal Logic. InProc. of
Workshop on Logic of Programs, 1981.

[8] Edmund M. Clarke, Orna Grumberg, and Doron Peled.Model
Checking. MIT Press, 2000.

[9] Thomas A. Henzinger. The Theory of Hybrid Automata. InProc.
of the 11th Annual IEEE Symposium on Logic in Computer Science,
1996.

[10] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, andGregoire
Sutre. Lazy Abstraction. InProc. of the 29th Symposium on Principles
of Programming Languages, 2002.

[11] Gabriel M. Hoffmann, Haomiao Huang, Steven L. Waslander, and
Claire J. Tomlin. Quadrotor Helicopter Flight Dynamics andControl:
Theory and Experiment. InProc. of the AIAA Guidance, Navigation,
and Control Conference, 2007.

[12] Stefan Kowalewski, Sebastian Engell, Jörg Preußig, and Olaf Sturs-
berg. Verification of Logic Controllers for Continuous Plants Using
Timed Condition/Event-System Models.Automatica, 35(3):505–518,
1999.

[13] Klaus D. Müller-Glaser, Gerd Frick, Eric Sax, and Markus Kühl.
Multiparadigm Modeling in Embedded Systems Design.IEEE Trans-
actions on Control Systems Technology, 12(2):279–292, March 2004.

[14] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park,
and Flavio Lerda. Model Checking Programs.Automated Software
Engineering, 10(2):203–232, 2003.

